
MACHINE LEARNING AND

PATTERN RECOGNITION

Fall 2004, Lecture 8:

Unsupervised Learning, Density Estimation, EM

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/28



Unsupervised Learning

The basics idea of unsupervised learning: Learn an energy function E(Y ) such that
E(Y ) is small if Y is “similar” to the training samples, and E(Y ) is large if Y is
“different” from the training samples. What we mean by “similar” and “different” is
somewhat arbitrary and must be defined for each problem.

Probabilistic unsupervised learning: Density
Estimation. Find a function f such f(Y )
approximates the empirical probability density of Y ,
p(Y ), as well as possible.

Clustering: discover “clumps” of points

Embedding: discover low-dimensional manifold or
surface that is as close as possible to all the samples.

Compression/Quantization: discover a function that
for each input computes a compact “code” from which
the input can be reconstructed.

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/28



Parametric Density Estimation

Use Maximum Likelihood: Given a model P (Y |W ), find the parameter W that best
“explains” the training samples, i.e. the W that maximizes the likelihood of the
training samples Y 1, Y 2, ...Y P . Assuming that the total data likelihood factorizes into
individual sample likelihoods:

P (Y 1, Y 2, ...Y P |W ) =
∏

i

P (Y i|W )

Equivalently, find the W that minimizes the negative log likelihood.

L(W ) = −log
∏

i

P (Y i|W ) =
∑

i

−logP (Y i|W )

This is called parametric estimation because we assume that the family of possible
densities is parameterized by W .

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/28



Parametric Density Estimation

Assuming P (Y |W ) is the normalized exponential of an energy function:

P (Y |W ) =
exp(−βE(Y, W ))

∫

exp(−βE(Y, W ))dY

and after an irrelevant division by β, we get the loss function:

L(W ) =
∑

i

(

E(Y i, W ) +
1

β
log

∫

exp(−βE(Y, W ))dY

)

The Maximum A Posteriori Estimate is similar but includes a penalty on W :

L(W ) =
∑

i

(

E(Y i, W ) +
1

β
log

∫

exp(−βE(Y, W ))dY

)

+ H(W )

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/28



Example: Univariate Gaussian

Maximum Likelihood: find the parameters
of a Gaussian that best “explains” the
training samples y1, y2, ....yP .

negative log-likelihood of the data (one
dimension): L(m, v) =

−
∑

i log 1√
2πv

exp(− 1
2v (yi −m)2)

L(m, v) =
1

2

∑

i

1

v
(yi −m)2 + log 2πv

Minimize L(m, v) with respect to m and v.

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/28



Example: Univariate Gaussian

Minimize L(m, v) with respect to m

∂L(m, v)

∂m
=

1

2

∑

i

1

v
(yi −m) = 0

Hence, m = 1
P

∑

i yi

Now minimize L(m, v) with respect to v

∂L(m, v)

∂v
=

1

2

∑

i

(

−
1

v2
(yi −m)2 +

1

v

)

= 0

Hence v = 1
P

∑

i(y
i −m)2

surprise-surprise: The maximum likelihood estimates of the mean and variance
of a Gaussian are the mean and variance of the samples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/28



Example: Multi-variate Gaussian

Maximum Likelihood: find the parameters of a Gaussian that best “explains” the
training samples Y 1, Y 2, ....Y P .
The negative log-likelihood of the data (M is a vector, V is a matrix):

L(M, V ) = −
∑

i

log
(

|2πV |−1/2 exp(−1/2(Y i −M)′V −1(Y i −M))
)

L(M, V ) =
1

2

∑

i

(Y i −M)′V −1(Y i −M)− log |V −1|+ log(2π)

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/28



Multi-variate Gaussian (continued)

L(M, V ) =
1

2

∑

i

(Y i −M)′V −1(Y i −M)− log |V −1|+ log(2π)

∂L(M, V )

∂M
=

1

2

∑

i

V −1(Y i −M) = 0

Hence, M = 1
P

∑

i Y i Now minimize L(M, V ) with respect to V −1

∂L(M, V )

∂V −1
=

1

2

∑

i

(

(Y i −M)(Y i −M)′ − V
)

(using the fact ∂ log |V −1|
∂V −1 = V ′).

Hence V = 1
P

∑

i(Y
i −M)(Y i −M)′

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/28



Non-Parametric Methods: Parzen Windows

The sample distribution can be seen as a
bunch of delta functions. Idea: make it
smooth.

Place a “bump” around each training
sample Y i.

example: Gaussian bump
gi(Y ) = 1

Z exp(−K||Y − Y i||2) where Z

is the Gaussian normalization constant.

The density is P (Y ) = 1
P ∼

P
i=1 gi(Y )

It’s simple, but it’s expensive.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/28



Dimensionality Reduction

A slightly simpler problem than full-fledged density estimation: Find a
low-dimensional surface (a manifold) that is as close as possible to the training
samples.

Example 1: reducing the number of input
variables (features) to a classifier so as to reduce
the over-parameterization problem.

Example 2: images of human faces can be seen as
vectors in a very high dimensional space. Actual
faces reside in a small subspace of that large
space. If we had a parameterization of the
manifold of all possible faces, we could generate
new faces or interpolate between faces by moving
around that surface. (this has been done, see
Blanz and Vetter “Face recognition based on
fitting a 3D morphable model” IEEE Trans. PAMI
25:1063-1074, 2003).

Example 3: Parameterizing the possible shapes of
a mouth so we can make a simulated human speak
(see http://www.vir2elle.com).

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/28



Linear Subspace: Principal Component Analysis

Problem: find a linear manifold that best approximates the samples. In other words,
find a linear projection P such that the projection of the samples are as close as
possible to the originals.

We have a training set Y 1...Y P . We assume all
the components have zero mean. If not we center
the vectors by subtracting the mean from each
component.

Question: what is the direction that we can
remove (project out) while minimally affecting
the training set.

Let U be a unit vector in that dimension

Removing the dimension in the direction of U will

cost us C =
∑P

i=1(Y
i′U)2 (the square length of

the projections of Y i on U ).

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/28



Principal Component Analysis

Removing the dimension in the direction of U will cost us C =
∑P

i=1(Y
i′U)2

(the square length of the projections of Y i on U ).

C =
∑P

i=1 U ′Y iY i′U = [U ′ ∑P
i=1 Y iY i′]U Q: How do we pick U so as to

minimize the quantity in the bracket?

The covariance matrix A =
∑P

i=1 Y iY i′ can be diagonalized: A = QΛQ′,
where Q is a rotation matrix, whose lines Qi are the normalized (and mutually
orthogonal) eigenvectors of A, and Λ a diagonal matrix that contain the
(positive) eigenvalues of A.

It is easy to see that the unit vector U that minimizes U ′QΛQ′ is aligned with
the eigenvector of smallest eigenvalue of A.

To eliminate more directions, we can repeat the process while remaining in the
orthogonal space of the previously found directions.

Practically: we simply find first K eigenvectors of A (associated with the K
largest eigenvalues) and keep those.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/28



Principal Component Analysis (PCA)

step 1: We have a training set Y 1...Y P whose component variables have zero
mean (or have been centered).

step 2: compute the covariance matrix A = 1
P

∑P
i=1 Y iY i′

step 3: diagonalize the covariance matrix: A = Q′ΛQ,

step 4: Construct the matrix Qk whose rows are the the eigenvectors of largest
eigenvalues of A (a subset of rows of Q).

Multiplying a vector by Qk gives the projections of the vector onto the principal
eigenvectors of A. We can Now compute the k PCA features of any vector Y as
PCAk(Y ) = QkY .

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/28



K-Means Clustering

Idea: find K prototype vectors that “best represent” the
training samples Y 1...Y P . More precisely, find K vec-
tors M1, ...MK , such that

L =
P

∑

i=1

K
min
k=1
||Y i −Mk||2

is minimized. In other words, the Mk are chosen such
that the error caused by replacing any Y i by its closest
prototype is minimized.
Application 1: Discovering hidden categories.
Application 2: Lossy data compression: to code a vector,
find the prototype Mk that is closest to it, and transmit k.
This process is called Vector Quantization.

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/28



Algorithm for K-Means Clustering

Minimizing L: ∂L
∂Mk = 2

∑

i∈Sk(Mk − Y i) = 0 where Sk is the set of i for

which Mk is the closest prototype to Y i. We get:

Mk =
1

|Sk|

∑

i∈Sk

Y i

where |Sk| is the number of elements in Sk.

Algorithm:

initialize the Mk (e.g. randomly).
repeat until convergence:

for each k compute the set Sk, the set of all i for which ||Mk − Y i||2 is
smaller than all other ||M j − Y i||2.

compute Mk = 1
|Sk|

∑

i∈Sk Y i

iterate

Naturally, this algorithm works with any distance measure.

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/28



Hierarchical K-Means

Problem: Sometimes, K-Means may get stuck in very bad solutions (e.g. some
prototypes have no samples assigned to them).
This is often caused by inappropriate initialization of the prototypes.
Cure: Hierarchical K-Means.
Main Idea:: run K-Means with K = 2, then run again K-Means with K = 2 on each
of the two subsets of samples (those assigned to prototype 1, and those assigned to
prototype 2).
What do we use K-Means for?: data compression (vector quantization)
initialization of RBF nets of Mixtures of Gaussian.

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/28



Latent Variables

Latent variables are unobserved random variables Z that enter into the energy function
E(Y, Z, X, W ).

The X variable (input) is always observed, the Y must be
predicted. The Z variable is latent: it is not observed. We
need to marginalize the joint probability P (Y, Z|X, W )
over Z to get P (Y |X, W ):

P (Y |X, W ) =

∫

P (Y, Z|X, W )dZ

We can also write this as:

P (Y |X, W ) =

∫

P (Y |Z, X, W )P (Z|X, W )dZ

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/28



Latent Variables

If we assume that P (Y, Z|W ) derives from an energy function E(Y, Z, X, W ) as

P (Y, Z|W ) = exp(−βE(Y,Z,X,W )
R R

exp(−βE(y,z,X,W )dydz
, the likelihood for one sample, Y i is:

P (Y i|W ) =

∫

exp(−βE(Y i, Z, W ))dZ
∫ ∫

exp(−βE(Y, Z, W ))dZdY

We can also decompose this using P (Y |X, W ) =
∫

P (Y |Z, W )P (Z|W )dZ:

P (Y i|W ) =

∫

exp(−βE(Y i, Z, W ))
∫

exp(−βE(Y, Z, W ))dY

exp(−β′E(Y i, Z, W ))
∫

exp(−β′E(Y i, Z, W ))dZ
dZ

The parameters β and β′ do not have to have the same value.

Y. LeCun: Machine Learning and Pattern Recognition – p. 18/28



Latent Variables: Zero Temperature Limit

If we make β′ go to infinity in the expression for the likeliood, then P (Z|X, W )
reduces to a Dirac delta function around its mode (the minimum of E(Y, Z, W ) as a
function of Z).
Then, the likelihood becomes:

P (Y i|W ) =
exp(−βE(Y i, Z∗, W ))

∫

exp(−βE(Y, Z∗, W ))dY

where Z∗ is:
Z∗ = argminZE(Y i, Z, W )

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/28



Example: Mixture Models

We have K normalized densities P k(Y |W k), each of which has a positive coefficient
αk (whose sum over k is 1), and a switch controlled by a discrete latent variable Z that
picks one of the comonent density. There is no input X , only an “output” Y (whose
distribution is to be modeled) and a latent variable Z.

The likelihood for one sample Y i:

P (Y i, Z|W ) =
∑

k

αkPk(Y i|W k)

with
∑

k αk = 1. Using Bayes’ rule, we can compute the
posterior prob of the mixture components for each data
point Y i:

rk(Y i) = P (Z = k|Y i, W ) =
αkPk(Y i|W k)

∑

j αjPj(Y i|W j)

These quantities are called “responsabilities”.

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/28



Learning a Mixture Model with Gradient

We can learn a mixture with gradient descent, but there are much better methods as we
will see later. The negative log-likelihood of the data is:

L = − log
∏

i

P (Y i|W ) =
∑

i

−logP (Y i|W )

Let us consider the likelihood of one data point Y i:

Li = −logP (Y i|W ) = −log
∑

k

αkPk(Y i|W )

∂Li

∂W
=

1

P (Y i|W )

∑

k

αk
∂Pk(Y i|W )

∂W

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/28



Learning a Mixture Model with Gradient (cont)

∂Li

∂W
=

1

P (Y i|W )

∑

k

αk
∂Pk(Y i|W )

∂W

=
∑

k

αk
1

P (Y i|W )
Pk(Y i|W )

∂ log Pk(Y i|W )

∂W

=
∑

k

αk
Pk(Y i|W )

P (Y i|W )

∂ log Pk(Y i|W )

∂W
==

∑

k

rk(Y i)αk
∂ log Pk(Y i|W )

∂W

The gradient is the weighted sum of gradients of the individual components weighted
by the responsabilities.

Y. LeCun: Machine Learning and Pattern Recognition – p. 22/28



Example: Gaussian Mixture

P (Y |W ) =
∑

k

αk|2πV k|−1/2 exp(−1/2(Y −Mk)′(V k)
−1

(Y −Mk))

This is used a lot in speech recognition.

Y. LeCun: Machine Learning and Pattern Recognition – p. 23/28



The Expectation-Maximization Algorithm

Optimizing likelihoods with gradient is the only option in some cases, but there is a
considerably more efficient procedure known as EM.
Every time we update the parameters W , the distribution over latent variables Z must
be updated as well (because it depends on W .
The basic idea of EM is to keep the distribution over Z constant while we find the
optimal W , then we recompute the new distribution over Z that result from the new
W , and we iterate. This process is sometimes called coordinate descent.

Y. LeCun: Machine Learning and Pattern Recognition – p. 24/28



EM: The Trick

The negative log likelihood for a sample Y i is:

Li = − log P (Y i|W ) = − log

∫

P (Y i, Z|W )dZ

For any distribution q(Z) we can write:

Li = − log

∫

q(Z)
P (Y i, Z|W )

q(Z)
dZ

We now use Jensen’s inequality, which says that for any concave function G (such as
log)

−G(

∫

p(z)f(z)dz) ≤ −

∫

p(z)G(f(z))dz

We get:

Li ≤ F i = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ

Y. LeCun: Machine Learning and Pattern Recognition – p. 25/28



EM

Li ≤ F i = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ

EM minimizes F i by alternately
finding the q(Z) that mininizes F (E-step)
then finding the W that minimizes F M-step)
E-step: q(Z)t+1 ← argminqF

i(q(Z)t, W t)

M-step: W (Z)t+1 ← argminW F i(q(Z)t+1, W t)

Y. LeCun: Machine Learning and Pattern Recognition – p. 26/28



M Step

We can decompose the free energy:

F i(q(Z), W ) = −

∫

q(Z) log
P (Y i, Z|W )

q(Z)
dZ

= −

∫

q(Z) log P (Y i, Z|W )dZ +

∫

q(Z) log q(Z)dZ

The first term is the expected energy with distribution q(Z), the second is the entropy
of q(Z), and does not depend on W .
So in the M-step, we only need to consider the first term when minimizing with
respect to q(Z).

W (Z)t+1 ← argminW −

∫

q(Z) log P (Y i, Z|W )dZ

Y. LeCun: Machine Learning and Pattern Recognition – p. 27/28



E Step

Proposition: the value of q(Z) that minimizes the free energy is q(Z) = P (Z|Y i, W )
This is the posterior distrib over the latent variabled given teh sample and the current
parameter.
Proof:

F i(P (Z|Y i, W ), W ) = −

∫

P (Z|Y i, W ) log
P (Y i, Z|W )

P (Z|Y i, W )
dZ

= −

∫

P (Z|Y i, W ) log P (Y i|W )dZ =

− log P (Y i|W )

∫

z

P (Z|Y i, W ) = − log P (Y i|W ).1

Y. LeCun: Machine Learning and Pattern Recognition – p. 28/28


	Unsupervised Learning
	Parametric Density Estimation
	Parametric Density Estimation
	Example: Univariate Gaussian
	Example: Univariate Gaussian
	Example: Multi-variate Gaussian
	Multi-variate Gaussian (continued)
	Non-Parametric Methods: Parzen Windows
	Dimensionality Reduction
	Linear Subspace: Principal Component Analysis
	Principal Component Analysis
	Principal Component Analysis (PCA)
	K-Means Clustering
	Algorithm for K-Means Clustering
	Hierarchical K-Means
	Latent Variables
	Latent Variables
	Latent Variables: Zero Temperature Limit
	Example: Mixture Models
	Learning a Mixture Model with Gradient
	Learning a Mixture Model with Gradient (cont)
	Example: Gaussian Mixture
	The Expectation-Maximization Algorithm
	EM: The Trick
	EM
	M Step
	E Step

