MACHINE LEARNING AND PATTERN RECOGNITION

Fall 2004, Lecture 4

Gradient-Based Learning III: Architectures

Yann LeCun
The Courant Institute, New York University http://yann.lecun.com

A Trainer class

The trainer object is designed to train a particular machine with a given energy function and loss. The example below uses the simple energy loss.

```
(defclass simple-trainer object
    input ; the input state
    output ; the output/label state
    machin ; the machine
    mout ; the output of the machine
    cost ; the cost module
    energy ; the energy (output of the cost) anc
    param ; the trainable parameter vector
    )
```


A Trainer class: running the machine

Takes an input and a vector of possible labels (each of which is a vector, hence <label-set> is a matrix) and returns the index of the label that minimizes the energy. Fills up the vector <energies> with the energy produced by each possible label.

```
(defmethod simple-trainer run
            (sample label-set energies)
    (==> input resize (idx-dim sample 0))
    (idx-copy sample :input:x)
    (==> machine fprop input mout)
    (idx-bloop ((label label-set) (e energies))
        (==> output resize (idx-dim label 0))
        (idx-copy label :output:x)
        (==> cost fprop mout output energy)
        (e (:energy:x)))
; ; find index of lowest energy
(idx-dlindexmin energies))
```


A Trainer class: training the machine

Performs a learning update on one sample. <sample> is the input sample, <label> is the desired category (an integer), <label-set> is a matrix where the i-th row is the desired output for the i-th category, and <updateargs> is a list of arguments for the parameter update method (e.g. learning rate and weight decay).

```
(defmethod simple-trainer learn-sample
    (sample label label-set update-args)
    (==> input resize (idx-dim sample 0))
    (idx-copy sample :input:x)
    (==> machine fprop input mout)
    (==> output resize (idx-dim label-set 1))
    (idx-copy (select label-set 0 (label 0)) :outpr
    (==> cost fprop mout output energy)
    (==> cost bprop mout output energy)
    (==> machine bprop input mout)
    (==> param update update-args)
    (:energy:x))
```


Other Topologies

The back-propagation procedure is not limited to feed-forward cascades.
It can be applied to networks of module with any topology, as long as the connection graph is acyclic.

- If the graph is acyclic (no loops) then, we can easily find a suitable order in which to call the fprop method of each module.
- The bprop methods are called in the reverse order.
- if the graph has cycles (loops) we have a so-called recurrent network. This will be studied in a subsequent lecture.

More Modules

A rich repertoire of learning machines can be constructed with just a few module types in addition to the linear, sigmoid, and euclidean modules we have already seen. We will review a few important modules:

- The branch/plus moduleThe switch module
- The Softmax module
- The logsum module

The Branch/Plus Module

The PLUS module: a module with K inputs X_{1}, \ldots, X_{K} (of any type) that computes the sum of its inputs:

$$
X_{\mathrm{out}}=\sum_{k} X_{k}
$$

back-prop: $\frac{\partial E}{\partial X_{k}}=\frac{\partial E}{\partial X_{\text {out }}} \quad \forall k$
\square The BRANCH module: a module with one input and K outputs X_{1}, \ldots, X_{K} (of any type) that simply copies its input on its outputs:

$$
X_{k}=X_{\mathrm{in}} \quad \forall k \in[1 . . K]
$$

back-prop: $\frac{\partial E}{\partial \mathrm{in}}=\sum_{k} \frac{\partial E}{\partial X_{k}}$

The Switch Module

A module with K inputs X_{1}, \ldots, X_{K} (of any type) and one additional discrete-valued input Y.

- The value of the discrete input determines which of the N inputs is copied to the output.

$$
\begin{aligned}
X_{\mathrm{out}} & =\sum_{k} \delta(Y-k) X_{k} \\
\frac{\partial E}{\partial X_{k}} & =\delta(Y-k) \frac{\partial E}{\partial X_{\mathrm{out}}}
\end{aligned}
$$

the gradient with respect to the output is copied to the gradient with respect to the switched-in input. The gradients of all other inputs are zero.

The Logsum Module

fprop:

$$
X_{\mathrm{out}}=-\frac{1}{\beta} \log \sum_{k} \exp \left(-\beta X_{k}\right)
$$

bprop:

$$
\frac{\partial E}{\partial X_{k}}=\frac{\partial E}{\partial X_{\text {out }}} \frac{\exp \left(-\beta X_{k}\right)}{\sum_{j} \exp \left(-\beta X_{j}\right)}
$$

or

$$
\frac{\partial E}{\partial X_{k}}=\frac{\partial E}{\partial X_{\mathrm{out}}} P_{k}
$$

with

$$
P_{k}=\frac{\exp \left(-\beta X_{k}\right)}{\sum_{j} \exp \left(-\beta X_{j}\right)}
$$

Log-Likelihood Loss function and Logsum Modules

MAP/MLE Loss $L_{11}\left(W, Y^{i}, X^{i}\right)=E\left(W, Y^{i}, X^{i}\right)+\frac{1}{\beta} \log \sum_{k} \exp \left(-\beta E\left(W, k, X^{i}\right)\right)$

- A classifier trained with the Log-Likelihood loss can be transformed into an equivalent machine trained with the energy loss.
- The transformed machine contains multiple "replicas" of the classifier, one replica for the desired output, and K replicas for each possible value of Y.

Softmax Module

A single vector as input, and a "normalized" vector as output:

$$
\left(X_{\mathrm{out}}\right)_{i}=\frac{\exp \left(-\beta x_{i}\right)}{\sum_{k} \exp \left(-\beta x_{k}\right)}
$$

Exercise: find the bprop

$$
\frac{\partial\left(X_{\mathrm{out}}\right)_{i}}{\partial x_{j}}=? ? ?
$$

Radial Basis Function Network (RBF Net)

- Linearly combined Gaussian bumps.
■ $F(X, W, U)=$
$\sum_{i} u_{i} \exp \left(-k_{i}\left(X-W_{i}\right)^{2}\right)$
\square The centers of the bumps can be initialized with the K-means algorithm (see below), and subsequently adjusted with gradient descent.
\square This is a good architecture for regression and function approximation.

MAP/MLE Loss and Cross-Entropy

\square classification (y is scalar and discrete). Let's denote $E(y, X, W)=E_{y}(X, W)$

- MAP/MLE Loss Function:

$$
L(W)=\frac{1}{P} \sum_{i=1}^{P}\left[E_{y^{i}}\left(X^{i}, W\right)+\frac{1}{\beta} \log \sum_{k} \exp \left(-\beta E_{k}\left(X^{i}, W\right)\right)\right]
$$

This loss can be written as

$$
L(W)=\frac{1}{P} \sum_{i=1}^{P}-\frac{1}{\beta} \log \frac{\exp \left(-\beta E_{y^{i}}\left(X^{i}, W\right)\right)}{\sum_{k} \exp \left(-\beta E_{k}\left(X^{i}, W\right)\right)}
$$

Cross-Entropy and KL-Divergence

\square let's denote $P\left(j \mid X^{i}, W\right)=\frac{\exp \left(-\beta E_{j}\left(X^{i}, W\right)\right)}{\sum_{k} \exp \left(-\beta E_{k}\left(X^{i}, W\right)\right)}$, then

$$
\begin{gathered}
L(W)=\frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \log \frac{1}{P\left(y^{i} \mid X^{i}, W\right)} \\
L(W)=\frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_{k} D_{k}\left(y^{i}\right) \log \frac{D_{k}\left(y^{i}\right)}{P\left(k \mid X^{i}, W\right)}
\end{gathered}
$$

with $D_{k}\left(y^{i}\right)=1$ iff $k=y^{i}$, and 0 otherwise.
\square example1: $D=(0,0,1,0)$ and $P\left(. \mid X_{i}, W\right)=(0.1,0.1,0.7,0.1)$. with $\beta=1$, $L^{i}(W)=\log (1 / 0.7)=0.3567$

- example2: $D=(0,0,1,0)$ and $P\left(. \mid X_{i}, W\right)=(0,0,1,0)$. with $\beta=1$, $L^{i}(W)=\log (1 / 1)=0$

Cross-Entropy and KL-Divergence

$$
L(W)=\frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_{k} D_{k}\left(y^{i}\right) \log \frac{D_{k}\left(y^{i}\right)}{P\left(k \mid X^{i}, W\right)}
$$

$\square(W)$ is proportional to the cross-entropy between the conditional distribution of y given by the machine $P\left(k \mid X^{i}, W\right)$ and the desired distribution over classes for sample $i, D_{k}\left(y^{i}\right)$ (equal to 1 for the desired class, and 0 for the other classes).

- The cross-entropy also called Kullback-Leibler divergence between two distributions $Q(k)$ and $P(k)$ is defined as:

$$
\sum_{k} Q(k) \log \frac{Q(k)}{P(k)}
$$

It measures a sort of dissimilarity between two distributions.
\square the KL-divergence is not a distance, because it is not symmetric, and it does not satisfy the triangular inequality.

Multiclass Classification and KL-Divergence

\square Assume that our discriminant module $F(X, W)$ produces a vector of energies, with one energy $E_{k}(X, W)$ for each class.
\square A switch module selects the smallest E_{k} to perform the classification.
\square As shown above, the MAP/MLE loss below be seen as a KL-divergence between the desired distribution for y, and the distribution produced by the machine.

$$
L(W)=\frac{1}{P} \sum_{i=1}^{P}\left[E_{y^{i}}\left(X^{i}, W\right)+\frac{1}{\beta} \log \sum_{k} \exp \left(-\beta E_{k}\left(X^{i}, W\right)\right)\right]
$$

Multiclass Classification and Softmax

The previous machine: discriminant function with one output per class + switch, with MAP/MLE loss
\square It is equivalent to the following machine: discriminant function with one output per class + softmax + switch $+\log$ loss

$$
L(W)=\frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta}-\log P\left(y^{i} \mid X, W\right)
$$

with $P\left(j \mid X^{i}, W\right)=\frac{\exp \left(-\beta E_{j}\left(X^{i}, W\right)\right)}{\sum_{k} \exp \left(-\beta E_{k}\left(X^{i}, W\right)\right)}$ (softmax of the $-E_{j}$'s).
\square Machines can be transformed into various equivalent forms to factorize the computation in advantageous ways.

Multiclass Classification with a Junk Category

\square Sometimes, one of the categories is "none of the above", how can we handle that?
\square We add an extra energy wire E_{0} for the "junk" category which does not depend on the input. E_{0} can be a hand-chosen constant or can be equal to a trainable parameter (let's call it w_{0}).
\square everything else is the same.

NN-RBF Hybrids

\square sigmoid units are generally more appropriate for low-level feature extraction.
Euclidean/RBF units are generally more appropriate for final classifications, particularly if there are many classes.

- Hybrid architecture for multiclass classification: sigmoids below, RBFs on top + soft$\max +\log$ loss.

Parameter-Space Transforms

Reparameterizing the function by transforming the space

$$
E(Y, X, W) \rightarrow E(Y, X, G(U))
$$

\square gradient descent in U space:

$$
U \leftarrow U-\eta \frac{\partial G}{\partial U}^{\prime} \frac{\partial E(Y, X, W)}{\partial W}^{\prime}
$$

- equivalent to the following algorithm in W space: $W \leftarrow W-\eta \frac{\partial G}{\partial U} \frac{\partial G^{\prime}}{\partial U} \frac{\partial E(Y, X, W)^{\prime}}{\partial W}$
\square dimensions: $\left[N_{w} \times N_{u}\right]\left[N_{u} \times N_{w}\right]\left[N_{w}\right]$

Parameter-Space Transforms: Weight Sharing

\square A single parameter is replicated multiple times in a machine
$\square E\left(Y, X, w_{1}, \ldots, w_{i}, \ldots, w_{j}, \ldots\right) \rightarrow$ $E\left(Y, X, w_{1}, \ldots, u_{k}, \ldots, u_{k}, \ldots\right)$
\square gradient: $\frac{\partial E()}{\partial u_{k}}=\frac{\partial E()}{\partial w_{i}}+\frac{\partial E()}{\partial w_{j}}$
$\square w_{i}$ and w_{j} are tied, or equivalently, u_{k} is shared between two locations.

Parameter Sharing between Replicas

\square We have seen this before: a parameter controls several replicas of a machine.
$E\left(Y_{1}, Y_{2}, X, W\right)=E_{1}\left(Y_{1}, X, W\right)+E_{1}\left(Y_{2}, X, W\right)$
\square gradient:
$\frac{\partial E\left(Y_{1}, Y_{2}, X, W\right)}{\partial W}=\frac{\partial E_{1}\left(Y_{1}, X, W\right)}{\partial W}+\frac{\partial E_{1}\left(Y_{2}, X, W\right)}{\partial W}$
$\square W$ is shared between two (or more) instances of the machine: just sum up the gradient contributions from each instance.

Path Summation (Path Integral)

One variable influences the output through several others

$E(Y, X, W)=$
$E\left(Y, F_{1}(X, W), F_{2}(X, W), F_{3}(X, W), V\right)$
\square gradient: $\frac{\partial E(Y, X, W)}{\partial X}=\sum_{i} \frac{\partial E_{i}\left(Y, S_{i}, V\right)}{\partial S_{i}} \frac{\partial F_{i}(X, W)}{\partial X}$
\square gradient: $\frac{\partial E(Y, X, W)}{\partial W}=\sum_{i} \frac{\partial E_{i}\left(Y, S_{i}, V\right)}{\partial S_{i}} \frac{\partial F_{i}(X, W)}{\partial W}$
\square there is no need to implement these rules explicitely. They come out naturally of the objectoriented implementation.

Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input space, but globally inconsistent. Example: piecewise linearly separable function.

- Solution: a machine composed of several "experts" that are specialized on subdomains of the input space.

The output is a weighted combination of the outputs of each expert. The weights are produced by a "gater" network that identifies which subdomain the input vector is in.
$\square(X, W)=\sum_{k} u_{k} F^{k}\left(X, W^{k}\right)$ with
$u_{k}=\frac{\exp \left(-\beta G_{k}\left(X, W^{0}\right)\right)}{\sum_{k} \exp \left(-\beta G_{k}\left(X, W^{0}\right)\right)}$
\square the expert weights u_{k} are obtained by softmax-ing the outputs of the gater.
\square example: the two experts are linear regressors, the gater is a logistic regressor.

Sequence Processing: Time-Delayed Inputs

The input is a sequence of vectors X_{t}.

- simple idea: the machine takes a time window as input
■ $R=F\left(X_{t}, X_{t-1}, X_{t-2}, W\right)$
\square Examples of use:
\square predict the next sample in a time series (e.g. stock market, water consumption)
\square predict the next character or word in a text
classify an intron/exon transition in a DNA sequence

Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stacked time-delayed layers.
\square layer1 $X_{t}^{1}=F^{1}\left(X_{t}, X_{t-1}, X_{t-2}, W^{1}\right)$

layer2 $X_{t}^{2}=F^{1}\left(X_{t}^{1}, X_{t-1}^{1}, X_{t-2}^{1}, W^{2}\right)$
$\operatorname{cost} E_{t}=C\left(X_{t}^{1}, Y_{t}\right)$

- Examples:
\square predict the next sample in a time series with long-term memory (e.g. stock market, water consumption)
- recognize spoken words
- recognize gestures and handwritten characters on a pen computer.
How do we train?

Training a TDNN

Idea: isolate the minimal network that influences the energy at one particular time step t.

\square in our example, this is influenced by 5 time steps on the input.

- train this network in isolation, taking those 5 time steps as the input.
- Surprise: we have three identical replicas of the first layer units that share the same weights.
- We know how to deal with that.
\square do the regular backprop, and add up the contributions to the gradient from the 3 replicas

Convolutional Module

If the first layer is a set of linear units with sigmoids, we can view it as performing a sort of multiple discrete convolutions of the input sequence.

$$
\frac{\partial E}{\partial W_{0}}=\frac{\partial E}{\partial S_{3}} \cdot X_{1}+\frac{\partial E}{\partial S_{4}} \cdot X_{2}+\cdots
$$

- 1D convolution operation:
$S_{t}^{1}=\sum_{j=1}^{T} W_{j}^{1^{\prime}} X_{t-j}$.
- $w_{j} k j \in[1, T]$ is a convolution kernel
$\square \operatorname{sigmoid} X_{t}^{1}=\tanh \left(S_{t}^{1}\right)$
\square derivative: $\frac{\partial E}{\partial w_{j}^{1} k}=\sum_{t=1}^{3} \frac{\partial E}{\partial S_{t}^{1}} X_{t-j}$

Simple Recurrent Machines

The output of a machine is fed back to some of its inputs $Z . Z_{t+1}=F\left(X_{t}, Z_{t}, W\right)$, where t is a time index. The input X is not just a vector but a sequence of vectors X_{t}.

- This machine is a dynamical system with an internal state Z_{t}.
- Hidden Markov Models are a special case of recurrent machines where F is linear.

Unfolded Recurrent Nets and Backprop through time

- To train a recurrent net: "unfold" it in time and turn it into a feed-forward net with as many layers as there are time steps in the input sequence.
- An unfolded recurrent net is a very "deep" machine where all the layers are identical and share the same weights.
$\square \frac{\partial E}{\partial W}=\sum_{t} \frac{\partial E}{\partial Z_{t}} \frac{\partial F\left(X_{t}, Z_{t}, W\right)}{\partial W}$
This method is called back-propagation through time.
examples of use: process control (steel mill, chemical plant, pollution control....), robot control, dynamical system modelling...

