
MACHINE LEARNING AND

PATTERN RECOGNITION

Fall 2004, Lecture 2:

Energy-Based Models and Loss Functions,

Linear Machines

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/33

Energy-Based Models

An energy-based model is a scalar-valued
energy function: E(W, Y, X).

X is the input, and Y the variable to be
predicted (output).

W is the parameter vector to be learned.

X and Y can be discrete variables, scalars,
vectors, tensors, sequences, probability dis-
tributions, or any other entity.

Minimum Energy Machine: Operating the machine (performing an inference),
consists in taking an input X , and looking for the value of Y within a permissible set
{Y }, that minimizes E(W, Y, X):

Y̌ = argminY ∈{Y }E(W, Y, X)

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/33

Examples of EBM: Classifier

Y is a discrete variable, {Y } = {1, 2, 3}.
Energy: E(W, Y, X) =

∑

k Gk(W, X)δ(k, Y),
where δ(k, Y) = 1 iff k = Y and 0 otherwise.

Gk(W, X), the k-th component of the output
vector of G(W, X) is interpreted as the “cost” of
classifying X into category k.

Best output: Y̌ = minY ∈{Y } E(W, Y, X) =

mink Gk(W, X).

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/33

Examples of EBM Classifier: Perceptron

Y is a discrete variable, {Y } = {−1, +1}.
Energy: E(W, Y, X) = −Y.W ′X .

Best output: Y̌ = sign(W ′X), where
sign(R) = +1 iff R > 0 and −1 otherwise.

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/33

Examples of EBM: Regressor

X and Y are vectors or other entities

Energy: E(W, Y, X) = D(Y, G(W, X))
where D(Y, R) is a distance or dissimilarity
measure.

Best output: Y̌ = minY E(W, Y, X) =
G(W, X).

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/33

Examples of EBM Regressor: Linear Regression

X and Y are vectors

Energy: E(W, Y, X) = ||Y −W ′X)||2.

Best output: Y̌ = minY E(W, Y, X) = W ′X .

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/33

Examples of EBM: Matcher

X and Y are vectors of the same dimension.

Energy:
E(W, Y, X) = D(G(W, Y), G(W, X)) where
D(., .) is a distance or dissimilarity measure.

Best output: Y̌ = minY E(W, Y, X) = G(−
1)(G(W, X)).

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/33

Training Energy-Based Models

To train an EBM, we minimize a loss function,
which is an average over training samples of a
per-sample loss function L(W, Y i, Xi):

L(W,S) =
1

P

P
∑

i=1

L(W, Y i, Xi)

The loss function must be designed so that min-
imizing it with respect to W will make the ma-
chine approach the desired behavior.

To ensure this, we pick loss functions that, for a given training input X i, will drive the
energies E(W, Y i, Xi) associated with the desired output Y i to be lower than the
energies associated with all other (undesired) outputs values E(W, Y, X i) for all
Y 6= Y i, Y ∈ {Y }.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/33

Form of the Loss Function

We assume that the per-sample loss function L(W, Y i, Xi) has a lower bound
over W for all Y i, Xi.

We assume that L depends on X i only indirectly through the set of energies
{E(W, Y, Xi) , Y ∈ {Y }} .

For example, if {Y }is the set of integers between 0 and k − 1 (as would be the
case for a classifier with k categories), the per-sample loss for sample (X i, Y i)
should be of the form:

L(W, Y i, Xi) = L(Y i, E(W, 0, Xi), E(W, 1, Xi), . . . , E(W, k − 1, X i))

With this assumption, we separate the choice of the loss function from the
details of the internal structure of the machine, and limit the discussion to how
minimizing the loss function affects the energies.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/33

Examples of Loss: Energy Loss

Energy Loss, the simplest of all losses: Lenergy(W, Y i, Xi) = E(W, Y i, Xi). This
loss only works if E(W, Y ,Xi) has a special form which guarantess that making
E(W, Y i, Xi) lower will automatically make E(W, Y, X i) for Y 6= Y i larger than the
minimum.

Example: if E(W, Y, X) is quadratic in Y , as is the case
for regression with squared error: E(W, Y, X) = ||Y −
G(W, X)||2,
Let W (1) is the parameter before a learning update, and
W (2) the parameter after the learning update, and let
Y̌ = minY E(W (1), Y, X). Then,

E(W (2), Y i, Xi)− E(W (2), Y̌ , Xi) < E(W (1), Y i, Xi)− E(W (1), Y̌ , Xi)

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/33

Examples of Loss: Perceptron Loss

Perceptron Loss:

Lperceptron(W, Y i, Xi) = E(W, Y i, Xi)− min
Y ∈{Y }

E(W, Y, Xi)

Adjust W so that E(W, Y i, Xi) gets smaller, while
Y̌ = minY ∈{Y } E(W, Y, Xi) gets bigger (or more
precisely, so that the difference decreases).
This algorithm makes no update whenever the energy
of the desired Y is lower than all the others.

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/33

Examples of Loss: Margin Loss

Margin Loss: for discrete output set {Y }:

Lmargin(W, Y i, Xi) = Qm

(

E(W, Y i, Xi)− min
Y ∈{Y },Y 6=Y i

E(W, Y, Xi)

)

where Qm(e) is any function that is monotonically increasing for e > −m, where m is
a constant called the margin.

Adjust W so that E(W, Y i, Xi) gets smaller,
while all E(W, Y, X i) for which E(W, Y, X i) −
E(W, Y i, Xi) < m get bigger. This guarantees that
the energy of the desired Y will be smaller than all
other energies by at least m.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/33

Examples of Loss: Log-Likelihood Loss

Log-Likelihood Loss:

Lll(W, Y i, Xi) = E(W, Y i, Xi) +
1

β
log

∑

Y ∈{Y }

exp(−βE(W, Y, X i))

where β is a positive constant.

- The function Fβ({Y }) = 1
β

log
(

∑

Y ∈{Y } exp(−βE(W, Y, X i))
)

is called the free

energy of the ensemble {Y } for temperature 1/β.
- We define Zβ({Y }) =

∑

Y ∈{Y } exp(−βE(W, Y, X i)) as the partition function of

ensemble {Y }.
- Interesting property # 1: Fβ({Y }) = 1

β
logZβ({Y })

- Interesting property # 2: limβ→∞ Fβ({Y }) = minY ∈{Y } E(W, Y, Xi)

For very large β, the log-likelihood loss reduces to the Perceptron loss.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/33

Energy-Based Supervised Learning

A supervised system parameterizes E(W, Y, X)
as follows:

E(W, Y, X) = D(Y, F (W, X))

where F (W, X) is a suitably chosen discriminant
function parameterized by W , and D is an
appropriately chosen dissimilarity measure.

A popular example would be

E(Y, X, W) = ||Y − F (X, W)||2

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/33

Linear Machines

The learning algorithms we have seen so far
(perceptron, linear regression) are of that form,
with the assumption that G(W, X) only depends
on the dot product of W and X .

In other words, The E function of 2-class linear
classifiers can be written as:

E(Y, X, W) = D(Y, f(W ′X))

where W ′X is the dot product of vectors W and
X , and f is a monotonically increasing scalar
function.

in the following, we assume Y = −1 for class 1,
and Y = +1 for class 2.

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/33

Linear Regression

Linear regression uses the Energy loss, or (equivalently) the Log-Likelihood loss.

R = W ′X

E(W, Y, X) = D(Y, R) = 1
2 ||Y −R||2

L(W, Y i, Xi) = D(Y i, W ′Xi)

∂L
∂W

= ∂D(Y i,R)
∂R

∂R
∂W

∂L
∂W

= ∂D(Y i,R)
∂R

∂(W ′Xi)
∂W

= (R− Y i)Xi

descent: W ←W + η(Y i −R)Xi

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/33

Perceptron

Lperceptron(W, Y i, Xi) = E(W, Y i, Xi)− min
Y ∈{Y }

E(W, Y, Xi)

{Y } = {−1, +1}.

R = W ′X

E(Y, X, W) = D(Y, R) = −Y R

Y ∈ {−1, +1}, hence minY −Y R = −sign(R)R
where sign(R) = 1 iff R > 0, and −1 otherwise.

L(W, Y i, Xi) = −(Y i − sign(R))R

∂L
∂W

= ∂−(Y i−sign(R))R
∂R

∂R
∂W

∂L
∂W

= −(Y i − sign(W ′Xi))Xi

descent: W ←W + η(Y i − sign(W ′Xi))Xi

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/33

Logistic Regression

Lll(W) = E(Y i, Xi, W) + log
(

∑

Y ∈{Y } exp(−E(W, Y, X i))
)

R = 1
2W ′X

E(Y, X, W) = D(Y, R) = − 1
2Y R = − 1

2Y W ′X

L(W) = log(1 + exp(−Y iW ′Xi))

∂L
∂W

= ∂D(Y i,R)
∂R

∂S
∂W

∂L
∂W

= −
(

Y i+1
2 − 1

1+exp(−W ′Xi)

)

Xi

descent: W ←W +η
(

Y i+1
2 − 1

1+exp(−W ′Xi)

)

Xi

Y. LeCun: Machine Learning and Pattern Recognition – p. 18/33

Limitations of Linear Machines

The Linearly separable dichotomies are the partitions
that are realizable by a linear classifier (the boundary be-
tween the classes is a hyperplane).

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/33

Number of Linearly Separable Dichotomies

The probability that P samples of dimension N are linearly separable goes to zero
very quickly as P grows larger than N (Cover’s theorem, 1966).

Problem: there are 2P possible
dichotomies of P points.

Only about N are linearly separable.

If P is larger than N , the probability that
a random dichotomy is linearly separable is
very, very small.

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/33

Example of Non-Linearly Separable Dichotomies

Some seemingly simple dichotomies are
not linearly separable

Question: How do we make a given prob-
lem linearly separable?

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/33

Making N Larger: Preprocessing

Answer 1: we make N larger by
augmenting the input variables with new
“features”.

we map/project X from its original
N -dimensional space into a higher
dimensional space where things are more
likely to be linearly separable, using a
vector function Φ(X).

E(Y, X, W) = D(Y, R)

R = f(W ′V)

V = Φ(X)

Y. LeCun: Machine Learning and Pattern Recognition – p. 22/33

Adding Cross-Product Terms

Polynomial Expansion.

If our original input variables are
(1, x1, x2), we construct a new feature
vector with the following components:

Φ(1, x1, x2) = (1, x1, x2, x
2
1, x

2
2, x1x2)

i.e. we add all the cross-products of the
original variables.

we map/project X from its original N -
dimensional space into a higher dimen-
sional space with N(N +1)/2 dimensions.

Y. LeCun: Machine Learning and Pattern Recognition – p. 23/33

Polynomial Mapping

o

Many new functions are now separable with the
new architecture.

With cross-product features, the family of class
boundaries in the original space is the conic
sections (ellipse, parabola, hyperbola).

to each possible boundary in the original space
corresponds a linear boundary in the transformed
space.

Because this is essentially a linear classifier with
a preprocessing, we can use standard linear learn-
ing algorithms (perceptron, linear regression, logis-
tic regression...).

Y. LeCun: Machine Learning and Pattern Recognition – p. 24/33

Problems with Polynomial Mapping

We can generalize this idea to higher degree polynomials, adding cross-product
terms with 3, 4 or more variables.

Unfortunately, the number of terms is the number of combinations d choose N ,
which grows like Nd, where d is the degree, and N the number of original
variables.

In particular, the number of free parameters that must be learned is also of order
Nd.

This is impractical for large N and for d > 2.

Example: handwritten digit recognition (16x16 pixel images). Number of
variables: 256. Degree 2: 32,896 variables. Degree 3: 2,796,160. Degre 4:
247,460,160.....

Y. LeCun: Machine Learning and Pattern Recognition – p. 25/33

Next Idea: Tile the Space

place a number of equally-spaced “bumps” that cover the entire input space.
For classification, the bumps can be
Gaussians

For regression, the basis functions can be
wavelets, sine/cosine, splines (pieces of
polynomials)....

problem: this does not work with more
than a few dimensions.

The number of bumps necessary to cover an
N dimensional space grows exponentially
with N .

Y. LeCun: Machine Learning and Pattern Recognition – p. 26/33

Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only
spend resources on regions of the space where we actually have training samples.

Discriminant function:

f(X, W) =

k=P
∑

k=1

WkK(X, Xk)

K(X, X ′) often takes the form of a radial
basis function:
K(X, X ′) = exp(b||X −X ′||2) or a
polynomial K(X, X ′) = (X.X ′ + 1)m

This is a very common architecture, which can
be used with a number of energy functions.

In particular, this is the architecture of the so-
called Support Vector Machine (SVM), but the
energy function of the SVM is a bit special. We
will study it later in the course.

Y. LeCun: Machine Learning and Pattern Recognition – p. 27/33

The Kernel Trick

If the kernel function K(X, X ′) verifies
the Mercer conditions, then there exist a
mapping Φ, such that
Φ(X).Φ(X ′) = K(X, X ′).

The Mercer conditions are that K must be
symmetric, and must be positive definite
(i.e K(X, X) must be positive for all X).

In other words, if we want to map our X
into a high-dimensional space (so as to
make them linearly separable), and all we
have to do in that space is compute dot
products, we can take a shortcut and
simply compute K(X1, X2) without going
through the high-dimensional space.

This is called the “kernel trick”. It is used in
many so-called Kernel-based methods, in-
cluding Support Vector Machines.

Y. LeCun: Machine Learning and Pattern Recognition – p. 28/33

Examples of Kernels

Quadratic kernel: Φ(X) = (1,
√

2x1,
√

2x2,
√

2x1x2, x2
1, x

2
2) then

K(X, X ′) = Φ(X).Φ(X ′) = (X.X ′ + 1)2

Polynomial kernel: this generalizes to any degree d. The kernel that corresponds
to Φ(X) bieng a polynomial of degree d is
K(X, X ′) = Φ(X).Φ(X ′) = (X.X ′ + 1)d.

Gaussian Kernel:
K(X, X ′) = exp(−b||X −X ′||2)

This kernel, sometimes called the Gaussian Radial Basis Function, is very
commonly used.

Y. LeCun: Machine Learning and Pattern Recognition – p. 29/33

Sparse Basis Functions

Place the center of a basis function around
areas containing training samples.

Idea 1: use an unsupervised clustering
algorithm (such as K-means or mixture of
Gaussians) to place the centers of the basis
functions in areas of high sample density.

Idea 2: adjust the basis function centers
through gradient descent in the loss func-
tion.

The discriminant function F is:

F (X, W, U1, . . . , UK) =
k=K
∑

k=1

WkK(X, Uk)

Y. LeCun: Machine Learning and Pattern Recognition – p. 30/33

Supervised Adjustment of the RBF Centers

To adjust the U ’s we must compute the
partial derivatives of L with respect to the
U ’s.

by posing and Vk = K(X, Uk), and

R =
∑k=K

k=1 WkVk we can write:

∂L(W)

∂U j
=

∂L(W)

∂R

∂R

∂Vj

∂Vj

∂Uj

Which comes down to:

∂L(W)

∂U j
=

∂L(W)

∂R
Wj

∂K(X, Uj)

∂Uj

Now, there is a very general method for dealing with those multiple applications of
chain rule. We will see that next time.

Y. LeCun: Machine Learning and Pattern Recognition – p. 31/33

Other Idea: Random Directions

Partition the space in lots of little domains by
randomly placing lits of hyperplanes.

Use many variables of the type q(W kX), where q
is the threshold function (or some other squashing
function) and Wk is a randomly picked vector.

This is the original Perceptron.

Without the non-linearity, the whole system
would be linear (product of linear operations), and
therefore would be no more powerful than a linear
classifier.

problem: a bit of a wishful thinking, but it works
occasionally.

Y. LeCun: Machine Learning and Pattern Recognition – p. 32/33

Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: Vk = tanh(U ′kX)

a network using these basis functions,

whose output is R =
∑k=K

k=1 WkVk is
called a single hidden-layer neural
network.

Similarly to the RBF network, we can
compute the gradient of the loss function
with respect to the Uk:

∂L(W)

∂U j
=

∂L(W)

∂R
Wj

∂tanh(U ′
jX)

∂Uj

=
∂L(W)

∂R
Wjtanh′(U ′

jX)X ′

Any well-behaved function can be approximated as close as we wish by such networks
(but K might be very large).

Y. LeCun: Machine Learning and Pattern Recognition – p. 33/33

	Energy-Based Models
	Examples of EBM: Classifier
	Examples of EBM Classifier: Perceptron
	Examples of EBM: Regressor
	Examples of EBM Regressor: Linear Regression
	Examples of EBM: Matcher
	Training Energy-Based Models
	Form of the Loss Function
	Examples of Loss: Energy Loss
	Examples of Loss: Perceptron Loss
	Examples of Loss: Margin Loss
	Examples of Loss: Log-Likelihood Loss
	Energy-Based Supervised Learning
	Linear Machines
	Linear Regression
	Perceptron
	Logistic Regression
	Limitations of Linear Machines
	Number of Linearly Separable Dichotomies
	Example of Non-Linearly Separable Dichotomies
	Making N Larger: Preprocessing
	Adding Cross-Product Terms
	Polynomial Mapping
	Problems with Polynomial Mapping
	Next Idea: Tile the Space
	Sample-Centered Basis Functions (Kernels)
	The Kernel Trick
	Examples of Kernels
	Sparse Basis Functions
	Supervised Adjustment of the RBF Centers
	Other Idea: Random Directions
	Neural Net with a Single Hidden Layer

