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Abstract
We present a series of learning algorithms and
theoretical guarantees for designing accurate en-
sembles of structured prediction tasks. This in-
cludes several randomized and deterministic al-
gorithms devised by converting on-line learning
algorithms to batch ones, and a boosting-style al-
gorithm applicable in the context of structured
prediction with a large number of labels. We give
a detailed study of all these algorithms, including
the description of new on-line-to-batch conver-
sions and learning guarantees. We also report the
results of extensive experiments with these algo-
rithms in several structured prediction tasks.

1. Introduction

Ensemble methods are general techniques in machine
learning for combining several hypotheses to create a more
accurate predictor (Breiman, 1996; Freund & Schapire,
1997; Smyth & Wolpert, 1999; MacKay, 1991; Freund
et al., 2004). These methods in practice often significantly
improve the performance and additionally benefit from fa-
vorable learning guarantees. However, ensemble methods
and their theory have been developed primarily for the bi-
nary classification problem or regression tasks. These tech-
niques do not readily apply to structured prediction prob-
lems. While it is straightforward to combine scalar out-
puts for a classification or regression problem, it is less
clear how to combine structured predictions such as phone-
mic pronunciation hypotheses, speech recognition lattices,
parse trees, or outputs of several machine translation sys-
tems. Areas like natural language processing, optical char-
acter recognition and computer vision, in general gives rise
to many structured prediction problems with structures or
substructures varying with each task.
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Consider for example the problem of devising an ensemble
method for pronunciation, a critical component of modern
speech recognition (Ghoshal et al., 2009). Often, several
pronunciation models or experts are available for transcrib-
ing words into sequences of phonemes. These models may
have been derived using other machine learning algorithms
or they may be based on carefully hand-crafted rules. In
general, none of these pronunciation experts is fully ac-
curate and each expert may be making mistakes at differ-
ent positions in the output sequence. One can hope that a
model that patches together the pronunciation of different
experts could achieve a superior performance.

We seek to tackle all mentioned structured prediction prob-
lems simultaneously and consider the general setting where
the label or output associated to an input x ∈ X is a struc-
ture y ∈ Y that can be decomposed and represented by
l substructures y1, . . . , yl. For the pronunciation exam-
ple just discussed, x is a specific word or word sequence
and y its phonemic transcription. A natural choice for the
substructures yk is then the individual phonemes forming
y. Other possible choices include n-grams of consecutive
phonemes or more general subsequences.

We will assume that the loss function considered admits an
additive decomposition over the substructures, as it is com-
mon in structured prediction. We also assume access to a
set of structured prediction experts h1, . . . , hp that we treat
as black boxes. Given an input x ∈ X , each of these ex-
perts predicts l substructures hj(x) = (h1j (x), . . . , hlj(x)).
The hypotheses hj may be the output of other structured
prediction algorithms such as Conditional Random Fields
(Lafferty et al., 2001), Averaged Perceptron (Collins,
2002), StructSVM (Tsochantaridis et al., 2005), Max Mar-
gin Markov Networks (Taskar et al., 2004), the Regression
Technique for Learning Transductions (Cortes et al., 2005),
or some other algorithmic or human expert. Given a labeled
training sample (x1,y1), . . . , (xm,ym), our objective is to
combine the predictions of these experts to form an accu-
rate ensemble.

Variants of the ensemble problem just formulated have



Ensemble Learning for Structured Prediction

been studied in the past in the natural language processing
and machine learning literature. One of the most recent,
and possibly most relevant studies for sequence data is that
of Nguyen & Guo (2007), which is based on the forward
stepwise selection procedure introduced by Caruana et al.
(2004). Starting with a possibly empty collection of ex-
perts, E0, that algorithm performs T iterations. To make
predictions using a collection of models, Et, a variant of a
majority-vote scheme per position is proposed, and at each
iteration t, a new expert hj from {h1, . . . , hp} is added to
the collection Et−1 in such a way that Et = Et−1 ∪ {hj}
has the best performance on the training set among all sets
Et−1 ∪ {hj}, j = 1, . . . , p. This algorithm always per-
forms at least as well as the best expert among h1, . . . , hp
on the training set. If the initial collection, E0 of experts is
empty, then E1 simply contains the expert with the small-
est error on the training set. Further additions to Et only
decrease the error on the training set and hence the perfor-
mance of this algorithm on the training set cannot be worse
than the performance of the best expert.

One disadvantage of this greedy approach is that it may
fail to select an optimal ensemble of experts in cases where
experts specialize in local predictions. Consider the case
where expert hk is a strong predictor for the kth substruc-
ture but does not perform well on other substructures. As-
sume further that expert h0 is a jack-of-all-trades and per-
forms better than any of h1, . . . , hp on average, but each
hk beats h0 at position k. Then, one can show that the
stepwise selection routine may end up with an ensemble
consisting of only h0, while an optimal solution would use
expert hk to predict the kth substructure. We provide an
explicit construction of such an example in Appendix I and
report similar empirical observations in Section 5.

Ensemble methods for structured prediction based on bag-
ging, random forests and random subspaces have been pro-
posed in (Kocev et al., 2013). One of the limitations of this
work is that it is applicable only to a very specific class
of tree-based experts introduced in that paper. Similarly,
a boosting approach was developed in (Wang et al., 2007)
but it applies only to local experts. In the context of nat-
ural language processing, a variety of different re-ranking
techniques have been proposed for somewhat related prob-
lems (Collins & Koo, 2005; Zeman & Žabokrtský, 2005;
Sagae & Lavie, 2006; Zhang et al., 2009). But, re-ranking
methods do not combine predictions at the level of sub-
structures, thus the final prediction of the ensemble coin-
cides with the prediction made by one of the experts, which
can be shown to be suboptimal in many cases. Further-
more, these methods typically assume the use of probabilis-
tic models, which is not a requirement in our learning sce-
nario. Other ensembles of probabilistic models have also
been considered in text and speech processing by forming
a product of probabilistic models via the intersection of lat-

tices (Mohri et al., 2008), or a straightforward combination
of the posteriors from probabilistic grammars trained using
EM with different starting points (Petrov, 2010), or some
other rather intricate techniques in speech recognition (Fis-
cus, 1997). See Appendix J for a brief discussion of other
related work.

Most of the references mentioned do not give a rigorous
theoretical justification for the techniques proposed. We
are not aware of any prior theoretical analysis for the en-
semble structured prediction problem we consider. Here,
we aim to bridge this gap and develop ensemble methods
that both perform well in practice and enjoy strong theo-
retical guarantees. Two families of algorithms are intro-
duced. In Section 3 we develop ensemble methods based
on on-line algorithms. To do so, we extend existing on-
line-to-batch conversions to our more general setting. A
boosting-type algorithm is also presented and analyzed in
Section 4. Section 5 reports the results of our extensive
experiments.

2. Learning scenario

As in standard supervised learning problems, we as-
sume that the learner receives a training sample S =
((x1,y1), . . . , (xm,ym)) ∈ X × Y of m labeled points
drawn i.i.d. according to some distribution D used both
for training and testing. We also assume that the learner
has access to a set of p predictors h1, . . . , hp mapping X
to Y to devise an accurate ensemble prediction. Thus,
for any input x ∈ X , he can use the prediction of the p
experts h1(x), . . . , hp(x). No other information is avail-
able to the learner about these p experts, in particular the
way they have been trained or derived is not known to
the learner. But, we will assume that the training sam-
ple S available to learn the ensemble is distinct from what
may been used for training the algorithms that generated
h1(x), . . . , hp(x).

To simplify our analysis, we assume that the number of
substructures l ≥ 1 is fixed. This does not cause any loss
of generality so long as the maximum number of substruc-
tures is bounded, which is the case in all the applications
we consider. The quality of the predictions is measured by
a loss function L : Y×Y → R+ that can be decomposed as
a sum of loss functions `k : Yk → R+ over the substructure
sets Yk, that is, for all y = (y1, . . . , yl) ∈ Y with yk ∈ Yk
and y′ = (y′1, . . . , y′l) ∈ Y with y′k ∈ Yk,

L(y,y′) =

l∑
k=1

`k(yk, y′k). (1)

We will assume in all that follows that the loss function L
is bounded by some M > 0: L(y,y′) ≤M for all (y,y′).
A prototypical example of such loss functions is the nor-
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Figure 1. Directed graph G of path experts.

malized Hamming loss, LHam, which is the fraction of sub-
structures for which two labels y and y′ disagree.

3. On-line learning approach

In this section, we present an on-line learning solution to
the ensemble structured prediction problem just discussed.
We first formulate the problem as that of on-line learning
with expert advice, where the experts correspond to the
paths of a directed graph. The on-line algorithm generates
at each iteration a distribution over the path-experts. A crit-
ical component of our approach consists of using the dis-
tributions to define a prediction algorithm with good gener-
alization guarantees. This requires an extension of the ex-
isting on-line-to-batch conversion techniques to the more
general case of combining distributions over path-experts
(instead of combining intermediate hypotheses).

3.1. Path experts

Each expert hj induces a set of substructure hypotheses
h1j , . . . , h

l
j . As already discussed, one particular expert

may be better at predicting the kth substructure while some
other expert may be more accurate at predicting another
substructure. Therefore, it is desirable to combine the sub-
structure predictions of all experts to derive a more accurate
prediction. This leads us to considering a directed graph
G such as that of Figure 1 which admits l + 1 vertices
0, 1, . . . , l and an edge from vertex k to vertex k + 1 la-
beled with each of the p hypotheses hk1 , . . . , h

k
p induced by

the experts h1, . . . , hp for the kth substructure. Graph G
compactly represents a set of path experts: each path from
the initial vertex 0 to the final vertex l is labeled with a
sequence of substructure hypotheses h1j1 , . . . , h

l
jl

and de-
fines a hypothesis which associates to input x the output
h1j1(x) · · ·hljl(x). We will denote by H the set of all pl

path experts. We also denote by h each path expert defined
by h1j1 , . . . , h

l
jl

, with jk ∈ {1, . . . , p}, and denote by hk

its kth substructure hypothesis hkjk . Our ensemble struc-
ture prediction problem can then be formulated as that of
selecting the best path expert (or collection of path experts)
in the graph G. Note that, in general, the path expert se-
lected does not coincide with any of the original experts
h1, . . . , hp.

More generally, our paths experts can be selected from a
directed acyclic graph of experts G′ distinct from G, as il-
lustrated by Figure 2. This can be motivated by scenarios
where some prior knowledge is available about the expert
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Figure 2. Alternative graph G′.

predictions for different substructures (see Appendix A),
which could be related to phonotactic constraints, as in
the example of pronunciation sequences, or any other prior
constraint on illegal n-grams or other subsequences that
would result in ruling out certain paths of graph G.

For convenience, in what follows, we will discuss our al-
gorithms and solutions in the specific case of the graph G.
However, the on-line learning algorithms we use apply in
the same way to an arbitrary directed acyclic graphG′. The
randomized algorithm we describe can also be used in a
similar way and our batch learning guarantees for our ran-
domized algorithm can be straightforwardly extended to an
arbitrary graphG′. In fact, those guarantees are then some-
what more favorable since the number of path experts inG′

will be smaller than in G.

3.2. On-line algorithm

Using G, the size of the pool of experts H we consider is
pl, and thus is exponentially large with respect to p. But,
since learning guarantees in on-line learning admit only
logarithmic dependence on that size, they remain infor-
mative in this context. However, the computational com-
plexity of most on-line algorithms also directly depends
on that size, which would make them impractical in this
context. But, there exist several on-line solutions precisely
designed to address this issue by exploiting the structure
of the experts as in the case of our path experts. These
include the algorithm of Takimoto & Warmuth (2003) de-
noted by WMWP, which is an extension of the (random-
ized) weighted-majority (WM) algorithm of Littlestone &
Warmuth (1994) (see also (Vovk, 1990)) to more general
bounded loss functions1 combined with the directed graph
Weight Pushing (WP) algorithm of Mohri (1997), and the
Follow the Perturbed Leader (FPL) algorithm of Kalai &
Vempala (2005).

The basis for the design of our batch algorithms is the
WMWP algorithm since it admits a more favorable regret
guarantee than the FPL algorithm in our context. However,
we have also carried out a full analysis based on the FPL
algorithm which can be found in Appendix D.

1The extension of the weighted majority algorithm to other
losses is also known as the Hedge algorithm (Freund & Schapire,
1997) or the exponentially weighted averaged algorithm (Cesa-
Bianchi & Lugosi, 2006).



Ensemble Learning for Structured Prediction

Algorithm 1 WMWP algorithm.
Inputs: sample {(x1,y1), . . . , (xT ,yT )}; set of experts
{h1, . . . , hp}; parameter β ∈ (0, 1).
for j = 1 to p and k = 1 to l do
w1,kj ← 1

p
end for
for t = 1 to T and j = 1 to p and k = 1 to l do

wt+1,kj ← wt,kjβ
`k(hkj (xt),yt)∑p

j=1 wt,kjβ
`k(hk

j
(xt),yt)

end for
Return matrices {W1, . . . ,WT }

As in the standard WM algorithm (Littlestone & Warmuth,
1994), WMWP maintains a distribution, pt, t ∈ [1, T ]
over the set of all experts, which in this context are the
path experts h ∈ H. At each round t ∈ [1, T ], the al-
gorithm receives an input sequence, xt, incurs the loss
Eh∼pt [L(h(xt),yt)] =

∑
h pt(h)L(h(xt),yt) and mul-

tiplicatively updates the distribution weight per expert:

∀h ∈ H, pt+1(h) =
pt(h)βL(h(xt),yt)∑

h′∈H pt(h′)βL(h
′(xt),yt)

, (2)

where β ∈ (0, 1) is some fixed parameter. The number
of paths is exponentially large in p and the cost of updat-
ing all paths is therefore prohibitive. However, since the
loss function is additive in the substructures, the updates
are multiplicative, and pt can be compactly represented and
updated by maintaining a potential value stored at each ver-
tex (Takimoto & Warmuth, 2003). The cost of the update
is then linear in the size of the graph.

The graph G we consider has a specific structure, thus, our
description of the algorithm can be further simplified by
maintaining at any round t ∈ [1, T ], an edge weight wt,kj
for the jth edge, j ∈ [1, p], between vertices k − 1 and k.
This defines a matrix Wt = (wt,kj)kj ∈ Rl×p with the
following properties:

1. for any path expert h defined by hj11, . . . , hjll,
pt(h) =

∏l
k=1 wt,kjk ;

2. the weights of outgoing edges sum to one at any vertex
k ∈ [0, l − 1]:

∑p
j=1 wt,kj = 1.

This clearly ensures that
∑

h∈H pt(h) = 1 with the update
rule (2) replaced by the following equivalent and more ef-
ficient edge weight update:

wt+1,kj =
wt,kjβ

`k(h
k
j (xt),yt)∑p

j=1 wt,kjβ
`k(hkj (xt),yt)

. (3)

Algorithm 1 gives the pseudocode of WMWP.

3.3. On-line-to-batch conversion

The WMWP algorithm does not produce a sequence of
path experts, rather, it produces a sequence of distributions
p1, . . . , pT over path experts, or equivalently a sequence
of matrices W1, . . . ,WT . Thus, the on-line-to-batch con-
version techniques described in (Littlestone, 1989; Cesa-
Bianchi et al., 2004; Dekel & Singer, 2005) do not readily
apply. Instead, we propose a generalization of the tech-
niques of Dekel & Singer (2005). The conversion consists
of two steps: first extract a good collection of distributions
P ⊆ {p1, . . . , pT }; next use P to define an accurate hy-
pothesis for prediction. For a subset P ⊆ {p1, . . . , pT }, we
define

Γ(P)=
1

|P|
∑
pt∈P

∑
h∈H

pt(h)L(h(xt),yt)+M

√
log 1

δ

|P|
(4)

=
1

|P|
∑
pt∈P

l∑
k=1

p∑
j=1

wt,kj`k(hkj (xt), y
k
t )+M

√
log 1

δ

|P|
,

where δ > 0 is a fixed parameter. The second equality in
(4) is a straightforward consequence of the identity pt(h) =∏l
k=1 wt,kjk and the additive decomposition of L in terms

of lks (see Lemma 6 in the appendix). With this definition,
we choose Pδ as a minimizer of Γ(P) over some collection
P of subsets of {p1, . . . , pT }: Pδ ∈ argminP∈P Γ(P). The
choice of P is restricted by computational considerations.
One natural option is to let P be the union of the suffix
sets {pt, . . . , pT }, t = 1, . . . , T . We will assume in what
follows that P includes the set {p1, . . . , pT }.

Next we define a randomized algorithm based on Pδ . Given
an input x, the algorithm consists of randomly selecting a
path h according to

p(h) =
1

|Pδ|
∑

pt∈Pδ

pt(h). (5)

and returning the prediction h(x). Note that computing and
storing p directly is not efficient. To sample from p, we
first choose pt ∈ Pδ uniformly at random and then sample
a path h according to that pt. Observe that for any fixed
k ∈ [1, l],

∑l
j=1 wt,kj = 1, thus the non-negative weights

wt,kj define a distribution over the edges leaving vertex k
that we denote by wt,k·. Thus, to sample h from pt we can
simply draw an edge from each of the l distributions wt,k·
(the probability mass of a path is the product of the prob-
ability masses of its edges). Note that once an input x is
received, the distribution p over the path experts h induces
a probability distribution px over the output space Y . It is
not hard to see that sampling a prediction y according to
px is statistically equivalent to first sampling h according
to p and then predicting h(x). We will denote by HRand the
randomized hypothesis thereby generated.
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An inherent drawback of randomized solutions such as the
one just described is that for the same input x the user can
receive different predictions over time. Randomized solu-
tions are also typically more costly to store. A collection
of distributions P can, however, also be used to define a
deterministic prediction rule based on the scoring function
approach. The majority vote scoring function is defined by

h̃MVote(x,y) =

l∏
k=1

( 1

|Pδ|
∑

pt∈Pδ

p∑
j=1

wt,kj1hkj (x)=yk
)
. (6)

The majority vote algorithm denoted by HMVote is then de-
fined by HMVote(x) = argmaxy∈Y h̃MVote(x,y),x ∈ X . In
the case of the graph G, the maximizer of h̃MVote is found
efficiently by choosing y such that yk has the maximum
weight in position k.

In the next section, we present learning guarantees for
HRand and HMVote. We also briefly discuss alternative pre-
diction rules in Appendix E.

3.4. Batch learning guarantees

We first present learning bounds for the randomized predic-
tion rule HRand. Next, we upper bound the generalization
error of HMVote in terms of that of HRand.
Proposition 1. For any δ > 0, with probability at least 1−
δ over the choice of the sample ((x1,y1), . . . , (xT ,yT ))
drawn i.i.d. according toD, the following inequality holds:

E[L(HRand(x),y)] ≤ 1

T

T∑
t=1

Lt +M

√
log T

δ

T
,

where Lt = Eh∼pt [L(h(xt),yt)].

Proof. Let P = {pt1 , . . . , pt|P|}. Observe that

E[L(HRand(x),y)]− 1

|P|

|P|∑
s=1

Lts

=

|P|∑
s=1

∑
h∈H

pts(h)

|P|
(E[L(h(x),y)]− L(h(x)ts ,yts)).

We denote the inner summand by As and observe that As
forms a martingale difference with respect to the filtration
Gs = Fts associated with the process (xt,yt), i.e. Ft is a
σ-algebra generated by (x1,y1), . . . , (xt,yt). Indeed,

E[As|Gs−1] =
1

|P|
∑
h

E[pts(h)E[L(h(x),y)]|Gs−1]

− E[pts(h)L(h(xts),yts)|Gs−1].

Since pt is determined by Ft−1 and (xt,yt) is independent
of Ft−1, we can write

E[pts(h)L(h(xts),yts)|Gs−1]

= E
1:ts−1

[E
ts

[pts(h)L(h(xts),yts)]|Gs−1]

= E
1:ts−1

[pts(h)E
ts

[L(h(xts),yts)]|Gs−1]

where E1:q indicates that the expectation is taken with
respect to (x1,y1), . . . , (xq,yq). This shows that
E[As|Gs−1] = 0, which implies that As is a martingale
difference sequence. Since |As| ≤ M/|P|, it follows from
Azuma’s inequality that the probability of the event{

E[L(HRand(x),y)]− 1

|P|

|P|∑
s=1

Lts > M

√
log 1

δ

|P|

}
is at most δ. Since Pδ is a minimizer of 1

|P|
∑|P|
s=1 Lts +

M
√

log 1
δ

|P| overP andP contains {p1, . . . , pT }, the desired
conclusion follows by the union bound.

The next step consists of relating the expected loss of HRand
to the regret RT of the WMWP algorithm:

RT =

T∑
t=1

E
h∼pt

[L(h(xt),yt)]− inf
h∈H

T∑
t=1

L(h(xt),yt). (7)

Theorem 2. For any δ > 0, with probability at least 1− δ
over the choice of the sample ((x1,y1), . . . , (xT ,yT ))
drawn i.i.d. according to D, the following inequalities
hold:

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+
RT
T

+2M

√
log 2T

δ

T

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+2M

√
l log p

T

+2M

√
log 2T

δ

T
.

See Appendix B for a proof of this result. We now up-
per bound the generalization error of the majority-vote al-
gorithm HMVote in terms of that of the randomized algo-
rithm HRand, which, combined with Theorem 2, immedi-
ately yields generalization bounds for the majority-vote al-
gorithm HMVote. The first proposition, which admits a sim-
ple proof, relates the expected loss of the majority vote al-
gorithm to that of a randomized algorithm in the case of the
normalized Hamming loss.
Proposition 3. The following inequality relates the gener-
alization error of the majority-vote algorithm to that of the
randomized one:

E[LHam(HMVote(x),y)] ≤ 2 E[LHam(HRand(x),y)],

where the expectations are taken over (x,y)∼D and h∼p.
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Proof. By definition of the majority vote, if HMVote makes
an error at position k on example (x,y), then, the total
weight of incorrect labels at that position must be at least
half of the total weight of labels in that position. In other
words, the following inequality holds for any k:

1Hk
MVote(x)6=yk ≤ 2

1

|Pδ|
∑

pt∈Pδ

p∑
j=1

wt,kj1hkj (x)6=yk .

Summing up these inequalities over k and taking expecta-
tions yields the desired bound.

Proposition 3 suggests that the price to pay for derandom-
ization is a factor of 2. However, this may be too pes-
simistic. A more refined result presented in the following
proposition shows that often this price is lower.
Proposition 4. The following bound holds for any distri-
bution D over X × Y:

E[LHam(HMVote(x),y)] ≤ 2E[LHam(HRand(x),y)]

− 2E[γ(x,y)],

where γ(x,y) =
∑l
k=1 γk(x,y) with γk(x,y) =

max
(

0, 1
|Pδ|

∑
pt∈Pδ

∑p
j=1 wt,kj1hkj (x)6=yk −

1
2

)
.

The proof is a refinement of the proof of Proposition 3 and
can be found in Appendix B. Each γk in Proposition 4 can
be interpreted as the edge of incorrect labels and this result
implies that any additional edge of an incorrect hypothesis
(beyond 1

2 ) should not be included in the bound.

Our methods generalize the results of Dekel & Singer
(2005) where l = 1 and each pt is a probability point
mass at a hypothesis ht produced by an on-line algorithm
on the tth iteration. It is also possible to extend the cross-
validation approach of Cesa-Bianchi et al. (2004) to our set-
ting, but the learning guarantees for this algorithm end up
being less favorable than those just given (see Appendix C
for a full description and analysis). Our results and algo-
rithms can be extended to the case of other directed acyclic
graphs of path experts and other derandomization methods
(see Appendix E for a more detailed discussion).

4. Boosting approach
In this section, we devise a boosting-style algorithm for
our ensemble structured prediction problem. The vari-
ants of AdaBoost for multi-class classification such as Ad-
aBoost.MH or AdaBoost.MR (Freund & Schapire, 1997;
Schapire & Singer, 1999; 2000) cannot be readily applied
in this context. First, the number of classes to consider
here is quite large, as in all structured prediction problems,
since it is exponential in the number of substructures l. For
example, in the case of the pronunciation problem where
the number of phonemes for English is in the order of 50,

the number of classes is 50l. But, the objective function
for AdaBoost.MH or AdaBoost.MR as well as the main
steps of the algorithms include a sum over all possible la-
bels, whose computational cost in this context would be
prohibitive. Second, the loss function we consider is the
normalized Hamming loss over the substructures predic-
tions, which does not match the multi-class losses for the
variants of AdaBoost.2 Finally, the natural base hypotheses
for this problem admit a structure that can be exploited to
devise a more efficient solution, which of course was not
part of the original considerations for the design of these
variants of AdaBoost.

4.1. Hypothesis sets and loss function

The predictor HESPBoost returned by our boosting algorithm
is based on a scoring function h̃ : X × Y → R, which,
as for standard ensemble algorithms such as AdaBoost, is
a convex combination of base scoring functions h̃t: h̃ =∑T
t=1 αth̃t, with αt ≥ 0. The base scoring functions we

consider for our problem are derived from the path experts
in H. For each path expert ht ∈ H, we define a scoring
function h̃t as follows:

∀(x,y) ∈ X × Y, h̃t(x,y) =

l∑
k=1

1hkt (x)=y
k . (8)

Thus, the score assigned to y by the base scoring function
h̃t is the number of positions at which y matches the pre-
diction of path expert ht given input x. HESPBoost is defined
as follows in terms of h̃ or hts:

∀x ∈ X , HESPBoost(x) = argmax
y∈Y

h̃(x,y) (9)

= argmax
y∈Y

l∑
k=1

T∑
t=1

αt1hkt (x)=y
k .

4.2. ESPBoost algorithm

For any i ∈ [1,m] and k ∈ [1, l], we define the margin
of h̃k for point (xi,yi) by ρ(h̃k,xi,yi) = h̃k(xi, y

k
i ) −

maxyk 6=yki h̃
k(xi, y

k).
Lemma 5. The following upper bound holds for the empir-
ical normalized Hamming loss of the hypothesis HESPBoost:

E
(x,y)∼S

[LHam(HESPBoost(x),y)]

≤ 1

ml

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃kt ,xi,yi)
)
.

2Schapire & Singer (1999) also present an algorithm using the
Hamming loss for multi-class classification, but that is a Ham-
ming loss over the set of classes and differs from the loss function
relevant to our problem. Additionally, the main steps of that algo-
rithm are also based on a sum over all classes.
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Algorithm 2 ESPBoost Algorithm.
Inputs: S = ((x1,y1), . . . , (xm,ym)); set of experts
{h1, . . . , hp}.
for i = 1 to m and k = 1 to l do
D1(i, k)← 1

ml
end for
for t = 1 to T do
ht ← argminh∈H E(i,k)∼Dt [1hk(xi) 6=yki ]

εt ← E(i,k)∼Dt [1hkt (xi)6=yki ]

αt ← 1
2 log 1−εt

εt

Zt ← 2
√
εt(1− εt)

for i = 1 to m and k = 1 to l do
Dt+1(i, k)← exp(−αtρ(h̃kt ,xi,yi))Dt(i,k)

Zt
end for

end for
Return h̃ =

∑T
t=1 αth̃t

In view of this upper bound, we consider the objective func-
tion F : RN → R defined for all α = (α1, . . . , αN ) ∈ RN
by

F (α) =
1

ml

m∑
i=1

l∑
k=1

exp
(
−

N∑
j=1

αjρ(h̃kj ,xi,yi)
)
, (10)

where h1, . . . , hN denote the set of all path experts in H.
F is a convex and differentiable function of α. Our algo-
rithm, ESPBoost (Ensemble Structured Prediction Boost-
ing), is defined by the application of coordinate descent to
the objective F . Algorithm 2 shows the pseudocode of the
ESPBoost (see Appendix G.2 for the details of the deriva-
tion of the coordinate descent algorithm).

Our weak learning assumption in this context is that there
exists γ > 0 such that at each round, εt verifies εt < 1

2 −γ.
For the graph G, at each round, the path expert ht with the
smallest error εt can be determined easily and efficiently by
first finding for each substructure k, the hkt that is the best
with respect to the distribution weights Dt(i, k).

Observe that, while the steps of our algorithm are syntac-
tically close to those of AdaBoost and its multi-class vari-
ants, our algorithm is distinct and does not require sums
over the exponential number of all possible labelings of
the substructures and is quite efficient. We have derived
margin-based learning guarantees for ESPBoost which are
presented in detail and proven in Appendix G.3.

5. Experiments
We used a number of artificial and real-life data sets for
our experiments. For each data set, we performed 10-fold
cross-validation with disjoint training sets.3 We report the

3For the OCR data set, these subsets are predefined.

Table 1. Average Normalized Hamming Loss, ADS1 and ADS2.
βADS1 = 0.95, βADS2 = 0.95, TSLE = 100, δ = 0.05.

ADS1, m = 200 ADS2, m = 200
HMVote 0.0197 ± 0.00002 0.2172 ± 0.00983
HFPL 0.0228 ± 0.00947 0.2517 ± 0.05322
HCV 0.0197 ± 0.00002 0.2385 ± 0.00002
HFPL-CV 0.0741 ± 0.04087 0.4001 ± 0.00028
HESPBoost 0.0197 ± 0.00002 0.2267 ± 0.00834
HSLE 0.5641 ± 0.00044 0.2500 ± 0.05003
HRand 0.1112 ± 0.00540 0.4000 ± 0.00018
Best hj 0.5635 ± 0.00004 0.4000

Table 2. Average Normalized Hamming Loss, PDS1 and PDS2.
βPDS1 = 0.85, βPDS2 = 0.97, TSLE = 100, δ = 0.05.

PDS1, m = 130 PDS2, m = 400
HMVote 0.2225 ± 0.00301 0.2323 ± 0.00069
HFPL 0.2657 ± 0.07947 0.2337 ± 0.00229
HCV 0.2316 ± 0.00189 0.2364 ± 0.00080
HFPL-CV 0.4451 ± 0.02743 0.4090 ± 0.01388
HESPBoost 0.3625 ± 0.01054 0.3499 ± 0.00509
HSLE 0.3130 ± 0.05137 0.3308 ± 0.03182
HRand 0.4713 ± 0.00360 0.4607 ± 0.00131
Best hj 0.3449 ± 0.00368 0.3413 ± 0.00067

average test error for each task. In addition to the HMVote,
HRand and HESPBoost hypotheses, we experimented with
two algorithms discussed in more detail in the appendix: a
cross-validation on-line-to-batch conversion of the WMWP
algorithm, HCV, and a majority-vote on-line-to-batch con-
version with FPL, HFPL, and a cross-validation on-line-to-
batch conversion with FPL, HFPL-CV. Finally, we compare
with the HSLE algorithm of Nguyen & Guo (2007).

5.1. Artificial data sets

Our artificial data set, ADS1 and ADS2 simulate the sce-
narios described in Section 1. In ADS1 the kth expert has
a high accuracy on the kth position, in ADS2 an expert has
low accuracy in a fixed set of positions. More details on
the data set and the experimental parameters can be found
in Appendix H.1.

Table 1 reports the results of our experiments. In both cases
HMVote, our majority-vote algorithm based on our on-line-
to-batch conversion using the WMWP algorithm (together
with most of the other on-line based algorithms), yields a
significant improvement over the best expert. It also out-
performs HSLE, which in the case of ADS1 even fails to
outperform the best hj . After 100 iterations on ADS1,
the ensemble learned by HSLE consists of a single expert,
which is why it leads to such a poor performance.

It is also worth pointing out that HFPL-CV and HRand fail to
outperform the best model on ADS2 set. This is in total
agreement with our theoretical analysis since, in this case,
any path expert has exactly the same performance and the
error of the best path expert is an asymptotic upper bound
on the errors of these algorithms.
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5.2. Pronunciation data sets

We had access to two proprietary pronunciation data sets,
PDS1 and PDS2. In both sets each example is an English
word, typically a proper name. For each word, 20 pos-
sible phonemic sequences are available, ranked by some
pronunciation model. Since the true pronunciation was not
available, we set the top sequence to be the target label and
used the remaining as the predictions made by the experts.
The only difference between PDS1 and PDS2 is their size:
1,313 words for PDS1 and 6,354 for PDS2.

In both cases on-line based algorithms, specifically HMVote,
significantly outperformed the best model as well as HSLE,
see Table 2. The poor performance of HESPBoost is due to
the fact that the weak learning assumption is violated after
5-8 iterations and hence the algorithm terminates.

5.3. OCR data set

Rob Kassel’s OCR data set is available for download from
http://ai.stanford.edu/˜btaskar/ocr/. It con-
tains 6,877 word instances with a total of 52,152 charac-
ters. Each character is represented by 16× 8 = 128 binary
pixels. The task is to predict a word given its sequence
of pixel vectors. To generate experts we used several soft-
ware packages: CRFsuite (Okazaki, 2007) and SVMstruct,
SVMmulticlass (Joachims, 2008), and the Stanford Classi-
fier (Rafferty et al., 2014). We trained these algorithms on
each of the predefined folds of the data set and used the
resulting models to generate expert predictions.

The results reported in Table 7 in Appendix H show that
ensemble methods lead only to a small improvement in per-
formance over the best hj . This is because the best model
hj dominates all other experts and ensemble methods can-
not benefit from patching together different outputs.

5.4. Penn Treebank data set

The part-of-speech task (POS) consists of labeling each
word of a sentence with its correct part-of-speech tag. The
Penn Treebank 2 data set is available through LDC license
at http://www.cis.upenn.edu/˜treebank/ and con-
tains 251,854 sentences with a total of 6,080,493 tokens
and 45 different parts of speech.

For the first experiment (TR1), we used 4 disjoint train-
ing sets to produce 4 SVMmulticlass models and 4 maxi-
mum entropy models using the Stanford Classifier. We also
used the union of these training sets to devise one CRF-
suite model. For the second experiment (TR2) we trained
5 SVMstruct models. The same features were used for
both experiments. For the SVM algorithms, we generated
267,214 bag-of-word binary features. The Stanford Classi-
fier and CRFsuite packages use internal routines to gener-

Table 3. Average Normalized Hamming Loss, TR1 and TR2.
βTR1 = 0.95, βTR2 = 0.98, TSLE = 100, δ = 0.05.

TR1, m = 800 TR2, m = 1000
HMVote 0.0850 ± 0.00096 0.0746 ± 0.00014
HFPL 0.0859 ± 0.00110 0.0769 ± 0.00218
HCV 0.0843 ± 0.00006 0.0741 ± 0.00011
HFPL-CV 0.1093 ± 0.00129 0.1550 ± 0.00182
HESPBoost 0.1041 ± 0.00056 0.1414 ± 0.00233
HSLE 0.0778 ± 0.00934 0.0814 ± 0.02558
HRand 0.1128 ± 0.00048 0.1652 ± 0.00077
Best hj 0.1032 ± 0.00007 0.1415 ± 0.00005

ate their features. For more detail, see Appendix H.

The results of the experiments are summarized in Table 3.
For TR1, our on-line ensemble methods improve over the
best model. Note that HSLE has the best average loss over
10 runs for this experiment. This comes at a price of much
higher standard deviation which does not allow us to con-
clude that the difference in performance between our meth-
ods and HSLE is statistically significant. In fact, on two runs
HSLE chooses an ensemble consisting of a single expert and
fails to outperform the best model.

6. Conclusion
We presented a broad analysis of the problem of ensem-
ble structured prediction, including a series of algorithms
with learning guarantees and extensive experiments. Our
results show that our algorithms, most notably HMVote, can
result in significant benefits in several tasks, which can be
of a critical practical importance. In Appendix H, we also
report very favorable results for HMVote when used with
the edit-distance, which is the natural measure in many
applications. A natural extension of this work consists
of devising new algorithms and providing learning guar-
antees specific to other loss functions such as the edit-
distance.

The extension of our algorithms and solutions to other di-
rected graphs, as discussed in Appendix E, can further in-
crease the applicability of our methods and enhance perfor-
mance. While we aimed for an exhaustive study including
multiple on-learning algorithms, different conversions to
batch and derandomizations, we are aware that the problem
we studied is very rich and admits many more facets and
scenarios that we plan to investigate in the future.
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A. General path expert graphs

For simplicity, we presented our algorithms and guaran-
tees in the case of the graph G admitting all path experts.
In most cases in practice, different acyclic graph of ex-
perts such as that of Figure 2 must be considered. This
occurs in particular because of the presence of known con-
straints restricting the set of admissible sequences of sub-
structures.

For example, the learning problem may consist of pre-
dicting the pronunciation associated to each sequence of
words. In that case, for most languages, there exist phono-
tactic rules making some phonemic sequences inadmissi-
ble. Similarly, in parsing or translation tasks, some word
sequences can be ruled out because they do not conform to
some clear syntactic or stylistic rule. Let A denote a finite
automaton accepting admissible sequences of Y1×· · ·×Yl
and let Gt denote the graph of path experts considered at
round t ∈ [1, T ], with G1 = G. At each round t ∈ [1, T ],
the learner receives a new input sequence xt that is used
to derive a finite automaton G̃t from Gt by replacing in
Gt the substructure predictor hkj , j ∈ [1, p], k ∈ [1, l], by
its prediction hkj (xt). Since some sequences of G̃t may
not be admissible, we must remove from Gt path experts
generating sequences not in G̃t ∩ A. This can be achieved
straightforwardly using the intersection algorithm for finite
automata if we keep track, for each substructure predicted,
of the original substructure expert generating that predic-
tion. Gt+1 is the resulting graph of admissible path ex-
perts.

The on-line learning algorithm we consider, WMWP, ap-
plies to an arbitrary directed acyclic graph and thus can be
applied to graph Gt at each round t. The distribution over
the path experts maintained by WMWP effectively assigns
probability zero to the path experts not present in Gt at
round t. Our learning guarantees hold for this more general
setting and in fact end up being more favorable since the
cardinality of the set of admissible path experts is smaller
than that of graph G.

B. On-line-to-batch conversion

Lemma 6. For any t ∈ [1, T ], the following identity holds:

∑
h∈H

pt(h)L(h(xt),yt)) =

l∑
k=1

p∑
j=1

wt,kj`k(hk(xt), y
k
t ).

Proof. Recall that for any t ∈ [1, T ] and k ∈ [1, l],∑p
j=1 wt,kj = 1. Thus, let wt,k· denote the distribution

defined by the non-negative weights wt,kj . Then, the fol-

lowing chain of equalities proves the result:∑
h∈H

pt(h)L(h(xt),yt)) = E
h∼pt

[L(h(xt),yt)]

= E
h∼pt

[

l∑
k=1

`k(hk(xt), y
k
t )]

=

l∑
k=1

E
h∼pt

[`k(hk(xt), y
k
t )]

=

l∑
k=1

E
h1∼wt,1·

...
hl∼wt,l·

[`k(hk(xt), y
k
t )]

=

l∑
k=1

E
hk∼wt,k·

[`k(hk(xt), y
k
t )]

=
l∑

k=1

p∑
j=1

wt,kj`k(hk(xt), y
k
t ).

Proposition 4. The following bound holds for any distri-
bution D over X × Y:

E[LHam(HMVote(x),y)] ≤ 2E[LHam(HRand(x),y)]

− 2E[γ(x,y)],

where γ(x,y) =
∑l
k=1 γk(x,y) with

γk(x,y) = max

(
0,

1

|Pδ|
∑

pt∈Pδ

p∑
j=1

wt,kj1hkj (x) 6=yk−
1

2

)
.

Proof. The proof is a slight refinement of that of Proposi-
tion 3. If HMVote makes an error at position k on example
(x,y) then the total weight of incorrect labels at that po-
sition must be 1

2 + γk(x,y). In other words, we have the
following inequality

1Hk
MVote(x)6=yk ≤

2

|Pδ|
∑
p∈Pδ

p∑
j=1

wt,kj1hkj (x) 6=yk − 2γk(x,y)

when 1Hk
MVote(x)6=yk = 1. Since the right-hand side of

the bound above is always positive, it also holds when
1Hk

MVote(x)6=yk = 0. The rest of the proof is the same as
that of Proposition 3.

Theorem 2. For any δ > 0, with probability at least 1− δ
over the choice of the sample ((x1,y1), . . . , (xT ,yT ))
drawn i.i.d. according to D, the following inequalities
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hold:

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+
RT
T

+2M

√
log 2T

δ

T

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+2M

√
l log p

T

+2M

√
log 2T

δ

T
.

Proof. Since there are only finitely many expert paths
h, there is an expert path h∗ ∈ H such that
infh∈H E[L(h(x),y)] = E[L(h∗(x),y)]. By Hoeffding’s
inequality, the probability of the event

{
1

T

T∑
t=1

L(h∗(xt),yt)− E[L(h∗(x),y)] > M

√
log 2

δ

T

}
is at most δ/2. Therefore, by Proposition 1 and the union
bound, the following holds with probability at least 1− δ:

E[L(HRand(x),y)]− inf
h∈H

E[L(h(x),y)]

≤ 1

T

T∑
t=1

Lt+M

√
log 2T

δ

T
− 1

T

T∑
t=1

L(h∗(xt),yt)+M

√
log 2

δ

T

≤ RT
T

+ 2M

√
log 2T

δ

T
,

which proves the first inequality. The regret of the ran-
domized MW algorithm for losses taking values in [0, 1] is
known to be bounded by 2

√
T logN where N is the num-

ber of experts (Cesa-Bianchi & Lugosi, 2006). In our con-
text, this gives RT ≤ 2M

√
T log(pl). Plugging in this

bound in the first inequality of the theorem yields directly
the second one.

C. Cross-validation based on-line-to-batch
conversion

Cesa-Bianchi et al. (2004) described an on-line-to-batch
conversion technique based on a cross-validation approach.
Given a sequence of hypotheses produced by an on-line al-
gorithm, a single hypothesis is selected based on its empir-
ical loss on unseen examples plus a special penalty term.
These results can be easily generalized to the case where
an on-line algorithm produces distributions over hypothe-
ses rather than just a single hypothesis. More precisely,
suppose that an on-line algorithm generates a sequence of
distributions p1, . . . , pT over some finite set of hypotheses
H. We define

Θ(pt) =
1

T − t

T∑
s=t+1

Ls(pt), (11)

where Ls(pt) =
∑

h∈H pt(h)L(h(xs),ys) and L is a
given loss function bounded by M . We also set cδ(s) =√

1
2s log T (T+1)

δ . Define

p̂ = argmin
pt

(Θ(pt) + cδ(T − t)). (12)

If HCVRand is a randomized hypothesis that, given example
x, first chooses h ∈ H according to p̂ and predicts h(x),
then the following result holds.
Theorem 7. For p̂ and HCVRand defined as above, with
probability at least 1− δ the following inequality holds:

E[L(HCVRand(x),y)] ≥ 1

T

T∑
t=1

Lt(pt)

+ 6

√
1

T
log

2(T + 1)

δ
.

The proof of this result is identical to the proof of Theo-
rem 4 in (Cesa-Bianchi et al., 2004). This result lead us to
introduce an alternative ensemble structured prediction al-
gorithm: first we use WMWP as in Section 3 to generate a
sequence of distributions p1, . . . , pT over path experts in H;
next a single distribution p̂ is chosen to minimize (12). As
discussed in Section 3, p̂ a distribution can be represented
using a matrix Ŵ = (ŵkj)kj ∈ Rl×p. To make predic-
tions we can use either the randomized hypothesis HCVRand
defined above, or the majority vote hypothesis

HCV(x) = argmax
y

l∏
k=1

 p∑
j=1

ŵkj1hkj (x)=yk

 . (13)

Theorem 7 combined with Hoeffding’s inequality and the
regret bounds of Cesa-Bianchi & Lugosi (2006) yield the
following result.
Theorem 8. For any δ > 0, with probability 1− δ over the
choice of the sample ((x1,y1), . . . , (xT ,yT )) drawn i.i.d
according to D the following inequalities hold:

E[L(HCVRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)] +
RT
T

+M

√
log 2

δ

T
+ 6M

√
1

T
log

4(T + 1)

δ

E[L(HCVRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)] + 2M

√
l log p

T

+M

√
log 2

δ

T
+ 6M

√
1

T
log

4(T + 1)

δ
.

The learning guarantees for HCV can now be derived using
either Proposition 3 or Proposition 4.
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Algorithm 3 Follow the Perturbed Leader, FLP.
Inputs: set of experts {h1, . . . , hp}; sample
{(x1,y1), . . . , (xT ,yT )}; parameter ε ∈ (0, 1

pl ];
for t = 1 to T do

for k = 1 to l do
sample q = (qk1 , . . . , q

k
p) with density ∝ e−ε‖q‖1 ;

hkt ← argminhkj
∑t−1
s=1 `(h

k
j (xs),ys) + qkj

end for
ht ← (h1t , . . . , h

l
t)

end for
Return {h1, . . . , hT }

D. FPL-based algorithm

In Section 3, we presented a solution to the ensemble prob-
lem for structured prediction tasks based on the WMWP
algorithm. Here, we present an alternative approach based
on the FPL algorithm. The main difference with the case
of the WMWP algorithm is that, at each iteration, FPL out-
puts a path expert ht rather than a distribution. However,
this can be viewed as producing a probability point mass pt
at ht. Thus, the on-line-to-batch conversions we described
for WMWP also apply here as well.

We first briefly describe the FPL algorithm. The idea of
the algorithm is simple. At each round of the on-line algo-
rithm, we attempt to choose the path that has been the best
performer so far. However, it can be shown that this deter-
ministic approach is suboptimal. Thus, we regularize our
selection procedure by adding some random perturbation to
the cumulative loss of each path before making our choice.
As before, the difficulty is that keeping track of the cumu-
lative loss of each path in the graph G is inefficient. Kalai
& Vempala (2005) showed that it is sufficient to store only
the cumulative losses of each edge and only add random
perturbations to each edge in the graph. We remark that,
for the graph G, finding the current best path is straightfor-
ward: just traverse the graph from vertex 0 to vertex l by
selecting the edge with the best perturbed cumulative loss.
See pseudocode for the FPL algorithm in Algorithm 3 for
more details.

The output of the FPL Algorithm is a set of path experts
{h1, . . . , hT }. Next, to extract a subsetH ⊆ {h1, . . . , hT },
we can use the objective function Γ of (4) where pt is now
just a point mass at ht. Once a collection H is determined,
we again have two different prediction rules. Given input
x, a randomized prediction rule chooses a path h ∈ H uni-
formly at random and predicts h(x). This hypothesis is
denoted by HFPLRand. The corresponding majority vote hy-
pothesis HFPL, as the name suggests, predicts using major-
ity vote at each position k. The following learning guaran-
tees hold.
Theorem 9. For any δ > 0, with probability 1− δ over the

choice of the sample ((x1,y1), . . . , (xT ,yT )) drawn i.i.d
according to D, the following inequalities hold:

E[L(HFPLRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)]

+
RT
T

+ 3M

√
log 3T

δ

T

E[L(HFPLRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)]

+

√
Mpl2 log(pl)

T
+ 3M

√
log 3T

δ

T
.

This result is a direct consequence of Theorem 2 (where we
use point masses for distributions pt) and the bound on the
regret RT of FPL algorithm: RT ≤

√
Mpl2 log pl.4 We

remark that since FPL is itself a randomized algorithm, we
have to consider expected regret

RT =E
q

[
T∑
t=1

L(ht(xt),yt)

]
− inf

h∈H

T∑
t=1

L(h(xt),yt), (14)

where the subscript for the expectation sign indicates that
the expectation is taken with respect to the random vari-
ables q used to define each ht. Note that Azuma’s inequal-
ity implies that with probability at least 1−δ, the following
holds:

1

T

T∑
t=1

L(ht(xt),yt) ≤ E
q

[
T∑
t=1

L(ht(xt),yt)

]
+M

√
log 1

δ

T
.

This additional approximation step is the reason for the fac-
tor of 3 instead of 2 in the last term in the bound.

The bounds of Theorem 9 should be compared to those
of Theorem 2. For M = 1, as for the normalized Ham-
ming loss, and pl ≥ 4 the regret bound of Theorem 9 is
more favorable. The learning guarantees for HFPL now fol-
low from a straightforward application of Proposition 3 or
Proposition 4.

Finally, instead of using Γ to find H, we can apply the
cross-validation approach of (Cesa-Bianchi et al., 2004)
to find a single path expert ĥ ∈ {h1, . . . , hT } and use
it to make predictions. To keep our notation consistent,
we set HFPL-CV = ĥ. An analogue of Theorem 7 can be
established for HFPL-CV using results from (Cesa-Bianchi
et al., 2004) and the regret bounds of FPL algorithm (Cesa-
Bianchi & Lugosi, 2006).

4The regret of the FPL algorithm for the equivalent on-line
shortest path problem is bounded by

√
KL∗|E| log |E| (Cesa-

Bianchi & Lugosi, 2006), where L∗ is the loss of the best path in
hindsight, |E| is the number of edges in the graph,K is the bound
on the length of a path from source to sink and it is assumed that
` ∈ [0, 1].
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Theorem 10. For any δ > 0, with probability 1−δ over the
choice of the sample ((x1,y1), . . . , (xT ,yT )) drawn i.i.d.
according to D the following inequalities hold:

E[L(HFPL-CV(x),y)] ≤ inf
h∈H

E[L(h(x),y)] +
RT
T

+2M

√
log 3

δ

T
+6M

√
1

T
log

3(T + 1)

δ

E[L(HFPL-CV(x),y)] ≤ inf
h∈H

E[L(h(x),y)]

+

√
Mpl2 log pl

T
+ 2M

√
log 3

δ

T
+ 6M

√
1

T
log

3(T + 1)

δ
.

Our experimental results show, however, that using a sin-
gle path expert to make all predictions yields a poor perfor-
mance in practice.

E. Alternative algorithms and
derandomizations

The WMWP algorithm applies to any resulting graph G′

and the randomized algorithm we described can be used in
a similar way. The resulting learning guarantees are then
somewhat more favorable since the number of path experts
in G′ will be smaller. However, the computation of the
deterministic majority-vote solution is less straightforward
since (6) then becomes a constrained optimization. The
problem consists of finding the most probable sequence in
a non-deterministic weighted automaton and can be solved
using a weighted determinization algorithm combined with
a standard shortest-path algorithm (Mohri & Riley, 2002).
But, while this is often efficient in practice, the worst case
complexity is exponential. In such cases, one may resort
to an approximate solution based on a Viterbi approxima-
tion by selecting the path (not the string) that is the most
probable.

Other derandomization schemes are possible. For instance,
one can also only partially derandomize the prediction by
choosing pt ∈ P at random and then using pt for a major-
ity vote, or the approximate algorithm just described. How-
ever, this hybrid approach inherits the worst traits of its par-
ents: the randomized predictions of the stochastic scheme
and the less favorable learning guarantees of the majority
vote (see Appendix F for a detailed analysis of the learning
guarantees for this hybrid approach).

F. Partial derandomizations

In this section, we present learning guarantees for the
partial derandomization scheme discussed in Appendix E.
This can be described as follows: upon receiving an input
x, we draw a distribution pt ∈ P uniformly at random and

predict HMV, pt(x) where HMV, pt denotes a majority vote
hypothesis based on the distribution pt. We denote the re-
sulting hypothesis by HRMV.
Lemma 11. The following inequality relates the error of
the randomized and majority-vote hypotheses:

E[LHam(HRMV(x),y)] ≤ 2E[LHam(HRand(x),y)],

where the expectations are taken both with respect toD and
p.

Proof. By definition of HRMV, we can write

E[LHam(HRMV(x),y)] =
1

T

T∑
t=1

E[LHam(HMV,pt(x),y)]

If HR,pt denotes a stochastic hypothesis based on pt, then,
by Proposition 3 we will have that

E[LHam(HMV,pt(x),y)] ≤ 2E[LHam(HR,pt(x),y)].

Averaging over t yields

E[LHam(HRMV(x),y)] ≤ 2

T

T∑
t=1

E[LHam(HR,pt(x),y)]

= 2E[LHam(HRand(x),y)],

where the last equality follows from the definition of HRand.

Based on this lemma we can give the same learning guar-
antees for HRMV as for HMVote in Theorem 2. However,
as noted in Appendix E this hybrid approach inherits the
worst traits of its parents: randomized predictions of the
stochastic scheme and less favorable learning guarantees
of the majority vote.

G. ESPBoost

G.1. Bound on the empirical Hamming loss

We first derive an upper bound on the empirical normal-
ized Hamming loss of a hypothesis HESPBoost, with h̃ =∑T
t=1 αth̃t.

Lemma 5. The following upper bound holds for the empir-
ical loss of the hypothesis HESPBoost:

E
(x,y)∼S

[LHam(HESPBoost(x),y)]

≤ 1

ml

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃kt ,xi,yi)
)
.
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Proof. Note that in view of (9), we can write, for any k and
x ∈ X ,

Hk
ESPBoost(x) = argmax

yk∈Yk
h̃k(x, yk). (15)

where h̃k =
∑T
t=1 αth̃

k
t and h̃kt (x, yk) = 1hkt (x)=y

k . Ob-

serve that ρ(h̃kt ,xi,yi) = 1 if the prediction made by ht for
the input xi is correct at position k, and −1 otherwise. For
any i ∈ [1,m], by the sub-additivity of the max function,

1Hk
ESPBoost(xi)6=yki

= 1ρ(h̃k,xi,yi)≤0 ≤ 1∑T
t=1 αtρ(h̃

k
t ,xi,yi)≤0

.

Thus, the empirical loss of the hypothesis HESPBoost,
E(x,y)∼S [LHam(HESPBoost(x),y)], can be upper bounded as
follows:

1

ml

m∑
i=1

l∑
k=1

1Hk
ESPBoost(xi)6=yki

≤ 1

ml

m∑
i=1

l∑
k=1

1∑T
t=1 αtρ(h̃

k
t ,xi,yi)≤0

≤ 1

ml

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃kt ,xi,yi)
)
,

where we used for the last inequality the identity (1u≤0 ≤
e−u) valid for all u ∈ R.

G.2. Coordinate descent

Here we present the details of the derivation of our coordi-
nate descent algorithm.

Let αt−1 ∈ RN denote the vector obtained after t− 1 iter-
ations and et the tth unit vector in RN . We denote by Dt
the distribution over [1,m]× [1, l] defined by

Dt(i, k) =

1
ml exp

(
−
∑t−1
u=1 αuρ(h̃ku,xi,yi)

)
At−1

where At−1 is a normalization factor, At−1 =
1
ml

∑m
i=1

∑l
k=1 exp

(
−
∑t−1
u=1 αuρ(h̃ku,xi,yi)

)
. The di-

rection et selected at the tth round is the one minimizing
the directional derivative, that is

dF (αt−1 + ηet)

dη

∣∣∣∣
η=0

=−
m∑
i=1

l∑
k=1

ρ(h̃kt ,xi,yi)Dt(i, k)At−1

=
[
2

∑
i,k:hkt (xi)6=yki

Dt(i, k)− 1
]
At−1

=(2εt − 1)At−1,

where εt is the average error of ht given by

εt =

m∑
i=1

l∑
k=1

Dt(i, k)1hkt (xi) 6=yki = E
(i,k)∼Dt

[1hkt (xi) 6=yki ].

The remaining steps of our algorithm can be determined
as in the case of AdaBoost. In particular, given the direc-
tion et, the best step αt is obtained by solving the equa-
tion dF (αt−1+αtet)

dαt
= 0, which admits the closed-form

solution αt = 1
2 log 1−εt

εt
. The distribution Dt+1 can be

expressed in terms of Dt with the normalization factor
Zt = 2

√
εt(1− εt).

G.3. Learning guarantees

This section presents both a margin-based generalization
bound in support of the ESPBoost algorithm, and a bound
on the empirical margin loss.

For any ρ > 0, we define the empirical margin loss of
HESPBoost by the following:

R̂ρ

(
h̃

‖α‖1

)
=

1

ml

m∑
i=1

l∑
k=1

1ρ(h̃k,xi,yi)≤ρ‖α‖1 . (16)

where h̃ is the corresponding scoring function.
Theorem 12. Let F denote the set of functions HESPBoost
with h̃ =

∑T
t=1 αth̃t for some α1, . . . , αt ≥ 0 and ht ∈

H for all t ∈ [1, T ]. Fix ρ > 0. Then, for any δ > 0,
with probability at least 1 − δ, the following holds for all
HESPBoost ∈ F:

E
(x,y)∼D

[LHam(HESPBoost(x),y)] ≤ R̂ρ
(

h̃

‖α‖1

)

+ 2
ρl

l∑
k=1

|Yk|2Rm(Hk) +

√
log l

δ

2m
,

where Rm(Hk) denotes the Rademacher complexity of the
class of functions

Hk = {x 7→ 1hkj (x)=y : j ∈ [1, p], y ∈ Yk}.

Proof. By definition of the Hamming loss, we can write

E
(x,y)∼D

[LHam(HESPBoost(x),y)]

=
1

l

l∑
k=1

E
(x,y)∼D

[1Hk
ESPBoost(x) 6=y]

=
1

l

l∑
k=1

E
(x,y)∼D

[1ρ(h̃k,x,y)≤0].

We bound each of the summands above separately. Let
Π(Hk) denote the convex hull of Hk. Then, for any
k ∈ [1, l], we can apply a multi-class classification bound
based on the Rademacher complexity of Π(Hk) (Koltchin-
skii & Panchenko, 2002; Mohri et al., 2012). Thus, for any
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δ > 0, with probability at least 1−δ, the following inequal-
ity holds:

E
(x,y)∼D

[1ρ(h̃k,x,y)≤0] ≤ E
(x,y)∼S

[1ρ(h̃k,x,y)≤ρ‖α‖1 ]

+
2|Yk|2

ρ
Rm(Π(Hk)) +

√
log 1

δ

2m
,

Since the Rademacher complexity of the convex hull of a
set coincides with that of the set, for any k, Rm(Π(Hk)) =
Rm(Hk). Thus, by the union bound, summing up over
k these inequalities and dividing by l yields that for any
δ > 0, with probability at least 1 − δ, the following holds
for all HESPBoost ∈ F :

E
(x,y)∼D

[LHam(HESPBoost(x),y)] ≤ R̂ρ
(

h̃

‖α‖1

)

+
2

ρl

l∑
k=1

|Yk|2Rm(Hk) +

√
log l

δ

2m
,

which concludes the proof.

Thus, the theorem provides a margin-based guarantee for
convex ensembles such as those returned by ESPBoost.
The following theorem further provides an upper bound on
the empirical margin loss for ESPBoost.
Theorem 13. Let h̃ denote the scoring function returned
by ESPBoost after T ≥ 1 rounds. Then, for any ρ > 0, the
following inequality holds

R̂ρ

(
h̃

‖α‖1

)
≤ 2T

T∏
t=1

√
ε1−ρt (1− εt)1+ρ.

Proof. The proof steps are the same as those used for the
bound on the empirical margin loss for AdaBoost (Schapire
et al., 1997). We will use the following identity

Dt+1(i, k) =
exp

(
−
∑t
s=1 αsρ(h̃ks ,xi,yi)

)
ml
∏t
s=1 Zs

,

which can be straightforwardly derived from the expression

of Dt+1 in terms of Dt. Then, we can write

R̂ρ

(
h̃

‖α‖1

)
=

1

ml

m∑
i=1

l∑
k=1

1ρ(h̃k,xi,yi)≤ρ‖α‖1

≤ 1

ml

m∑
i=1

l∑
k=1

exp
(
−ρ(h̃k,xi,yi) + ‖α‖1ρ

)
≤ 1

ml
e‖α‖1ρ

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃kt ,xi,yi)
)

= e‖α‖1ρ
m∑
i=1

l∑
k=1

DT+1(i, k)

T∏
t=1

Zt

= 2T
T∏
t=1

[√
1− εt
εt

]ρ√
εt(1− εt),

where the first inequality holds by 1u≤0 ≤ e−u for all u ∈
R and the second by Jensen’s inequality and the convexity
of the maximum function. This concludes the proof of the
theorem.

As in the case of AdaBoost (Schapire et al., 1997), it can be
shown that for ρ < γ, ε1−ρt (1− εt)1+ρ ≤ (1− 2γ)1−ρ(1 +
2γ)1+ρ < 1 and the right-hand side of this bound decreases
exponentially with T .

H. Additional experiments

In this Section we present additional experimental results
that were not included in the main body of the paper due to
space limitations.

H.1. Artificial data sets

The objective of the first artificial data set (ADS1) was
to simulate the situation described in Section 1 where
h1, . . . , hp are local experts. To generate the data we chose
an arbitrary Markov chain over the English alphabet and
sampled 40,000 random sequences each consisting of 10
symbols. For each sequence, we generated five expert pre-
dictions. Each expert was designed to have a certain proba-
bility of making a mistake at each position in the sequence.
Expert hj correctly predicted positions 2j − 1 and 2j with
probability 0.97 and other positions with probability 0.5.
We forced experts to make similar mistakes by making
them select an adjacent alphabet symbol in case of an error.
For example, when a mistake was made on a symbol b, the
expert prediction was forced to be either a or c.

The second artificial data set (ADS2) modeled the case of
rather poor experts. ADS2 was generated in the same way
as ADS1, but expert predictions were different. This time
each expert made mistakes at four of the ten distinct ran-
dom positions in each sequence.
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Table 4. Average Normalized Hamming Loss for ADS3.
βADS1 = 0.95, βADS2 = 0.95, TSLE = 100, δ = 0.05.

HMVote 0.1788 ± 0.00004
HFPL 0.2189 ± 0.04097
HCV 0.1788 ± 0.00004
HFPL-CV 0.3148 ± 0.00387
HESPBoost 0.1831 ± 0.00240
HSLE 0.1954 ± 0.00185
HRand 0.3196 ± 0.00018
Best hj 0.2957 ± 0.00005

The results on ADS1 and ADS2 can be found in Section 5.
For all experiments with the algorithms HRand, HMVote, and
HCV we ran the WMWP algorithm for T = m rounds with
the βs listed in the caption of Table 1 , generating distribu-
tions P ⊆ {p1, . . . , pT }. ForP we used the collection of all
suffix sets {pt, . . . , pT } and δ = 0.05. For the algorithms
based on FPL, we used ε = 0.5/pl. The same parameter
choices were used for the subsequent experiments.

In addition to ADS1 and ADS2, we also synthesized a third
set. We simulated the case where each expert specialized in
predicting some subset of the labels. In particular, we gen-
erated 40,000 random sequences over the English alphabet
in the same way as for ADS1 and ADS2. To generate ex-
pert predictions, we partitioned the alphabet into 5 disjoint
subsetsAj . Expert j always correctly predicted the label in
Aj and the probability of correctly predicting the label not
in Aj was set to 0.7. To train the ensemble algorithms, we
used a training set of size m = 200.

The results are presented in Table 4. HMVote, HCV and
HESPBoost achieve the best performance on this data set with
a considerable improvement in accuracy over the best ex-
pert hj . We also observe as for the ADS2 experiment that
HRand and HFPL-CV fail to outperform the best model and
approach the accuracy of the best path expert only asymp-
totically.

H.2. Pronunciation data sets

As pointed out in Section 5, it can be argued that for this
task the edit-distance is a more suitable measure of per-
formance than the average Hamming loss. Table 5 shows
the results of our experiments. For these experiments,
our ensemble algorithms were trained using the Hamming
loss, but the performance is reported in terms of the edit-
distance. For the SLE algorithm of Nguyen & Guo (2007)
HSLE, the edit-distance was used for both training and test-
ing. Remarkably, the results for edit-distance are compa-
rable and HMVote again offers the best performance despite
not being optimized for this loss.

Finally, we also leveraged the fact that PDS2 is a larger
data set to experiment with other training sizes. For the
sake of completeness, the results are summarized in Ta-
ble 6.

Table 5. Average edit distance, PDS1 and PDS2. βPDS1 = 0.85,
βPDS2 = 0.97, TSLE = 100, δ = 0.05.

PDS1, m = 130 PDS2, m = 400
HMVote 0.8395 ± 0.01076 0.9626 ± 0.00341
HFPL 1.0158 ± 0.34379 0.9744 ± 0.01277
HCV 0.8668 ± 0.00553 0.9840 ± 0.00364
HFPL-CV 1.8044 ± 0.09315 1.8625 ± 0.06016
HESPBoost 1.3977 ± 0.06017 1.4092 ± 0.04352
HSLE 1.1762 ± 0.12530 1.2477 ± 0.12267
HRand 1.8962 ± 0.01064 2.0838 ± 0.00518
Best hj 1.2163 ± 0.00619 1.2883 ± 0.00219

Table 6. Average Hamming loss for PDS2. βPDS2 = 0.97,
TSLE = 100, δ = 0.05

m = 200 m = 600
HMVote 0.2343 ± 0.00083 0.2304 ± 0.00148
HFPL 0.2393 ± 0.00335 0.2332 ± 0.00313
HCV 0.2364 ± 0.00048 0.2362 ± 0.00109
HFPL-CV 0.4464 ± 0.01110 0.4063 ± 0.00976
HESPBoost 0.3524 ± 0.00662 0.3458 ± 0.00276
HSLE 0.3217 ± 0.03929 0.3307 ± 0.03165
HRand 0.4651 ± 0.00092 0.4544 ± 0.00308
Best hj 0.3413 ± 0.00050 0.3412 ± 0.00053

H.3. OCR data set

Table 7 summarizes our results with the OCR data set. As
can be seen from the table, the performance improvements
of ensemble methods over the single best hypothesis are
not statistically significant here.

H.4. Penn Treebank data set

To speed up the testing phase we only used sentences with
less than 20 words (a total of 87,704 sentences).

For the second experiment (TR2) we trained 5 SVMstruct

models. The five training sets (8,000 sentences each) were
carefully chosen so that each contained the 8 most fre-
quent POS tags but omitted a subset of some less frequent
ones.

For the SVM algorithms, we generated 267,214 bag-of-
word binary features. We first extracted all prefixes and
suffices of length 2, 3, 4, 5 of all words in the data set.
We then used binary features to indicate whether a given
word contains one of the prefixes or suffices found. In ad-
dition, we also used features indicating whether preceding
or following word contains one of those prefixes or suf-
fices.

I. Example of sub-optimality of the SLE
algorithm

In this section, we give an explicit construction showing
that the SLE algorithm of Nguyen & Guo (2007) may pro-
duce ensembles that perform no better than the best expert
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Table 7. Average Normalized Hamming Loss for OCR. β = 0.5,
TSLE = 100, δ = 0.05.

HMVote 0.1992 ± 0.00274
HFPL 0.1992 ± 0.00270
HCV 0.1993 ± 0.00266
HFPL-CV 0.2030 ± 0.00278
HESPBoost 0.1992 ± 0.00274
HSLE 0.1994 ± 0.00307
HRand 0.1994 ± 0.00276
Best hj 0.1994 ± 0.00306

hj , which can be significantly worse than the performance
of the optimal ensemble. We assume that l = p = 2, that
Y is a space of binary sequences, and that expert hj always
correctly predicts the jth substructure. The probability of
the event {h21(x) 6= y2, h12(x) 6= y1} is set to be equal to
q.

Suppose that the ensemble produced by SLE algorithm
consists of Tj copies of expert hj . If T1 < T2, then the
SLE prediction always agrees with expert h2. Conversely,
if T1 > T2 then SLE prediction always agrees with expert
h1. Finally, if T1 = T2 then with probability p, the predic-
tions of h1 and h2 disagree at both position 1 and 2 and, by
definition of the algorithm, exactly one of these predictions
must be chosen. In each of the cases above, the expected
loss of the algorithm is bounded below by q/2. Since in our
construction h1 and h2 can be chosen to have expected loss
precisely q/2, we conclude that for this example the SLE
algorithm produces ensembles that perform no better than
the best expert hj .

Note that in the above we can select q = 1, which, will re-
sult in an the expected loss of the SLE algorithm being 0.5,
while an optimal ensemble for this problem can achieve
100% accuracy.

J. Discussion of other related work

In this section, we briefly discuss several other publications
somewhat related to the topic of our work.

In the learning scenario we consider, the learner has access
to a set of p predictors h1, . . . , hp mappingX toY to devise
an accurate ensemble prediction. No other information is
available to the learner about these p experts, which are
effectively viewed as black boxes. This scenario covers
both the case where h1, . . . , hp are hand-crafted prediction
rules and the one where they are the hypotheses returned
by some learning algorithms trained on samples typically
no longer available.

In contrast, most ensemble methods for structured predic-
tion previously presented in the machine learning litera-
ture focus on scenarios where the learner can exploit some
specific structure of the given experts h1, . . . , hp or where
these experts are trained at the same time as the ensemble

learner itself (Grubb et al., 2013; Payet & Todorovic, 2010;
Tu & Bai, 2010). For example, weak predictors used in
the StructuredSpeedBoost algorithm of Grubb et al. (2013)
have a very specific structure based on special selection
and update rules. Similarly, the RF2 algorithm of Payet &
Todorovic (2010) uses tree experts to make its predictions.
Finally, the auto-context algorithm of Tu & Bai (2010) is
based on experts that are assumed to be probabilistic mod-
els.
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