
An Architecture for Building Self-Configurable
Systems

Lakshminarayanan Subramanian and Randy H.Katz
flakme, randyg@cs.berkeley.edu

Department of Electrical Engineering and Computer Sciences, U.C. Berkeley

Abstract-
Developing wireless sensor networks can enable information gather-

ing, information processing and reliable monitoring of a variety of en-
vironments for both civil and military applications. It is however nec-
essary to agree upon a basic architecture for building sensor network
applications. This paper presents a general classification of sensor net-
work applications based on their network configurations and discusses
some of their architectural requirements. We propose a generic archi-
tecture for a specific subclass of sensor applications which we define as
self-configurable systems where a large number of sensors coordinate a-
mongst themselves to achieve a large sensing task. Throughout this paper
we assume a certain subset of the sensors to be immobile. This paper lists
the general architectural and infra-structural components necessary for
building this class of sensor applications. Given the various architectural
components, we present an algorithm that self-organizes the sensors into
a network in a transparent manner. Some of the basic goals of our al-
gorithm include minimizing power utilization, localizing operations and
tolerating node and link failures.

I. INTRODUCTION

Integrating low-power sensors will permit remote objec-
t monitoring and tracking of the physical environment. The
deployment of such networks can vastly increase the accura-
cy of the information through collaboration between the var-
ious sensors. SmartDust [10], a technology developed at UC
Berkeley will enable a rich collection of diverse applications
ranging from sensor-rich “smart spaces” to self-identification
and history tracking of virtually any physical object.

Networking the sensors to empower them with the ability to
coordinate on a larger sensing task will revolutionize informa-
tion gathering and processing in many situations. For example,
large scale robust sensors could be deployed in inhospitable
physical environments such as remote geographic regions and
interesting information can be gathered from these networks.
Sensors can also help in security environments where they can
track the movement of certain objects in a coordinated fash-
ion. Wireless sensors can also enhance remote access by con-
necting these networks to the Internet with the help of sink
nodes.[7]

There are different kinds of sensor network applications in
which sensors perform a wide range of activities. Among
these, a certain set of applications require that sensor nodes
collectively form an ad-hoc distributed processing network
and provide information about the physical environment. Each
sensor node operates autonomously without a central node of
control. However, there are a lot of networking challenges
associated with sensor nodes. These nodes must consume ex-
tremely low power and must communicate with its neighbors
at bit-rates measured in kilobits per second and potentially
need to operate at high volumetric densities. These require-
ments dictate the need for novel ad-hoc routing mechanisms

and media access solutions which are power constrained.
This paper makes the following contributions:
� Taxonomy of Sensor Applications: We classify sensor

applications based on the network configuration of the
sensor nodes.

� Self-configurable systems: We identify the architecture
and infra-structural components required for a specif-
ic class of sensor applications which we define as self-
configurable systems.

� Self-Organizing Algorithm: We present an algorithm
for self-organizing the sensor nodes in a transparent and
distributed manner. We also discuss the strengths and the
weaknesses of our algorithm.

Our taxonomy of sensor applications is based on the net-
work configuration of the sensor nodes. Network configura-
tion, in this scenario, refers to the physical placement of the
various sensors and the connectivity of these nodes to nodes
in the wired infrastructure. The network configuration deter-
mines the amount of routing intelligence that needs to be put
into sensor nodes. Building an architecture for every sensor
application requires an understanding of the interactions be-
tween the sensors and nodes connected to the wired infras-
tructure. The process of data discovery and data dissemination
are two orthogonal components present in every sensor appli-
cation. The mechanism through which data dissemination is
achieved, depends completely on the network configuration
and the routing mechanisms used.

We present an architecture for supporting a special class of
sensor applications which we define as self-configurable sys-
tems. We make a few policy decisions and assumptions for
building a generic architecture for self-configurable systems.
They are:

� Heterogeneous nodes: A general architecture should be
able to support heterogeneous types of sensors and should
also provide a common framework for these different n-
odes to interact.

� Data discovery vs Data dissemination: In our archi-
tecture, we clearly divide the task of data discovery and
data dissemination into two orthogonal components. We
clearly identify nodes which can perform data discovery
and distinguish them from nodes that can perform data
dissemination.

� Memory and Power Constraints: We assume that ev-
ery node has both memory and power constraints. We
attempt to reduce the state stored in every node and al-
so employ energy aware routing to decrease energy con-

sumption.
� Application Specific Infrastructure Requirements:

The requirement of infra-structural components like a
naming, routing or broadcasting system is completely de-
pendent on the application. We provide a general self-
organizing algorithm that can provide a wide variety of
features and the applications turns on only those compo-
nents based on its requirements.

� Mobility/Immobility of nodes: In our architecture, we as-
sume the data discovery nodes to be mobile and the data
dissemination nodes to be immobile.

In previous works [7], [3], all sensors have been treated to
be alike and are assumed to have similar functionality. One of
the important assumptions that we make in our architecture is
the presence of heterogeneous types of sensors. We also as-
sume that not all nodes are capable of performing data discov-
ery and data dissemination. Even in applications like remote
object tracking, it may be inappropriate to assume that spe-
cialized camera or acoustic sensors also perform the task of
data dissemination. However one problems that arises when
we make these two assumptions is how do we self-organize a
large collection of heterogeneous sensors in the wide-area with
a large collection of nodes performing data discovery alone.
In order to solve this problem, We introduce a large number of
router sensors whose only job is to perform data dissemination
and interconnect the specialized sensors into a network.

Previous works [3], [7], [8], [9], use a powerful concept of
data centric networking for sensor applications. Though this
model is very interesting, it may not be applicable to many
sensor applications. Certain applications like parking lot net-
works may require addressability for every sensor node and
a method for routing messages to specific nodes. In the case
where a large amount of data is discovered, the state that need-
s to be maintained by certain critical nodes (nodes connecting
two components of the network) is very high in a data cen-
tric environment. If cut nodes of the network (nodes whose
absence partitions the network) do not maintain the state of a
particular data in a data-centric network, then that data does
not propagate to all the nodes in the network. Our architecture
can support both data-centric networking and non-data cen-
tric networking. However, we assume that none of the data
dissemination nodes maintain a lot of state about the data dis-
covered by sensors. This information is specifically extract-
ed from specialized sink nodes (nodes with high capacities).
Therefore, some of the data-centric models like directed diffu-
sion [9] need to be slightly modified in order to be supported
over our architecture.

The infra-structural components required by an application
is completely dependent on the needs of the application. Every
self-configurable system requires one or more of these four
infra-structural components. They are

1. Naming/Addressing System
2. Routing
3. Broadcasting
4. Multicasting(for connecting sensors of a specific class

alone)
We argue that it would be necessary to build a routing and/or

broadcasting infrastructure for sensor applications which be-
long to the class of self-configurable systems. Routing infras-
tructure is required in applications where one may need to pass
on some important information to sensors with specific func-
tionality (eg., alarm actuators in security networks, sensors in
a home-networking environment). In such environments, one
needs to allocate a unique address for every sensor and route
messages to particular nodes. Broadcast is necessary in sce-
narios where an important message (eg., intruder detected by
a sensor) be broadcast to all nodes. This broadcast message
can be sent as a wakeup message for sensors in a security net-
work. The challenges involved in building such infrastructures
must be met in the face of energy-constraints for computation
and communication.

One of the important challenges in building large sensor net-
works is to self-organize the sensors into a network in a scal-
able fashion. In this paper, we describe our distributed algo-
rithm for self-organizing a large number of sensors and build
a routing infrastructure in the network. Using our algorith-
m, every sensor obtains a O(logn) bit unique node identifier
in a distributed fashion and one can route information between
any pair of sensors. Our algorithm also computes fault-tolerant
broadcast structures in the network for broadcasting data in the
network. The main contributions of our algorithm include:

� Reduction of State and Localized Operations: Any al-
gorithm for sensor networks must reduce the amount of
state maintained in every node. We maintain O(logn) +
O(jN(v)j) state information at a node v, where n is the
number of nodes in the networks and jN(v)j is the num-
ber of neighboring nodes of v in the network.

� Power Efficient and Reliable Paths: Our algorithm
keeps track of the power requirements at every node and
computes paths which are reliable and power efficient.
We propose two greedy power-constrained routing met-
rics for transmitting information.

� Hierarchical Routing Architecture: The sensor nodes
self-organize themselves in a hierarchical structure and
the size of the routing table at every node is reduced to
O(logn) to reduce the state and computation and storage
power requirements at every node.

� Fault-Tolerant Broadcast Trees: It is necessary to build
broadcast trees in the network in a transparent manner so
that important data could be broadcast to all the sensor
nodes. The fault tolerance is achieved through our new
technique Local Markov Loops(LML).

� Reduce frequency of Updates: By defining discrete
power levels in a sensor, we reduce the number of dynam-
ic cost updates that need to be performed in the network.

Other than these contributions, we could also prove that our
algorithm is loop-free and does not have the count-to infinity
problem.

In Section 2, we classify sensor applications based on the
network configuration and certain properties of the applica-
tion. In Section 3, we detail the architectural and infra-
structural requirements for building a specific class of sensor
applications which we call as self-configurable systems. In
Section 4, we describe the various phases in our algorithm and

present certain interesting properties of our algorithm. In Sec-
tion 5 we present the related work and in Section 6, we con-
clude.

A. Terminology

In this subsection, we give a brief description of the termi-
nology used in this paper.

� Sensor Mote: A sensor mote is an equivalent of a sensor
node which performs data discovery.

� Sink Node: A sink node is a node with high processing
capabilities and high capacity for data storage.

� Specialized Sensor: A sensor that performs a specific
data discovery operation. (eg., camera sensors, acoustic
sensors, temperature sensors)

� Router Sensor: A router sensor can collect data from
other nodes and transmit them to neighboring nodes.

� High-end system: A high-end system is equivalent to a
sink node.

� 2-connected graph: Refers to a topology in which there
are two edge disjoint paths from every node to every other
node.

� Broadcast graph: Refers to a subset of edges in the net-
work used for broadcasting data. These edges together
form the broadcast graph.

� Directed Acyclic Graph(DAG): A graph which has di-
rected edges and no cycles.

II. A TAXONOMY OF SENSOR NETWORK APPLICATIONS

In this section, we give a brief description of the types of
sensor network applications. We try to classify the applica-
tions into distinct classes based on the network configuration
of the sensors in the system. The important factors used in the
classification process are the size of the system, the number
of sensors used, the maximum distance of the sensors to the
wired infrastructure and the distribution of the sensor nodes.
The size of the system and the number of sensors determine
the effort needed to configure the system for that particular
application. The distance of sensors to the wired infrastruc-
ture determines the amount of intelligence needed in a sensor
for routing information to specific high processing nodes. The
distribution of sensor nodes in sensor applications can be ei-
ther deterministic or non-deterministic. In deterministic distri-
butions, the administrator would have control over the place-
ment of sensor nodes and the user can perform remedial op-
erations in case of faults. In non-deterministic applications,
fault-tolerance is increased by increasing the number of sen-
sor nodes. Determinism normally decreases with an increase
in the number of sensor nodes.

Based on a broad picture of different sensor applications,
we classify sensor network applications into three types. They
are:

1. Non-propagating systems
2. Deterministic routing systems
3. Self-configurable systems
In non-propagating systems, sensor nodes need not perfor-

m any intelligent functions for routing messages from them
to high-end systems. In these systems, the sensor nodes are

generally very close(one hop) to the wired infrastructure. The
wired infrastructure is the main connecting component in these
systems. These nodes discover data and report their measure-
ments to nodes connected to the wired network which take the
responsibility of routing information to the end system. Smart
spaces installed in buildings or within restricted areas belong
to this category. These systems are normally manually con-
figurable and highly deterministic. The sensor nodes have no
notion of routing in these systems.

In Deterministic routing systems, the wired and the wireless
infrastructures play an important part in routing messages. In
these applications, sensor nodes have to route through a few
wireless hops in order to reach the wired infrastructure. How-
ever, the routes to the wired infrastructure are deterministic
and can be configured manually. In home networking systems,
the sensor nodes are in pre-specified positions and route infor-
mation through pre-determined routes. The number of nodes
in such a system may be restricted.

Systems in which sensor nodes need to self-organize
themselves into a network belong to the class of self-
configurable systems. Many self-configurable systems
are non-deterministic, but when the number of nodes is
large(more than 100) then even deterministic systems need to
be self-configurable. Large parking-lot networks and security
networks are examples of deterministic system which belong
to the category of self-configurable systems. Remote object
tracking is an example of a non-aggregating self-configurable
system. In these systems, specific sensor nodes would have
connectivity to the wired infrastructure for transferring infor-
mation to high end-systems. The number of nodes in these
systems can be anywhere between 100 and 1 million. Fault
tolerance in these systems is achieved by re-organizing the net-
work in the presence of node and link failures.

One can also classify sensor applications into aggregating
and non-aggregating systems. In aggregating systems, the da-
ta obtained from the different source nodes can be aggregated
and transmitted along the network. Intermediary nodes in the
network would have the capability to fuse the information ob-
tained from different sources. In non-aggregating systems, the
information gathered by every source node is independent and
have to be transmitted separately in order to get a complete
picture of the system. Weather forecasting and monitoring
systems are examples of aggregating systems and parking-lot
networks is an example of a non-aggregating system.

Non-propagating and deterministic routing systems which
are also aggregating systems have most of their aggregation
functionality performed in the wired infrastructure or at the
gateway connecting the wireless network to the wired infras-
tructure. Therefore, such systems do not require specialized
aggregating functionality to be embedded into the sensor n-
odes in the network. In self-configurable systems, sensor n-
odes within the network should also perform the functionality
of aggregation of data.

Self-configurable systems have a lot of open research is-
sues and is by far the most challenging system to build among
these systems. In this paper, we mainly concentrate on self-
configurable systems and detail some of the architectural and

Sensors
Wired nodes

boundary between
wired and wireless
infrastructures

 a)Non−Propogating System

boundary between
wired and wireless
infrastructures

b)Deterministic Routing System

Sensors

wired nodes

Fig. 1. Non-propagating and Deterministic routing systems

infra-structural components required for these systems. We
present an algorithm that self-organizes the nodes into a net-
work and builds an addressing, routing and broadcasting in-
frastructure over the network.

III. A RCHITECTURE

In this section, we give a detailed description of the various
components and functionalities provided by the architecture.
We also give scenarios of applications requiring a particular
functionality. We also discuss the different components of the
infrastructure to support specialized networking functionali-
ties. In this architecture, we assume that the sensors are in
fixed locations and do not move. We believe that the pres-
ence of these components would be necessary and sufficient
for supporting many heterogeneous sensor applications.

Figure 2 gives an illustration of the various types of nodes
in the architecture and how they are self-organized into a net-
work.

A. Architectural Components

We consider two main types of sensors in our design. They
arespecializedandroutersensors. Our architecture also con-
siders the presence of special nodes calledsink nodes[7]
which have the general characteristics of a computer system.
In other words, these nodes have huge storage capacity, high
processing power, connectivity to the wide-area(Internet) and
do not have strict power constraints.

A.1 Specialized sensors

The heterogeneity of sensors in a network is specified by
the presence of specialized sensors in the network. There are
special sensors for monitoring climatic parameters like tem-
perature, pressure, humidity etc., tracking sensors for tracking
or detecting motion, vision sensors which can photograph im-
ages and a lot of other types of sensors. It is important to know
how these sensors would co-exist in a common environment.
In our architecture, each specialized sensors identifies itself

with a class and can communicate with other sensors either
of its own class or with some other class. The class of a sen-
sor denotes the functionality of that sensor. The specialized
sensors in a self-configurable system can be mobile.

A.2 Router sensors

It would be necessary to understand why router sensors may
be essential in sensor nets. Previous works [7], [3], [10] have
considered all sensor nodes in a network to have the same
functionality. As discussed earlier, there are quite a few sensor
applications like parking-lot networks which require data to be
routed to specific sensors and actuators. The router sensors in
the architecture can be used as routers in the network or can
be used as data dissemination nodes These nodes self-organize
themselves to form the backbone of the sensor network. In our
architecture we assume that router sensors are strictly immo-
bile. If these sensors are mobile, then the backbone of the
network needs to be continuously reorganized. This reorgani-
zation could be very expensive. Data dissemination is useful
in scenarios of broadcasting data in the network.

The use ofroutersensors in the architecture has the follow-
ing advantages:

1. The process of data dissemination and routing data is sep-
arated from the process of data discovery. In other word-
s, specialized sensors perform the task of data discovery
and the router sensors are responsible for routing and dis-
seminating data.

2. It is a well known fact that the power consumed by using
N short hops is approximatelyN times smaller than the
power consumed in1 long hop. The presence of router
sensors makes most of the hops in the network to be short
hops rather than long ones and thereby helps in reducing
power consumption.

3. Certain specialized sensors may be expensive to build and
our architecture reduces the density of these sensors in
the network. The backbone of the network is very built
only using cheap router sensors and can be highly cost-
effective in certain systems.

Specialized sensors

Router sensors

Sink nodes

 A Self−organized network

Fig. 2. A self-organizing system with router sensors, specialized nodes and sink nodes

4. The presence of a large number of router sensors in the
backbone can increase the lifetime and the fault-tolerance
of the network.

The ratio of the number of router sensors to number of spe-
cialized sensors (R/S ratio) is completely dependent on the
application. In certain applications like remote object track-
ing, it would be advisable to build chips which have both the
capability of specialized sensors and router sensors. In this
application, it would be advisable to have an R/S ratio of 1.

A.3 Aggregator nodes

Self-configurable aggregating systems require the presence
of aggregating functionality in certain nodes within the net-
work. This functionality can be either introduced in the router
sensors or one can create specialized nodes which act as ag-
gregators. These nodes collect the data from different sen-
sors and aggregate them before transmitting them further. In
weather monitoring applications, it is appropriate for placing
the aggregation functionality on all router sensors.

A.4 Sink nodes

Sink nodes is a terminology that we borrowed from [7].
Each sensor node may generate a lot of interesting informa-
tion and it would be necessary to store this information at a
place. Sensor nodes do not have enough power to process or
store large amounts of data. In other scenarios like remote
tracking, it would be necessary to connect these sensor net-
works to the Internet so that the information generated by the
sensor nodes can be transmitted to other remote nodes through
the Internet. This architecture supports the presence of sink n-
odes in the network which have high processing power, high
storage capacity and can connect to the wide area networks
for transmission of useful data. The sink nodes also have the
capability of sending specific messages to certain nodes to ac-
tivate specific actuators and can broadcast important messages
in the sensor net.

B. Infrastructure Components

In this section, we investigate the basic backbone network-
ing functionalities required for supporting sophisticated sensor
applications. We believe that the components in our infrastruc-
ture would be necessary and sufficient for many sensor-based
applications. The functionalities that we support in our archi-
tecture are the following:

1. Unique address for all nodes
2. Routing information between two nodes
3. Fault-tolerant broadcasting infrastructure
4. Broadcasting information within a certain radius
5. Multicasting information to specialized nodes
6. Self-reorganization in the face of node failures and net-

work partitions.
We would provide with scenarios where these functionali-

ties are necessary. In the next section, we would give a detailed
description of our algorithm that provides all these functional-
ities in a scalable fashion.

We detail certain applications which require many of the
listed infrastructure components. Consider the following sce-
narios:

� Security Sensors: Assume a simple scenario where sen-
sors keep track of safety vaults in a bank and form a secu-
rity network. When some sensors detect intruders, they
must trigger an alarm and must alert other specialized
sensors like vision, acoustic and path detection sensors
about this event. For triggering the alarm, the security
sensor must send a control signal to an actuator, must ac-
tivate the vision sensors to take pictures of the intruder,
inform the object tracking sensors to track the motion of
the intruder and each specialized sensor must pass crit-
ical information to the sink node. For performing this
whole functionality, each specialized sensor must have a
unique address so that other sensors can pass critical in-
formation to that sensor. We need a routing architecture
to send messages between sensor nodes and to the sink
nodes. We also need a multicasting infrastructure to co-
ordinate the actions of specialized sensors of a particular

type. For example, the vision sensors coordinate amongst
themselves to take pictures of the intruder. Note that the
multicast infrastructure would be restricted to a certain
locality and may not span the entire network. The object
tracking sensors must coordinate amongst themselves to
track the path of the intruder. We also need a broadcast-
ing infrastructure to alert all nodes within a certain radius
to get ready for performing some important actions.

� Parking-Lot Networks: Assume that every parking
spot in a certain area contains a sensor which keeps track
of the status of the spot on a continuous basis. A person
traveling around the region can get instantaneous access
the available parking spots and can also make advanced
reservations to certain spots. In this example, the sensor
application requires both an addressing and a routing in-
frastructure for routing messages to sensors and actuators
controlling one particular spot. Broadcasts are not highly
relevant for these networks but can be used to send spe-
cific messages to a group of nodes (eg., No parking in
street #37 between 4 and 6pm).

B.1 Addressing Infrastructure

We have discussed many scenarios where addressing nodes
is very essential. However there are applications as described
in [3], [2] which do not require addressing of sensor nodes.
Any sensor application which is a self-configurable system
that does not require an addressing mechanism for individu-
al nodes is an aggregating system. Traffic monitoring along
highways with the help of sensors requires self-configuration
of the nodes but does not require a unique address for every
node.

Given that an addressing scheme needs to be built, an IP
based addressing to this problem would not be a good solu-
tion. For one, IP addresses are global unique addresses but
sensor networks require local unique addresses. Allocating
and keeping track of IP addresses would be a very cumber-
some task and one would waste a lot of IP addresses given the
size of these subnets. In our architecture, sensor nodes within
a certain area interact with themselves in a distributed manner
and come up with an addressing scheme in which each node
obtains a unique local address.

Developing a MAC layer for sensor nets would be an alter-
nate solution. This will ensure that every sensor node obtains
a unique MAC address. Is it worth that effort is still an open
question.

B.2 Routing Infrastructure

Another important component of our architecture is the p-
resence of a routing architecture which connects all the sensors
in a transparent manner. The routing infrastructure is estab-
lished as an interconnection network between the router nodes.
Every specialized node must be adjacent to an adjacent router.
This node transmits all its messages to its adjacent router n-
ode with a message header. The message header specifies
whether the message is to be transmitted to a particular node
or it should be broadcast or multicast in the network. Based
on this header information, the router nodes transmit the infor-

mation among the router nodes transparently. Once it reaches
a router node which is reachable to the destination, it is sent
to the destination node. The routing backbone is formed by
self-organizing the router nodes into a network. We describe
our algorithm for self-organizing router nodes in the network
so that we minimize the power consumed at each node and al-
so reduce the size of the routing table at every router node. In
our architecture, every specialized node is addressed with the
help of a router node which acts as the proxy for the special
node. Many specialized nodes may be connected to the same
router node.

B.3 Broadcast and Multicasting Infrastructure

In sensor applications, as mentioned in [3], it is importan-
t to concentrate on data-centric models rather than traditional
IP centric applications. In data-centric applications, it would
be important to broadcast or multicast some critical informa-
tion to all or special nodes within a certain radius. We have
illustrated some examples which would require this applica-
tion in the beginning of this section. In the next section,
we would describe our algorithm for developing broadcast-
ing infrastructure. The algorithm supports the construction of
a fault-tolerant broadcast tree which changes continuously by
establishing Local Markov Loops(LML) in the network. We
also develop a directed-acyclic structure(DAG) to support fault
tolerance in paths. Multicast framework for exchanging infor-
mation between specialized nodes of a certain type can be sup-
ported over this broadcast infrastructure. Since our algorithm
divides the network into various levels, it is also possible to
achieve localized broadcast where information can be broad-
cast or multicast within a certain region.

IV. OUR SELF-ORGANIZING ALGORITHM

In this section, we describe our algorithm which helps in
self-organizing a set of sensor nodes randomly scattered in
an area. The router sensors self-configure themselves into a
network using this algorithm and the specialized sensors only
keep track of the nearest router sensors which is alive. The
algorithm consists of four phases. The algorithm performs the
following operations in the order they are mentioned:

1. Discovery phase: Each node independently discovers its
set of neighbors in the network and fixes its maximum
radius of data transmission.

2. Organizational phase: During this phase the network is
organized and the following operations are performed:

(a) Node aggregate themselves into groups and groups
are aggregated to form larger groups. In this way, a hier-
archy of groups is formed in the network. The algorithm
ensures that the hierarchy is height balanced.

(b) Each node is allocated an address based on its posi-
tion in the hierarchy.

(c) A routing table of O(logn) is computed for every
node in the network.

(d) A broadcast tree and a broadcast graph spanning all
nodes in the graph is constructed. The broadcast graph is
then converted into a directed acyclic graph based on the
source node in the network.

3. Maintenance phase: In the maintenance phase the fol-
lowing operations are performed.
(a) In active monitoring, every node keeps track of its

stored energy and constantly sends I am alive message
to its neighbors once in 30 sec. In passive monitoring, a
sensor nodes sends an activate message to its neighbors
only on demand.
(b) Every node constantly updates its routing table

about the next hop in the least power consuming path and
the shortest delay path to the groups as dictated by the
algorithm.
(c) Nodes also inform their neighbors of their routing

tables and their energy levels to their neighboring nodes.
(d) Fault tolerant broadcast trees and broadcast graphs

are maintained using Local Markov Loops(LML).
4. Self-Reorganization phase: In this phase, a node may

detect group partitions or node failures and change its
routing table based on the new topology. If all neigh-
bors of a node fail, then the node repeats the discovery
phase. If a group partition occurs due to link or node fail-
ures, the sub groups reorganize and join with new groups.
Group re-organization ensures that the hierarchy is still
balanced.

We would now give a complete description of each phase
and in particular show how the addressing, routing and broad-
cast of information is performed in this self-organized net-
work.

A. Discovery phase

In the discovery phase, each node discovers its set of neigh-
bors in the network. There are a lot of factors to be consid-
ered while finding the set of neighbors for a particular node.
A node should not have many neighbors because the receiver
antenna of the node has to be time multiplexed between the
various nodes and hence the time slice obtained for each node
is extremely less and thereby the delay of the system increases
and the throughput decreases. Another factor to be considered
is the maximum radius of transmission for every node. The
energy expended on transmission is proportional to the square
of the distance between the sender and receiver. Hence each
node would be expending a lot of energy while transmitting
data. In effect, each node bounds its set of neighbors and the
maximum transmission radius. On the other hand, a node x
would like to have a minimum number of neighbors n(x) for
performance considerations. For specialized sensors n(x) = 1
but for router sensors n(x) must be higher. This will depend
on the application and the density of sensors in the network.

Steps of the Discovery phase:
1. Every node x picks a small radius r and broadcasts a Hel-

lo message around a radius r and also indicates whether
it is a special node or a router node.

2. Every node within a radius r reply back with a I am here
message with their coordinates(determined by GPS).

3. If the number of nodes that responded is less than min-
imum threshold n(x), then x broadcasts Hello message
over a radius kr for k > 1. This process continues un-
til the number of nodes N that respond satisfies n(x) �

N � N(x) where n(x) and N(x) denote the minimum
and the maximum number of neighbors that can be ad-
mitted by x.

Note that a router sensor can be connected to any type of
sensor but a specialized sensor is only connected with router
sensors. Using the steps described above each node discovers
its set of neighbors and the maximum distance of transmission.

B. Organizational phase

The organizational phase consists of various stages. They
are:

1. Formation of a hierarchy with the help of group forma-
tion.

2. Performing group reorganization if necessary.
3. Generation of addresses for nodes.
4. Generation of routing table at every node
5. Generation of broadcast trees and graphs within a group

and merging of broadcast graphs and trees whenever
groups are aggregated.

We will describe each stage in detail. In the beginning it
would be necessary to understand how a hierarchy is found in
a distributed manner and how group reorganization helps in
generating a balanced hierarchy.

B.1 Group Formation

The basic step in the algorithm is the group generation
phase. After each node has found its set of neighbors, each
router node attempts to form a small basic group with its
neighbors. Each group is restricted to a size of 8 member-
s and every node should belong to exactly one basic group.
Each node in a group is allocated a 3�bit address and every n-
ode maintains the distance and the next hop for reaching every
other node in the group.

B.2 Merging of Groups

Assume 2 groups G1 and G2 with m and n-bit addresses
respectively. By n-bit addresses, we mean that every node in
G2 has an n� bit address. For a basic group, we have n = 3.
Assume m � n without loss of generality. Our algorithm
has a basic height difference parameter namely � > 0 which
dictates the maximum height difference tolerable for merging
trees. Therefore ifm�n � Delta, thenG1 andG2 are merged
into one group G and all the nodes in G1 add the bit 0 in front
of their address and all nodes in G2 add the bit 1 in front of
their address. If m � n > � then we consider the address of
some node that connectsG1 to a node inG2. Let this node be x
and with an address (x1; x2; : : : xm). Consider the sub-group
Hi formed by the set of all nodes in G1 with first i bits equal
to (x1; x2; : : : xi) for i � m� n� 1. By the group formation
property it can be seen that Hi is connected. Find out whether
Hm�n�1 has enough free address space for accommodating
G2 within its sub-group. By enough space, we require to know
whether Hm�n�1 has a sub-branch in its hierarchy where G2

could be added in the hierarchy of Hm�n�1 without affecting
the height of theHm�n�1[G2. If it is not possible to perform
this merging try the same with Hi for the maximum value of
i from m� n� 2 to 1. If it is not possible to merge with any

value of i, then merge G2 with G1 in the original fashion and
mark the new graph as height imbalanced.

B.3 Group Reorganization

A hierarchy of a group needs to be reorganized when it is
height imbalanced at multiple levels. If the hierarchy of the
group is unbalanced, then the group is broken into sub-groups
of smaller size which are regrouped in a similar way to pro-
duce a hierarchy which is balanced. This reorganization does
not affect the state of the rest of the network. Some routing
tales of nearby nodes will have to change the addresses of their
neighbors.

B.4 Formation of Hierarchy

The most important part of the algorithm is the hierarchy
formation. We assume that every node would have finished
the basic group formation algorithm. If a node is not able to
join any group, it forms a one node group with address 000. A
node of a group G is a boundary node if it is connected to a
node of some other group. Set the value of � to be the height
of a basic group which is 3. The following steps are carried
out to obtain the hierarchy:

1. Each group G receives advertisements from its adjacent
groups through its boundary nodes. These messages are
broadcast throughout the group. Each advertisement con-
sists of the size of the adjacent group(number of address
bits).

2. Each node conclude on an adjacent group G 0 which is
closest in size to G and which has the maximum number
of boundary nodes.

3. The node G sends the join message back to G 0. If G0

also decides to join G, then the two groups merge else G
selects the next best group H .

4. This process continues until all groups are merged in-
to one. At any point if a group is heavily imbal-
anced(hierarchy is imbalanced) then the group is reorga-
nized with an increased value of �new = �old + 1.

Theorem 1: The height of the hierarchy of the network will
be O(log n) where n is the number of nodes in the graph.

The above theorem follows from the height balanced prop-
erty of the hierarchical tree. To give a general picture, if the
value of � = 3, then every node in a sensor network of 10000
nodes will have a 16 bit address.

B.5 Routing Table Formation

Using the above hierarchical formation algorithm, a hierar-
chical tree can be formed in the network and every node will
have an address. Let every node have an m� bit group ad-
dress. In this algorithm, we can construct a routing table at
each node. Let (x1; : : : xm) be the address of a router sen-
sor x. Then this sensor would maintain the least cost and
next hop in the shortest path to the following destinations
x0
1
; (x1; x

0

2
); : : : (x1; : : : xm�1; x

0

m
). For example let the value

of m be 4. Let a router node have the address 0011. This n-
ode maintains the next hop to groups 1; 01; 000; 0010. By this
way, it is possible to maintain a routing table of O(m) at every
node and perform hierarchical routing.

However a cache can be employed at every node to cache
the next hop for particular destination groups. But this caching
scheme must pin the next hop along all nodes in the path. Even
if one node drops the information, the information is lost.

B.6 Broadcast Graphs and Trees

Broadcast graphs refer to the use of generalized graphs for
broadcasting rather than using spanning trees. The intuition is
that a node will be accessible through multiple paths from the
source and thereby fault-tolerance is added to the system. In
sensor networks, broadcast graphs would consume more pow-
er than broadcast trees. In our case, broadcast graphs are trans-
formed into directed acyclic graphs directed from the source.
Therefore there are no loops in the graph. To reduce the pow-
er consumption in broadcast graphs, we denote certain links
as primary links and other links as secondary links. All broad-
cast messages are directly transmitted through broadcast links
rather than the 3� way handshake in [7]. Along secondary
links the protocols follow the 3� way handshake mechanism
in [7].

The broadcast trees and graphs are formed in the following
way:

1. Whenever a basic group is formed, a broadcast tree and
graph are constructed for the basic group. Some nodes of
the broadcast graph are labelled as primary and they form
the broadcast tree.

2. Whenever two groups G and H merge, we select t-
wo low cost edges which connect G and H . Cal-
l them e1; e2. Let the broadcast graphs and trees of
G;H be B(G); B(H); T (G) and T (H) respectively. Let
cost(e1) < cost(e2) and let the merged group be denot-
ed by P . Then B(P) = B(G) [B(H) [fe1; e2g and
T (P) = T (G) [T (H) [fe1g.

Theorem 2: The power consumed for broadcasting mes-
sages using this approach is (n � 1)E + nE 0=2 where E is
the mean power consumed for sending a long message along
one hop, E 0 is the mean power consumed for sending a re-
quest/ACK short message along one hop and n is the number
of nodes in the network.

This is better than the power consumed by the SPIN proto-
col in [7]. That protocol consumes (n� 1)E + 2eE 0 where e
is the number of edges in the graph. In any broadcast scenari-
o, the energy (n � 1)E consumed is inevitable and is a lower
bound for the amount of energy that needs to be utilized. In
typical sensor networks, every node would have around 10�15
neighbors. The value of e for such a network is 6n and hence
the total energy used per broadcast is (n� 1)E +12nE 0. Our
algorithm, saves by a factor of 24 on an average on the extra
energy utilized per broadcast. Though the value of E 0 is very
small, the value 2eE 0 might be very large for large sensor net-
works. For two sensors separated by a distance of 10 meters,
its takes 150nJ per bit of information to be transmitted and
170nJ is the power required for receiving a bit of informa-
tion. A typical request-ACK message requires around 8 bytes
of information to be exchanged between the two nodes. The
value of E 0 in such a case is 20480nJ . Given a network of
1000 nodes with an average connectivity of 12, our algorithm

consumes an extra energy of 10mJ while the algorithm in [7]
consumes 240mJ for every broadcast.

C. Maintenance phase

There are two types of maintenance that one can perform in
a self-organizing system. They are: active and passive mon-
itoring. In the maintenance phase, it would be necessary to
maintain consistent routing tables at each node and also up-
dates the costs of the nodes in each node. It would also be
necessary to maintain fault tolerant broadcast trees.

C.1 Active vs Passive Monitoring

In active monitoring, every node keeps verifying the status
of its neighbors periodically. Every node sends an I am alive
message to all its neighbors once in 30 seconds to which it
has not sent any message over the last 30 seconds. If a node
does not receive a response from its neighbor for six consecu-
tive time intervals, the node assumes that the link between the
two nodes has failed and reorganizes its structure to tolerate
the link failure. In passive monitoring, a node checks whether
a particular neighbor is alive only on demand. Node A sends
a particular message Are you alive? to node B for which n-
ode B responds with an ACK. Passive monitoring is used as a
mechanism for saving the energy of a particular node.

C.2 Routing Metrics

Delay is not a very important constraint in sensor networks.
It would be more appropriate to save on power utilization than
the delay experienced by messages. The goal of the routing
metric is to keep the network alive for the maximum amount
of time. We suggest two different greedy metrics which can
help in achieving this goal. Given a network with each node
having a certain energy, it is a very hard problem to theoret-
ically compute the capacity of the network even for a partic-
ular source and a sink. In the first metric, we always route
along the path that has the minimum energy consumption per
bit of information transmitted. In the second metric, we al-
ways transmit along the path that has the maximum capacity
measured in terms of bits that can be transmitted. Given nodes
A;B with energies E(A); E(B) and that A consumes energy
E0 for transmitting one bit to B and B consumes E 00 for re-
ceiving a bit from A. The capacity of the link between A;B is
given by min(E(A)=E 0; E(B)=E00).

C.3 Maintenance of Routing Tables

Each node constantly informs its neighboring nodes about
its cost metric and this information is used by its neighbors to
update their routing tables. The count to infinity problem can
be avoided by not using the next hop entry for updating the
routing table entry for a particular destination group. Both the
cost metrics can be made loop-free.

C.4 Maintenance of Broadcast infrastructure

To maintain resilient broadcast trees in the face of node
or link failures, it is necessary to detect node failures in ad-
vance by monitoring the power requirements of a node. The

principle behind making our broadcast tree fault-tolerant is by
changing the broadcast tree to a new tree where the node that
is going to fail a leaf node. Therefore this node will not need
to broadcast any information to any other node in the tree. For
a node u that is going to fail consider all edges (u; v) which
is present in the broadcast tree. Construct a local Markov
loop(LML) by selecting a random edge (w; x) such that the
edge (u; v) is part of a local loop formed by adding the edge
(w; x) to the tree. Remove (u; v) from the tree. We get a new
tree with degree of u reduced by 1. Perform this operation
until u becomes a leaf node.

D. Reorganization phase

Re-organization occurs when either a node fails or when a
network partition occurs. We enlist the type of failures and
suggest our solutions:

1. Node failure: Every node constantly sends I am alive
message to its neighbors. If a node does not receive
any message from one neighbor over 6 period cycles, the
neighbor is assumed to be dead. Every neighbor of the
node updates all the entries in their routing table where
the next hop is the failed node. If the node that is bound
to fail is not a leaf node of the broadcast tree, then the
node is made a leaf node by local loops.

2. Link failure: A link failure occurs when a node becomes
unreachable to another node. In this case, the routing
table is changed accordingly at both the nodes. If the
edge is a primary edge in the broadcast tree, the algorithm
converts the corresponding secondary edge that connects
the two groups into a primary edge and performs a local
loop to find an alternate edge.

3. Group Partition: If all the links connecting two parts
of a group fail or if some crucial nodes fail, the group
gets partitioned into two or more disconnected pieces.
These disconnected pieces would reorganize themselves
into new groups and merge with other neighboring group-
s. In such a case, the address of all the nodes in the group
change.

4. Node Rediscovery: Assume a scenario in which al-
l neighboring nodes of a particular node have failed. In
such a case the node starts a rediscovery phase with an
initial radius equal to the previous maximum radius of
connectivity.

Reorganization of groups and node discovery events are
very rare. The only common occurrences are node and link
failures.

E. Analysis of the Algorithm

In this subsection, we list the strengths and the weakness-
es of our algorithm. Some of the strengths of the algorithm
include:

1. The hierarchy formed by the algorithm is strictly bal-
anced. The maximum difference between the left subtree
and the right subtree at any level is strictly less than or
equal to �.

2. The routing state maintained by any router sensor is
O(logn).

3. The algorithm incrementally computes a broadcast graph
which is 2� connected.

4. The property of Local Markov Loops(LML) performs a
random walk on spanning trees of a graph. This provides
tolerance to node failures and link failures.

5. The broadcast graph can be oriented as a directed acyclic
graph from any node in a unique manner. The uniqueness
property is guaranteed by the presence of a hierarchy.

6. The property that every specialized sensor attaches to
some router sensor allows these sensors to be mobile.

Some of the weaknesses of the algorithm include:
1. The algorithm has an initial organization phase and does

not have a concept of on-demand organization. Initial or-
ganization is good for applications that require address-
ability and/or routing. It is very applicable in scenarios
where the maintenance phase is not very costly. In ex-
tremely dynamic systems, it is better to have no implicit
organization or on-demand organization. [7] is an exam-
ple of a work that has no implicit organization. [9] be-
longs to the category of on-demand organization.

2. Forming a hierarchy in cases where there are a lot of cut
nodes in the network would not be a good idea. This
would increase the probability of applying the reorgani-
zation phase.

3. The algorithm does not discuss the protocol required for
transmitting data from one node to another node. In
particular, it does not address the issue of when a node
should transmit an information to another node.

It is highly unclear about what the best energy aware routing
metric is. This topic is out of the scope of this paper. Is delay
or energy consumption the right metric for sensor application-
s? The answer to this question is very application specific.

V. RELATED WORK

[7] is one of the first works towards building adaptive pro-
tocols for information dissemination. In their family of adap-
tive protocols namely SPIN, each node advertises to its set
of neighbors whenever it has some interesting information.
These protocols optimize on the power consumption in the n-
odes. However, they do not build a routing infrastructure in
the network and only target broadcast applications. They also
assume that every message in the network must eventually be
broadcasted. In the case when a critical piece of information
is necessary for a specific subset of nodes in the network(eg.,
sensors in one’s home, traffic sensors in a highway), none of
the intermediary nodes may be interested in the information
but the information must be transmitted to the final subset of
nodes. In such a scenario, [7] does not guarantee delivery.

[3] is a paper that comments on the requirements of scalable
coordination in sensor networks. They hint at building a data-
centric model in which applications focus on data generated
by sensors. They also stress on lowering power consumption
and performing localized operations.

[2] argues for an address free architecture for dynamic sen-
sor networks but we have showed some applications which re-
quire addressing of nodes. [4], [8], [19] describe some energy
efficient adaptations for sensor networks and mobile applica-

tions. [9] presents a new communication paradigm for sensor
networks. Though their model is very interesting, it may not
be applicable to a wide range of sensor applications.

The concept of hierarchy formation is not new. We bor-
rowed some ideas on hierarchy formation from Large Packet
Radio Networks [17] and PNNI hierarchy [1]. There has been
a lot of work in the area of ad-hoc routing protocols. These
include [5], [13], [14], [15], [16], [12]. Some of the problems
of sensor networks can be solved using ad-hoc routing proto-
cols. But, in principle the power constrained problems and the
data-centric model make sensor networks completely differ-
ent. Source and Distributed routing ad-hoc protocols require
the maintenance of a lot of state information in the nodes and
incur huge communication overhead for dynamic link-costs.
Therefore, these algorithms are not well suited for power con-
strained networks and perform poorly in data-centric models.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a taxonomy of sensor applications. We
believe that such a classification has not been reported in pre-
vious works. The paper also describes a generic architecture
for building a special class of sensor applications called self-
configurable systems. We describe the reasons behind the re-
quirement of every architectural and infra-structural compo-
nent. We feel that these components would be necessary and
sufficient to build self-configurable systems.

In this paper, we also have described a self-organizing al-
gorithm that develops an addressing, routing and broadcasting
infrastructure in the backbone of the network. The hierarchy
formation ensures that the height of the tree is log the number
of nodes in the network. The routing table maintained at ev-
ery node is also of reduced size. The algorithm mainly targets
power constraints and attempts to minimize the power con-
sumed at various stages of the algorithm. The paths and the
tree structures are made fault tolerant by constantly making
failing nodes as leaf nodes.

In our architecture, we assume that specialized sensors are
mobile within the region of router sensors. The architecture
for applications where sensors may move with no area restric-
tions will be very different from this one. We are working
towards evaluating the practicality and the goodness of the al-
gorithm through simulations and also by implementing over
some of the sensor motes designed by Berkeley MEMS de-
partment.

Acknowledgements

Ashwin A.Seshia cleared a lot of our doubts regarding the
sensor aspects of the architecture. Some of the communica-
tions aspects of the problem were discussed in detail with Ki-
ran. We also thank Prof.K.S.J.Pister and Sharad Agarwal for
their valuable comments.

REFERENCES

[1] ATM Forum. http://www.atmforum.com/
[2] Jeremy Elson and Deborah Estrin. An address free architecture for dy-

namic sensor networks. submitted for publication. http://www.isi.edu/ es-
trin/papers/

[3] Deborah Estrin et.al. Next century challenges: Scalable coordination in
sensor networks. In Proceedings of MOBICOM’99, Seattle, pp 263-270.

[4] Jason Flinn and M.Satyanarayanan. Energy aware adaptation for mo-
bile applications. ACM Symposium on Operating System Principles (SOSP
1999), December 1999.

[5] Piyush Gupta and P.R.Kumar. A system and traffic dependent adaptive
routing algorithm for ad-hoc networks. In Proc. IEEE 36

th Conference on
Decision and Control, pp 2375-2380, Sandiego 1997.

[6] E.Gafni and D.D.Bertsekas. Distributed algorithms for generating loop-
free routes in networks with frequently changing topology. IEEE Transac-
tions in Communications, Jan 1981.

[7] Wendi R.Heinzelman, Joanna Kulik and Hari Balakrishnan. Adaptive
protocols for information dissemination in wireless sensor networks. In
Proceedings of MOBICOM’99, Seattle, pp 174-185.

[8] Wendi R.Heinzelman, Anantha Chandrakasan and Hari Balakrishnan.
Energy efficient communication protocol for wireless microsensor net-
works. Hawaii International Conference on System Sciences, january 4-7,
2000.

[9] C.Intanagonwiwat et.al. Directed diffusion: A scalable and robust com-
munication paradigm for sensor networks. to appear in ACM Mobicom
2000.

[10] J.M.Kahn, Randy H.Katz and K.S.J.Pister. Next century challenges:
Mobile networking for “Smart Dust” . In Proceedings of Mobicom’99,
Seattle, pp270-278.

[11] Satish Kumar et.al. Scalable Object tracking through unattended
techniques(SCOUT). submitted for publication. http://www.isi.edu/ es-
trin/papers/

[12] Charles E.Perkins and Elizabeth Royer. Ad-hoc on demand distance
vector routing. Internet Draft. http://www.ietf.org/internet-drafts/draft-ietf-
manet-aodv-05.txt

[13] Charles E.Perkins and P.Bhagwat. Highly dynamic destination se-
quenced distance vector routing for mobile computers. In Proceedings of
SIGCOMM’94, October 1994.

[14] Vincent D.Park and M.Scott Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. Inproceedings of INFO-
COM’97, 1997.

[15] Sinha P., Sivakumar R. and Bhargavan,V. CEDAR: A core extraction
distributed ad-hoc routing algorithm. In Proceedings of INFOCOM’99.

[16] R.Sivakumar, B.Das and Bhargavan V., An improved spine based in-
frastructure for routing in ad-hoc networks. In Proceedings of IEEE Sym-
posium of Computers and Communications, 1998.

[17] Martha Steenstrup. Routing in Communication Networks. Prentice Hall,
1995.

[18] William A.Winoto, Elliot Schwartz et.al. The design and implementa-
tion of an intentional naming system. 17th ACM Symposium on Operating
System Principles(SOSP 1999). 34(5); 186-201, Dec 1999.

[19] Ya Xu et.al. Adaptive Energy Conserving Routing for multihop ad hoc
networks. submitted for publication. http://www.isi.edu/ estrin/papers/

