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Abstract

Root cause localization, the process of identifying the
source of problems in a system using purely external ob-
servations, is a significant challenge in many large-scale
systems. In this paper, we propose an abstract model that
captures the common issues underlying root cause local-
ization and hence provides the ability to leverage solutions
across different systems.

1 Introduction
Many large-scale systems, as diverse as Internet service

clusters, inter-domain routing in the Internet and software
systems, suffer from a common problem: when the system
fails to function properly, it is often difficult to determine
which part of the system is the source of the problem. The
challenge is that, often times, the symptoms of a failure
manifest as end-to-end failures in the operation of the sys-
tem as a whole, without causing obvious failures in the
system’s pieces; simply noticing that something has gone
wrong is not enough to tell us where to look to fix it. The
consequences are serious: poor fault isolation, slow recov-
ery from failures, and generally unreliable systems.

We define root cause localization as the process of de-
termining the possible locations of a problem in a sys-
tem by analyzing externally visible system behavior. Root
cause localization answers the question “Where is the prob-
lem?”, though not necessarily the harder question, “Why?”
For any complex distributed system that operates at a high
scale, root cause localization is a fundamental necessity
given that internal diagnosis of different aspects of the sys-
tem is often a very laborious task. The communities that
build these large-scale systems have historically taken dif-
ferent approaches to solving this problem—alternatively
referred to as fault diagnosis, alarm correlation, root cause
analysis, and bug isolation in the context of a wide vari-
ety of systems [3, 4, 2, 20, 11, 7, 18, 5]. Despite this, we
take the position that many of the underlying challenges to
root cause localization are common across a surprisingly
diverse set of these systems.

In this paper, we define an abstract model of the root
cause localization problem, attempting to capture the com-
monalities of this problem across different systems. Our
model explicitly represents the nature of end-to-end fail-
ures, captures the common theoretical and computational
challenges, and separates system-specific challenges into
the process of mapping a system representation into the ab-
straction.

We believe that root cause localization is just one as-
pect of a broader issue: developers are increasingly build-
ing large and complex systems whose inner workings
are poorly understood. This incomprehensibility leads to
unpredictable emergent behaviors, unreliability and poor
manageability. The challenges posed by complexity are
common to many systems and many solutions, including
theoretical and machine learning approaches, may be com-
mon as well.

Our explicit goal in presenting this model of root cause
localization is to build a bridge that enables researchers
across different communities to reason about these com-
mon solutions. In particular, we hope to enable and attract
theory and machine learning researchers to attack the prob-
lem. To highlight this promise, we show how one can lever-
age existing techniques to solve specific aspects of the gen-
eral problem and briefly illustrate how these solutions have
been applied in three distinct application domains.

2 Example applications
In this section, we ground our approach by considering

the root cause localization problem in the context of three
very different systems: root cause analysis of Internet rout-
ing dynamics, failures in clustered Internet services, and
the bug isolation problem in software systems.

2.1 Root cause analysis of BGP dynamics

Understanding the dynamics of Internet routing and pin-
pointing the source of routing problems is critical to ad-
dress many of the shortcomings of the Border Gateway
Protocol (BGP), the de facto interdomain routing proto-
col. Observing a route update is a clear symptom that



some event has occurred. A BGP health inferencing sys-
tem [3, 4, 9] that performs root cause analysis of BGP dy-
namics uses data collection centers like Routeviews [21]
and RIPE [19], which continuously receive streams of
route updates from multiple vantage points. Each route up-
date is associated with path-vector information describing
the entire path at the granularity of Autonomous systems
(AS’s). The underlying root cause localization problem in
BGP can be stated as follows: Given route updates ob-
served at multiple vantage points, determine the potential
set of locations of events (at the granularity of AS’s) that
could have triggered each route update.

2.2 Failures in Internet service clusters

Today’s Internet services (e-commerce, search engines,
enterprise applications and others) commonly suffer from
brown-outs, where part of the functionality of a site goes
down or is unavailable, resulting in the failure of user re-
quests. It is critical to quickly determine the source of such
problems to reduce the overall downtime of the system.
While certain types of failures such as a process crash are
easy to detect, the challenging aspect arises when the only
detectable symptom of a failure is an end-to-end failure,
e.g., a front-end web server observes users’ failed HTTP
requests.

Large Internet services are usually built using clusters of
machines (from 100s to over 50000 machines [15]) divided
into multiple tiers (a front-end tier of web servers, multiple
tiers of application logic, and a back-end tier of persistent
storage) and a user’s HTTP request usually traverses most
of the tiers in the system. To aid in the diagnosis of such a
large system, it is becoming common practice to dynami-
cally record and log the path of a request (the machines and
services used to fulfill the request) [6, 1]. The root cause lo-
calization problem in such a system can be formulated as:
Given the paths of both successful and failed requests, de-
termine the set of components most likely to have caused
the failures.

2.3 Bug isolation

Bugs are practically guaranteed to exist in any large soft-
ware system. Bugs that are deterministic and easily repro-
duced are relatively easy to track down and fix. Other bugs,
humorously named heisenbugs [10], are non-deterministic
and quite difficult to track down, even with the latest de-
bugging tools. Recently, Liblit et al. have proposed an ap-
proach they call statistical debugging [14], where they ad-
vocate constant sampling of the code-level behaviors of
end-user software during normal execution. These behav-
iors include the results of conditional tests, the return val-
ues of functions, etc. By discovering which of these behav-
iors are most correlated with symptoms of a heisenbug, sta-

tistical debugging helps programmers understand and dis-
cover a bug’s true cause.

Statistical debugging is a direct counterpart to the root
cause localization problem in other systems, and can be re-
stated as: Given the code-level behaviors associated with
both correct and buggy executions of a program, determine
what parts of the code are most likely to have caused the
bug.

3 Root cause localization problem
In this section, we define a basic form of the root cause

localization problem and relate it to the example applica-
tions described before.

3.1 System model
We abstractly model a large scale system simply as a col-

lection of known components interacting with each other.
Components are the basic granularity for localizing fail-
ures. While a clear characterization of the set of compo-
nents is dependent on the system/application under consid-
eration, the definition of a component should ideally satisfy
three properties: (a) component granularity should be fine
enough to be a useful marker in locating failures, but not so
fine that the system model becomes intractably complex;
(b) all components when considered together should com-
pletely represent the system; (c) a component, as a whole,
should be visible to an instrumentation box diagnosing the
system.

Given that failures are externally visible only as end-
to-end failures, we assume that misbehavior of individual
components is not diagnosable in isolation. The only obser-
vations that are visible to external instrumentation are what
we define as quarks - the smallest end-to-end observable
unit of a failure or success. Each quark represents a tuple
consisting of: (a) the set of components used by the quark;
(b) a health result, signifying the failure or success of the
quark.

We now revisit the three examples and define the com-
ponents and quarks in them. In BGP, we associate two dif-
ferent types of components: AS’s and inter-AS links. This
is primarily to distinguish between events triggered across
inter-AS boundaries (e.g., peering link failure) and inter-
nal routing events within an AS. Every route observed at a
vantage point represents a quark. Stable routes represent
healthy quarks and any prefix that is updated is an un-
healthy quark signifying the occurrence of a routing event.

For Internet service clusters, the machines and software
services running on them represent the system components
and every HTTP request represents a quark. The service
path of an HTTP request (machines and services used by
the request) represent the quark’s components and HTTP
error monitors act as external detectors to determine the
health of every quark.



In software programs, a code module that performs a spe-
cific functionality is a component and the code-level behav-
ior corresponding to every execution of the program repre-
sents a quark. A correct program execution is a successful
quark and a buggy execution is an unsuccessful quark. Note
that every execution of the code traverses a different set of
components depending on the system environment and in-
put parameters.

Our system model makes two basic assumptions: (a) the
system is decomposable into components; (b) the compo-
nents associated with every quark are externally visible.
While not all large-scale systems fit this model, our be-
lief is that these assumptions hold for many such systems
that exist today. Our model also explicitly abstracts sev-
eral system-specific concerns which need to be addressed
in the process of transforming a physical system model into
the component-quark model. First, determining the compo-
nents and quarks of a system is very specific to the structure
of the system and needs to be addressed on a case by case
basis. Second, the association between a quark and its set
of used components should represent how faults propagate
from their source to their symptoms. Without a reasonable
approximation of this fault propagation, the failed quarks in
the abstract model will not be able to lead us to the cause
of a failure.

3.2 Modeling partial failures

Components across different types of systems have
widely varying granularities. Some components, like AS’s,
are by themselves large distributed systems while blocks of
code in a software program may be quite simple. In general,
we can associate a component with one or more function-
alities, where the number of functionalities is dependent on
the system and scale of the component.

We define a partial failure of a component to be the case
when one or more functionalities of a component fail (or
are modified) while the others are unaffected. In this model,
we implicitly assume that partial failures within one com-
ponent are independent and do not influence partial failures
in other components. While this assumption does not ac-
count for more complex failures, we extend our model to
take into account simultaneous correlated failures, as well
as failures caused by component interactions, in Section 5.

The failure of a functionality within a component man-
ifests itself externally by causing any quark that uses that
functionality to fail. To account for this, we use a simple
probabilistic model for a partial failure of a component:
Given a component, Ci, let probability pi represent the fail-
ure probability of a quark that utilizes component Ci. This
probabilistic model makes no assumptions about the spe-
cific functionalities that are associated with a component.
While in certain applications, one may be able to specify

all the functionalities associated with a component, here,
we assume that this information is not available. It is im-
portant to note that the value pi is dependent on the distri-
bution of quarks using the failed and successful functional-
ities of a component Ci (pi = 0, if an unused functionality
in a component has failed).

3.3 Basic problem definition
Consider a large scale system with a set of components,

S = {C1, C2, . . . Cn}. An instrumentation box monitors
some of the quarks of the system where each quark is a tu-
ple Q = (Qs, Qh) where Qs is a set of components and
Qh is a binary health result represented as 0 or 1. Based
on this probabilistic model of partial failures and the as-
sumption that partial failures are independent, we define
two versions of the root cause localization problem:

Deterministic version: Given several quarks in the sys-
tem of which some failed (i.e., Qh = 0), determine the
potential set of components that have experienced a partial
failure i.e., list of components Ci with pi > 0.

Statistical version: Given several quarks in the system
of which some failed (i.e., Qh = 0), estimate the partial
failure probability pi for each component Ci.

We refer to the deterministic version as the partial fail-
ure identification problem. Identifying the components that
may have failed in general is easier than estimating pi

and also requires a much smaller statistical sample set of
quarks.

4 Potential solutions
In this section, we describe three varied approaches to

handling root cause localization in different application do-
mains. While none of these approaches completely solve
the general problem, we can use them to show how existing
solutions can be applied to our abstract model of root cause
localization. This immediately opens up the possibility of
applying each solution to a broader set of systems outside
their original domain. Of these solutions, the minimum set-
cover algorithm addresses the deterministic version of the
problem and decision tree learning and logistic regression
address the statistical version of the problem. This list of
solutions is by no means complete. Other statistical tech-
niques, such as Cohen et al.’s approach for automated di-
agnosis based on Bayesian networks, may also be mapped
to our abstract model [8].

4.1 Generic challenges

There are two core challenges in root cause localization,
both related to the quantity and quality of our observations
of the system.

Component Visibility and System Structure: The ac-
curacy with which we can address the root cause localiza-
tion problem is dependent on the coverage of the quarks



(how well our observed quarks cover the components in
the system) and the variety of the quarks (how much the
quarks’ associated component sets differ from one an-
other). In practice, the set of components that a quark cov-
ers is largely dictated by the system’s structure.1 In particu-
lar, given the limitations of end-to-end failures, we cannot
localize a fault in a component which is not used by any
quarks; nor can we diagnose a failure in a system where all
quarks are identical, such as a parallel computing system
where every calculation depends on every component in
the system. In less extreme cases, we may able to localize
a problem to a subset of components but not pinpoint the
specific component whose failure triggered a failed quark.

Time granularity: While failures may tend to persist for
long periods in certain applications (e.g., bugs in software
programs), several applications like Internet routing use in-
built mechanisms to adapt and recover from failures. To ac-
curately pinpoint component failures that occur for short-
periods, we require a significant sample set of quarks that
provide good coverage and variety during the period of the
failure.

4.2 Minimum set cover

A complete failure model represents a specific case of
partial failures where p = 0 or p = 1. Under this assump-
tion, one can view the root cause localization problem as
an optimization problem to identify the minimum set of
failed components that can explain all the failed quarks.
One can transform this optimization problem to the classi-
cal set cover problem [12]. Determining the minimum set
cover that covers all failed quarks is equivalent to determin-
ing the minimum set of failed components that can explain
the root cause of all failed quarks.

The minimum set cover method works only under cer-
tain assumptions. First, it assumes a complete failure model
where the failure of a component completely lasts during
the period of observation i.e., no component recovers from
a failure during the observation period. Second, the solu-
tion to minimum set cover is not unique. For example, if
two components occur in all failed quarks, then the algo-
rithm should report both as suspect as opposed to just one
of them.

4.3 Decision tree learning

One statistical approach that can be directly extended to
the abstract model is decision tree learning, a technique we
have used in prior work to localize failures in Internet ser-
vice clusters [6, 13]. A decision tree is a data structure that
represents a classification function, where each branch of

1Most systems do not provide the flexibility to define quarks
with an arbitrary set of components but rather constrain this set
based on the system structure.

the tree is a test on some attribute of the input, and where
the leaves of the tree hold the result of the function. Deci-
sion tree learning is the process of building a decision tree
to most accurately classify a set of training data [17].

To solve the root cause localization problem, we learn a
decision tree to classify (predict) whether a quark is a suc-
cess or a failure based on its associated components. Of
course, we already know the health of the request—what
interests us is the structure of the learned decision tree;
looking at which components are used as tests within the
decision tree function tells us which components are corre-
lated with request failures. Similarly, by applying decision
trees to classify quarks based on their associated compo-
nents, we can hope to localize faults in our abstract model.
Decision tree learning is robust to multiple simultaneous
independent faults and gracefully tolerates inconsistencies
in the training data.

4.4 Logistic regression

Another statistical technique that can be extended to the
root cause localization problem is logistic regression, a
technique used by Liblit et al. to discover which low-level
behaviors in a program’s code are most correlated with
buggy program runs [14]. Logistic regression fits a linear
model to a set of training data, trying to learn a linear func-
tion of the low-level code behaviors that will correctly clas-
sify a program run as either correct or buggy. Assuming
that most of the code behaviors will not be relevant to a
failure, Liblit et al. regularize the input parameters to force
the linear model to use only the few behaviors that cor-
rectly characterize the failure. Like decision trees, logis-
tic regression gracefully degrades in the face of inconsis-
tencies. However, it does not handle multiple independent
faults well.

4.5 Solutions recap

In this section, we have discussed solutions to the compu-
tational and theoretical aspect of the root cause localization
problem. While none of the these solutions completely ad-
dress the abstract problem, they do highlight the potential
for sharing ideas and solutions among the various research
communities. In particular, this also highlights the poten-
tial for theory and statistical experts to provide improved
solutions for the general problem.

Of course, the system-specific parts of root cause local-
ization, such as determining exactly what constitutes a fail-
ure in a domain, are also important. Additionally, there is
a significant opportunity for system-specific techniques to
help mitigate the challenges of component visibility, sys-
tem structure and time granularity. Adding new observa-
tion points within the system may increase the visibility of
quarks and perhaps increase their coverage and variety. In
some systems, it is possible to artificially inject new quarks



to probe the system and control the set of components in
this quark. This opens up a new class of solutions to root
cause localization, not detailed here, based on methodical
exploration of possible fault propagation paths. To improve
our time granularity in systems where collecting observa-
tions exacts some cost, we might be willing to pay that cost
to observe more quarks once we notice a fault in the sys-
tem. Coercing transient failures into longer faults can also
lengthen the amount of time we have to collect a significant
set of quarks.

5 Refining the Basic Model
The model of a partial failure, as we defined in Sec-

tion 3.2 is simplistic, in that it assumes failures across com-
ponents to be independent of each other. In this section, we
relax this assumption and refine our model to support two
types of complex failures: (a) a common problem simulta-
neously causes several components to fail; (b) the interac-
tion between a set of components triggers a failure. While
by no means are these refinements complete enough to cap-
ture various forms of failures, we describe them primarily
to show how one can extend our problem to model different
types of complex failures.

5.1 Modeling simultaneous correlated failures

There exists many types of systems where several com-
ponents may simultaneously fail due to an underlying com-
mon cause.2 Such types of failures are typically hard to
model and localize without additional knowledge about
possible causes of simultaneous failures. For this purpose,
we define attributes of a component as additional descrip-
tions specified by the underlying system about the potential
causes of component failures. E.g., in Internet services, one
useful set of attributes might include the operating systems,
middleware and versions of each component. In BGP, Cae-
sar et al. [3] classify causes of routing events into disjoint
equivalence classes where each class can be viewed as an
attribute. In general, we expect several attributes to be com-
mon across different components to capture commonality
in failures.

With this refinement, the root cause localization problem
boils down to determining the set of components and at-
tributes which appear to be triggering failures in quarks.
Many of the statistical learning theory techniques, includ-
ing decision trees and logistic regression, can be extended
to model attributes in conjunction with components. Of
particular interest is the case of large-scale homogeneous
systems where the functionalities across several compo-
nents are alike (e.g., nodes in a structured peer-to-peer net-
work) and hence the attributes of many components are

2For example, the spread of the SQL Slammer worm triggered
several routers to simultaneously reset.

alike. Here, when applying statistical techniques, one can
model attributes as being equivalent to the components in
the system to determine common problems across compo-
nents.

5.2 Failures caused by component interactions

Some failures are caused not by faults in a single com-
ponent, but by multiple components interacting together.
For example, latent faults in two components and subtle
incompatibilities due to version differences can cause oth-
erwise perfectly functioning components to fail when used
together. Formally, we define a set of components to have
an interaction-failure if any quark that uses all these com-
ponents always fails while any quark that uses only a subset
of these components is always successful. This set of com-
ponents represents the smallest set of components that have
an interaction failure. Finding this smallest set of compo-
nents defines the root cause localization problem in the
context of interaction-failures.

While the potential number of interaction failures is ex-
ponentially large, two specific constraints in the context
of many real-world systems make this problem relatively
tractable. First, the number of components involved in an
interaction fault is often relatively small. Secondly, the sys-
tem structure and observed interactions between compo-
nents limits the possible interaction failures we have to con-
sider.

Theoretically, this problem turns out to be similar to a
problem in bio-informatics where the interaction between
different genetic abnormalities3 can potentially be a source
of cancerous tumor cells. In [16], Michael Newton pro-
poses a set of statistical techniques to identify these genetic
abnormalities and these techniques are potentially applica-
ble in the context of interaction failures.

6 Consequences
The primary goal of this paper is to develop an abstract

model that can capture the commonalities among the root
cause localization problem in different systems. Part of
the hope behind this abstraction is to stimulate discussion
among the communities that build these systems and elicit
the help of theory and statistical experts in solving the un-
derlying problem.

Abstract modeling also has important ramifications on
the design and diagnosis of large-scale systems. From the
design perspective, one can explicitly modularize compo-
nents around failure boundaries, add instrumentation to in-
crease the visibility of quarks, and randomize quark behav-
ior to increase their coverage and variety. From the diag-
nosis perspective, the solvability of the root cause localiza-
tion problem for a given system dictates the ease of fault

3regions of DNA which have be deleted, amplified or modified



diagnosis. For example, based on the structure of quarks in
Internet routing, we can argue that certain types of failures
are very hard to diagnose [3].

In practice, not all systems or failures fit the component-
quark model. Some systems may inherently not be separa-
ble into components because: (a) the system structure in-
herently is not modular; (b) failures may manifest and cor-
rupt the entire system as opposed to specific parts of the
system; (c) end-to-end failures may convey little informa-
tion about system behavior.

Overall, we hope that this abstract modeling can improve
our understanding of large-scale systems and thereby lead
to the design of systems that are easier to manage, repair
and are more reliable.
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