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Chapter 1

Introduction

The Internet is a vast and complex network formed as a conglomerate of thousands of smaller
networks owned by separate administrative entities. These smaller networks are referred to as either
autonomous systems(ASes). An Internet Service Provider (ISP) can either be a collection of one or
more ASes connected to each other and owned by a single administrative entity or can be a small
access provider depending on other ASes for advertising its routes. Autonomous systems vary both
in network size and geographic spread. At one end, we have tier-1 ISPs and global transit providers
whose networks spread across continents, while at the other end we have customer ISPs whose
spread is restricted to a very small geographic region (like a university campus). In the middle, we
have regional and national providers who have points of presence spanning an entire country or a
relatively large geographic region within a country.

There have been many studies which analyze different properties of the Internet. From a networking
perspective, a large chunk of these studies have analyzed either the performance aspects of the
Internet or its underlying network topology structure. Given the large and diverse geographic spread
of the Internet, very few studies have quantified or measured the geographic properties behind this
complex structure. This can be attributed to two reasons:

• Geographic information is hard to obtain. Addresses used for identifying end-nodes in this
network (IP address) does not inherently contain an indication of its geographic location. The
network topology structure of an ISP provides little information of its geographic spread.

• A common perception in the networking community is that geography has little relationship
to performance. Since performance has been a driving force behind many of these studies,
geography has not been an important topic of study in this context.

Geography, however, has been integral part of manylocation-basedservices like the Global Posi-
tioning System (GPS). The GPS technology is widely used for object-tracking and navigational pur-
poses. Object tracking systems are very common in many military applications and navigation is an
essential component in many transportation systems like ships, automobiles and planes. In the con-
text of the Internet,location awarenesshas become increasingly important. Many Internet services
as of today would benefit by knowing the geographic locations of the end-hosts (clients). However,
only recently have there been efforts directed towards building a GPS-like mapping service for the
Internet. In our work, we investigate different geographic mapping techniques for Internet hosts and
study the trade-offs for these different approaches. We extend our work by studying the use of ge-
ography as a tool for quantifying different properties of the Internet. In particular, we show how to
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use geographic information to infer certain properties of Internet routing like circuitous routing and
routing policies of ISPs like hot-potato routing. Many of these properties are not characterizable
using purely network-centric metrics. We also examine the fault tolerance of the topologies of many
ISPs from a geographic perspective.

1.1 Overview of our Work

We classify our work on inferring geographic properties of the Internet into three categories. They
are:

• IP-location mapping: Given the IP address of an Internet host, can we determine its geo-
graphic location?

• Geographic properties of routing: Given the geographic information of Internet routes, can
we infer certain properties which are not quantifiable using purely network-centric metrics?

• Geographic fault tolerance:How would we characterize fault tolerance of network topolo-
gies in the presence of infrastructure failures in a geographic region? (Multiple nodes and
links which are geographically co-located will simultaneously fail)

We will now briefly describe an overview of these individual pieces.

1.1.1 IP-location mapping

Building an IP address to location mapping service (thelocation mappingproblem for short) is an
interesting problem in its own right. Such a service would also enable a large and interesting class
of location-aware applications for Internet hosts, just as systems such as GPS [9] have for mobile
devices. By knowing the location of a client host, an application, such as a Web service, could
send the user location-based targeted information on local events, regional weather, etc. (targeted
advertising), classify users based on location (e.g., count “hits” based on the region the user is
located in), or control the availability of data based on user location (territorial rights management
akin to TV broadcast rights). Each application may have a different requirement on the resolution
of location information needed.

We present several novel techniques, collectively referred to asIP2Geo [24], that approach the
location mapping problem from different angles. These techniques exploit various properties of
and observations on the Internet such as hierarchical addressing and correlation between delay and
distance. We have analyzed a variety of data sets both to refine these techniques and evaluate their
performance. To the best of our knowledge, ours is the first research effort in the open literature that
studies this problem in detail.

Our first technique,GeoTrack, tries to infer location based on the DNS names of the target host or
other nearby network nodes. The DNS name of an Internet host sometimes contains clues about the
host’s location. Such a clue, when present, could indicate location at different levels of granularity
such as city (e.g.,corerouter1.SanFrancisco.cw.netindicates the city of San Francisco), state (e.g.,
www.state.ca.usindicates the state of California), or country (e.g.,www.un.cmindicates the country
of Cameroon).

Our second technique,GeoPing, uses network delay measurements made from geographically dis-
tributed locations to infer the coordinates of the target host. It is based on the premise that the delay
experienced by packets traveling between a pair of hosts in the network is, to first order, a function
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of the geographic separation between the hosts (akin to the relationship between signal strength
and distance exploited by wireless user positioning systems such as RADAR[2]). This is, of course,
only an approximation. So our delay-based technique relies heavily on empirical measurements of
network delay, as discussed in Section 3.3.

Our third technique,GeoCluster, combines partial (and possibly inaccurate) IP-to-location map-
ping information with BGP prefix information to infer the location of the host of interest. For our
research, we obtained the host-to-location mapping information from a variety of sources, including
a popular Web-based email site, a business Web hosting site, and an on-line TV guide site. The data
thus obtained ispartial in the sense that it only includes a relatively small number of IP addresses.
We use BGP prefix information to expand the coverage of this data by identifying clusters of IP
addresses that are likely to be located in the same geographic area. This technique is self-calibrating
in that it can offer an indication of how accurate a specific location estimate is likely to be.

We have evaluated these techniques using extensive and varied data sets. While none of the tech-
niques is perfect, their performance is encouraging. The median error in our location estimate varies
from 28 km to several hundred kilometers depending on the technique used and the nature of the
hosts being located (e.g., well-connected clients versus proxy clients). This precision is very good
for applications like targeted advertisements.

1.1.2 Geographic Properties of Routing

Routing across ASes is accomplished using the Border Gateway Protocol (BGP), a protocol for
propagating routes between ASes. The network path between two end-hosts typically traverses mul-
tiple ASes. BGP is flexible in allowing each AS to apply its own local preferences, and export and
import policies for route selection and propagation. The characteristics of an end-to-end path are
very much dependent on the policies employed by the intervening ASes.

Previous work on Internet routing has focused on studying properties such as end-to-end perfor-
mance, routing stability, and routing convergence that are affected by routing policies. We present a
different way of analyzing certain properties of Internet routing. We show howgeographicinforma-
tion can provide insights into the structure and functioning of the Internet, including the interactions
between different autonomous systems [32]. In particular, geographic information can be used to
quantify well-known network properties such as hot-potato routing. It can also be used to quan-
tify and substantiate prevalent intuitions about Internet routing, such as the relative optimality of
intra-ISP routing compared to inter-ISP routing.

To analyze geographic properties of routing, it is necessary to first determine thegeographicpath
of an IP route. The geographic path is obtained by stringing together the geographic locations of
the nodes (i.e., routers) along the network path between two hosts. For instance, the geographic
path from a host in Berkeley to one in Harvard may look as follows: Berkeley→ San Francisco→
New York→ Boston→ Cambridge. The level of detail in the geographic path would depend on
how precisely we are able to determine the locations of the intermediate routers in the path. We use
GeoTrack [24], a tool we have developed for determining the geographic path of routes. Our study
is based on extensive traceroute data gathered from 20 hosts distributed across the U.S. and Europe
and also traceroute data gathered by Paxson [53] in 1995.

Internet routes can be highly circuitous [26]. For instance, we observed a route from a host in St.
Louis to one in Indiana (328 km away) that traverses a total distance of over 3500 km (Section 4.1.2).
By tracing the geographic path, we are able to automatically flag such anomalous routes, which
would be difficult to do using purely network-centric information such as delay. We compute the
linearized distancebetween two hosts as the sum of the geographic lengths of the individual links of
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the path. We then compute the ratio of the linearized distance of the path to the geographic distance
between the source and destination hosts, which we term thedistance ratio. A large ratio would be
indicative of a circuitous and possibly anomalous route. In Section 4.1, we study circuitousness of
paths as a function of the geographic and network locations of the end-hosts.

Our results indicate that the presence of multiple ISPs in a path is an important contributor to
circuitous routing. We also find intra-ISP routing to be far less circuitous than inter-ISP routing.
Our study of circuitousness of paths provides some insights into the peering and routing policies of
ISPs. Although circuitousness may not always relate to performance, it can often be indicative of a
routing problem that deserves more careful examination.

There are two extremes to the routing policy that an ISP may employ:hot-potatorouting andcold-
potatorouting. In hot-potato routing, the ISP hands off packets to the next ISP as quickly as possible.
In cold-potato routing, the ISP carries packets on its own network as far as possible before handing
them off to the next ISP. The former policy minimizes the burden on the ISP’s network whereas
the latter gives the ISP greater control over the end-to-end quality of service experienced by the
packets. As we discuss in Section 4.2.4, geographic information provides a means to quantify these
notions by using the geographic distance traversed within an ISP as a proxy for the amount of
work performed by the ISP. In addition, we can also evaluate the degree to which an individual ISP
contributes in the routing of packets end-to-end. Our analysis of properties of paths that traverse
multiple ISPs is presented in Section 4.2.

1.1.3 Geographic Fault Tolerance

Another aspect of routing that bears careful examination is its fault tolerance. Fault tolerance has
generally been studied in the context of node or link failures based on network-level topology infor-
mation. However, such topology information may be incomplete in that two seemingly independent
nodes may actually be susceptible to correlated failures. For instance, a catastrophic event such as an
earthquake or a major power outage might knock out all of an ISP’s routers in a geographic region.
Geographic information can help in identifying routers that are co-located. In order to analyze the
impact of correlated failures, we consider ISP topologies at the geographic level, where each node
represents a geographic region such as a city. Using the geographic topology information of several
commercial ISPs gathered from CAIDA [49], we analyze the fault tolerance properties of individual
topologies and the topology resulting from the combination of the individual ISP networks [32]. We
find that many tier-1 ISPs have highly skewed degree distributions which may make them highly
susceptible to single geographic node failures. The combined topology of these ISPs however seems
to exhibit better tolerance to such failures.

1.1.4 Summary

In summary, we believe geography is an interesting means for analyzing and quantifying network
properties. We believe that a significant contribution of ourIP2Geowork is a systematic study
of a broad spectrum of techniques and a discussion of the fundamental challenges in determining
location based just on the IP address of a host. Our analysis of geographic fault tolerance of rout-
ing provides additional evidence for existing intuition about certain properties of Internet routing
(e.g., hot-potato routing, circuitous paths). An important contribution of this work is a methodol-
ogy for quantifying such intuitions using geographic information. Such quantification enables us,
for instance, to automatically flag circuitous paths, something that would be hard to using purely
network-centric metrics (and no geographic information). Finally, our analysis of the topological
structure of ISPs reveal that certain tier-1 ISPs may have very low tolerance to even single node
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failures.

1.2 Current State of the Art

In this section, we will describe related work to different aspects of our work. We classify related
work into three categories: (a) Location mapping services (b) Internet routing (c) Topology discov-
ery and mapping.

1.2.1 Location Mapping

There has been been much work on the problem of locating hosts in wireless environments. The
most well-known among these is the Global Positioning System (GPS) [9]. However, GPS is in-
effective indoors. There have been several systems targeted specifically at indoor environments,
including Active Badge [15], Bat [16], and RADAR [2]. As we discuss later, our GeoPing tech-
nique uses a variant of one of the algorithms we had developed for RADAR. However, in general
these techniques are specific to wireless networks and do not readily extend to the Internet.

In the Internet context, an approach that has been used to determine location is to seek the user’s
input (e.g., by requiring the user to register with and/or log in to the site, by storing the user’s
credentials in client-based cookies, etc.). However, such approaches are likely to be (a) burdensome
on the user, (b) ineffective if the user uses a client other that the one where the cookie is stored, and
(c) prone to errors due to (possibly deliberate) inaccuracies in the location information provided
by anindividual user. (In Section 3.4, we discuss how GeoCluster deals with such inaccuracies by
aggregating information derived from individual users.)

An alternative approach is to build a service that maps an IP address to the corresponding geographic
location [28]. There are several ways of doing this:

1. Incorporating location information (e.g., latitude and longitude) in Domain Name System
(DNS) records.

2. Using theWhois[14] database to determine the location of the organization to which an IP
address was assigned.

3. Using thetraceroute[17] tool and mapping the router names in the path to geographic loca-
tions.

4. Doing an exhaustive tabulation IP address ranges and their corresponding locations.

The DNS-based approach was proposed in RFC 1876 [33]. This work defines the format of a new
Resource Record (RR) for the DNS, and reserves a corresponding DNS type mnemonic (LOC)
and numerical code (29). The DNS-based approach faces deployment hurdles since it requires a
modification of the record structure of the DNS records. This also burdens administrators with the
task of entering the LOC records. Moreover, there is no easy way of verifying the accuracy of the
location entered.

An approach used widely in many tools is to query Whois servers [14]. Tools such as IP2LL [44]
and NetGeo [22] use the location information recorded in the Whois database to infer the geographic
location of a host.

There are several problems with Whois-based approaches. First, the information recorded in the
Whois database may be inaccurate or stale. Also, there may be inconsistencies between multiple
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servers that contain records corresponding to an IP address block. Second, a large (and geograph-
ically dispersed) block of IP addresses may be allocated to a single entity and the Whois database
may contain just a single entry for the entire block. For example, the 4.0.0.0/8 IP address block is
allocated to BBN Planet (now known as Genuity) and a query to ARIN Whois database returns the
location as Cambridge, MA for any IP address within this range.

An alternative approach is based on the traceroute tool. The basic idea here is to perform a traceroute
from a source to the target IP address and infer location information from the DNS names of routers
along the path. A router name may not always contain location information. Even when it does, it is
often challenging to identify the location information since there is no standard naming convention
that is used by all ISPs. We discuss these issues in more detail when we present GeoTrack in Section
3.2. Examples of location mapping tools based on traceroute include VisualRoute [58], Neotrace
[52], and GTrace [27].

Finally, there are location mapping services, such as EdgeScape from Akamai [34] and TraceWare
from Digital Island [38]. Given the extensive relationship that these large content distribution net-
works enjoy with several ISPs, it is conceivable that these location mapping services are based on an
exhaustive tabulation of IP address ranges and the corresponding location. However, the algorithms
employed by EdgeScape and TraceWare are proprietary, so it is difficult for us to compare them to
our research effort.

1.2.2 Internet routing

There are several properties of Internet routing that are of interest: end-to-end performance, routing
stability, routing convergence, etc. Previous work on Internet routing has focused either on mea-
suring these properties or on modifying certain aspects of routing with a view to improving perfor-
mance. Our work shows how geographic information can be used to measure and quantify certain
routing properties such as circuitous routing, hot-potato routing and geographic fault tolerance.

Network path information, obtained using thetraceroutetool [17], has been used widely to study the
dynamics of Internet routing. For instance, Paxson [26] studied various aspects of Internet routing
using an extensive set of traceroute data. They include: routing pathologies, stability of routing,
and routing asymmetry. In relation to our work, he studies circuitous routing by determining the
geographic locations of the routers in his dataset and uses geographic distance as a metric to quantify
it. In addition, he uses the number of different geographic locations along a path to analyze the
effect of hot-potato routing as a potential cause for routing asymmetry. We extend this work by
studying circuitousness as a function of the geographic and network location of end-hosts. We also
analyze the effects of multiple ISPs in a path on its circuitousness. The distance ratio metric that we
define can be used to automatically flag anomalies such as the large-scale route fluttering identified
in [19, 26].

Overlay routing has been proposed as a means to circumvent the default IP routing. Savage et al. [31]
study the effects of the routing protocol and its policies on the end-to-end performance as seen by
the end-hosts. They show that for a large number of paths in the Internet, there exist paths that ex-
hibit significantly better performance in terms of latency and packet loss rate. Recently, Andersen
et al. [1] have proposed specific mechanisms for finding alternate paths with better performance
characteristics using an overlay network. By actively monitoring the quality of different paths, their
alternate path selection mechanism can quickly recover from network failures and optimize appli-
cation specific performance metrics.

Consistent with these findings, our measurements indicate the existence of highly circuitous paths in
the Internet. We also find that the circuitousness of a path is correlated with the minimum end-to-end
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latency along the path.

1.2.3 Topology discovery and mapping

Discovering and analyzing Internet structure has been the subject of many studies. Much of the
work has focused on studying topology purely at the network level, without any regard to geography.
Recently several tools have been developed to map network nodes to their corresponding geographic
locations. A few Internet mapping projects have used such tools to incorporate some notion of
geographic location in their maps.

The Mercator project [12] focuses on heuristics for Internet Map Discovery. The basic approach is
to use traceroute-like TTL limited probe packets coupled with source routing to discover routers. A
key component of Mercator is the set of heuristics used to resolvealiases, i.e., multiple IP addresses
corresponding to (possibly different interfaces on) a single router. The basic idea is to send a UDP
packet to a non-existent port on a router and wait for the ICMPport unreachableresponse that it
elicits. In general, the destination IP address of the UDP packet and the source IP address of the
ICMP response may not match, indicating that the two addresses correspond to different interfaces
on the same router. In our work we use geographic information to identify points of sharing in the
network. We view this as complementary to network-level heuristics such as the ones employed in
Mercator.

The Internet Mapping Project [5] at Bell Labs also uses a traceroute-based approach to map the
Internet from a single source. The map is colored according to the octets of the IP address, so
portions corresponding to the same ISP tend to be colored similarly. The map, however, is not laid
out according to geography. Other efforts have produced topological maps that reflect the geography
of the Internet. Examples include the MapNet [49] and Skitter [55] projects at CAIDA and the
commercial Matrix.Net service [50].

1.3 Organization of the Report

In Chapter 2, we will present our experimental methodology used in our studies. We will describe
our measurement testbed and the the datasets that we used for studying specific geographic prop-
erties. In Chapter 3, we will detail our list of IP-Geography mapping techniques and analyze the
characteristics of each one of them. Using GeoTrack (one of the IP-Geography Mapping tools), we
extract the geographic paths of Internet routes and analyze specific properties of Internet routing
like hot-potato routing. We present our results in Chapter 4. Our analysis of geographic fault toler-
ance properties of ISP topologies is presented in Chapter 5. Finally, we present our conclusions in
Chapter 6.
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Chapter 2

Experimental Setup and methodology

In this chapter, we discuss our experimental setup and methodology. We present the details of our
measurement test bed and the data sets we gathered for our studies on IP-location mapping and
geographic properties of Internet routing. We will useGeoRouteto refer to our study on geographic
properties of routing while we refer to our collection of location-mapping techniques asIP2Geo.

2.1 Measurement testbed

1 UW & Microsoft

2 UC Berkeley

3 Stanford Univ.

4 UCSD

5 U. Wisconsin

6 UIUC

7 WUSTL

8 UT Dallas

9 UT Austin

10 Boston Univ.

11 Brooklyn Poly.

12 Rutgers Univ.
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13 Johns Hopkins Univ.

14 Duke Univ.

15 UNC

12

Figure 2.1: Locations of our probe machines in the U.S. Note that there were 17 hosts in 15
locations (two hosts each in Seattle and Berkeley).

The measurement testbed is mostly common for both theIP2GeoandGeoRoutestudies. We used
20 geographically distributed hosts as the sources for our traceroutes. 17 of these hosts were located
in the U.S. (Figure 2.1) while 3 were located in Europe (at Stockholm (Sweden), Bologna (Italy),
and Budapest (Hungary)). The geographical diversity in source locations enables us to study the
variations in routing properties as seen from different vantage points. For logistical reasons, it was
convenient for us to locate the traceroute sources on university campuses. 18 out of the 20 traceroute
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sources fell into this category. Furthermore, 9 of the 15 university locations we considered in the
U.S. were connected by the Internet2 backbone [42]. To add some diversity, we had one source in
Berkeley, CA connected to a home cable modem network (in addition to a host at the University of
California at Berkeley) and another in Seattle, WA connected to the Microsoft Research network (in
addition to a host at the University of Washington at Seattle). These two pairs of sources allow us
to study what impact, if any, the nature of the source’s connectivity has on Internet routing.

Our analysis of different techniques in IP2Geo was restricted to the U.S. The main reason for this
restriction is that, as of the time of this writing, the bulk of the data sets and probe machines that
we have pertain to or are located in the U.S. While there may be limitations to studying a single
country, the U.S. still offers a large and varied testbed for our research. We use14 of these probe
sources in different geographic locations to investigate some of the techniques in IP2Geo. These
probe machines were used to make delay measurements for GeoPing and to initiate traceroutes for
GeoTrack. In GeoRoute, we use these probe machines to initiate traceroutes to a large variety of
destination end-hosts as we discuss next in Section 2.2.1.

2.2 GeoRoute:Methodology

Since the goal of our work is to study the geographic properties of Internet routing, much of our
measurement work has focused on gathering network path data using the traceroute tool [17]. We
are not interested in studying the dynamic properties of Internet routing (e.g., how routes change
over time), so we only record a single snapshot of the network path between a given pair of hosts.
It may possible that some of the routes in our dataset are backup paths due to failures at the time
of our measurement. However, we do not expect the aggregate statistics reported in this paper to
be affected by such failures since our measurements were spread over a2−month time period.
We use traceroute to determine the network path between 20 traceroute sources and thousands of
geographically distributed destination hosts.

Once we have gathered the traceroute data, we use the GeoTrack tool to determine the location of
the nodes along each network path where possible. GeoTrack reports the location at the granularity
of a city. We will discuss GeoTrack in more detail in Section 3.2. We then use an on-line latitude-
longitude server [40] to compute the geographic distance between the source and destination of a
traceroute as well as between each pair of adjacent routers along the path. The latter enables us to
compute thelinearized distance, which we define as the sum of the geographic distances between
successive pairs of routers along the path. So if the path between A and D passes through B and C,
then the linearized distance of the path from A to D is the sum of the geographic distances between
A & B, B & C, and C & D.

As we discuss in Section 3.2.2, we are typically able to determine the location of most but not all
routers. We simply skip the routers whose locations we are unable to determine. So in the above
example, if the location of C is unknown, then we compute the linearized distance of the path from
A to D as the sum of the geographic distances between A & B and B & D. Clearly, skipping over
C would lead us to underestimate the linearized distance. However, as noted in Section 3.2.2, most
of the skipped nodes are in the vicinity of the either the source or the destination, so the error
introduced in the linearized distance computation is small.

For studying properties of Internet routing, it is necessary to a large dataset of Internet routes to
draw any reasonable conclusion. Also, one requires diversity in the set of destination end-hosts. For
GeoRoute, we initiate traceroutes from the20 geographically diverse hosts, to a set of destination
hosts.
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2.2.1 Destination End-hosts

We carefully chose the set of destination hosts to account for both network diversity and geographic
diversity. The destination set for the traceroutes comprised several thousand hosts. These destina-
tions hosts fell into 4 categories:

1. UnivHosts:265 Web servers and other hosts located on university campuses in the U.S. The
hosts were distributed across 44 of the 51 states in the U.S.

2. LibWeb:1,205 Web servers of public libraries [46] distributed across 49 states in the U.S. We
also ensured that the distribution of the geographic locations of these libraries is not skewed.

3. TVHosts:3,100 client hosts in the U.S. that connected to an on-line TV program guide. A
majority of these clients were located on non-academic networks such as America Online
(AOL).

4. EuroWeb:1,092 Web servers [48] distributed across 25 countries in Europe.

For ease of exposition, we sometimes refer to UnivHosts, LibWeb, and TVHosts as the U.S. hosts
and EuroWeb as the European hosts.

This diverse set of destination hosts enables us to investigate the properties of Internet routing in the
context of a large set of ISPs. In all, we traced approximately 84,000 end-to-end paths between our
traceroute sources and the destination hosts during October-December 2000. Our data is available
on-line at [54].

2.3 IP2Geo :Methodology

IP2Geo comprises of 3 techniques: GeoTrack, GeoPing and GeoCluster. As we explain later in
Section 3.3, GeoPing is primed using a database of delay measurements from the probe machines
to several target machines at known locations. To obtain such a database, we used the UnivHosts
as the set of end hosts. The selection of university servers as target hosts offered the advantage that
we were quite certain of their actual geographic location. The UnivHosts data set is also used to
evaluate the performance of GeoTrack and GeoCluster. Other than this, GeoCluster also needs BGP
data and partial location mapping information to determine the geographic location of an IP address.
We will briefly describe these data sets below.

2.3.1 BGP Data

BGP routing information was derived from dumps taken at two routers at BBN Planet [36] and
MERIT [51]. Since GeoCluster only requires theaddress prefix (AP)information, we constructed a
superset containing address prefix information derived from both sources. In all there were 100,666
APs in our list.

2.3.2 Partial Location Mapping Information

We obtained partial IP-to-location mapping information from three sources. The data sets we ob-
tained were partial in the sense that they only covered a small fraction of IP address space in use.
Note that in no case did we have access to user IDs or other user-specific information. Our data sets
only contained IP address and location information. So our work did not compromise user privacy
in any way.
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1. Hotmail: Hotmail [41] is a popular Web-based email service with several million active users.
Of the over 1 million (anonymous) users for whom we obtained information, 417721 users
had registered their location as being in the U.S. We restrict our analysis to this subset of
users. The location information we obtained from the users’ registration records was at the
granularity of U.S. states. In addition, we obtained a log of the client IP addresses correspond-
ing to the 10 most recent user logins (primarily in the first half of 2000). We combined the
login and registration information to obtain a partial IP-to-location mapping.

2. bCentral: bCentral [37] is a business Web hosting site. Location information at the granu-
larity of zip codes was derived from HTTP cookies. In all we obtained location information
corresponding to 181246 unique IP addresses seen during (part of) a day in October 2000.

3. FooTV: FooTV is an on-line TV program guide where people look up program listings for
specific zip codes. (We do not reveal the name of the site here due to anonymity requirements.)
From traces gathered over a two-day period in February 2000, we obtained a list of 142807
unique client IP addresses and 336181 (IP,zip) pairs corresponding to the client IP address
and the zip code that the user specified in his/her query. A subset of the IP addresses had
more than one corresponding zip code, which were usually clustered together geographically.

In the case of bCentral and FooTV, we mapped the zip code information to the corresponding
(approximate) latitude and longitude using information from the U.S. Census Bureau [56]. In the
case of Hotmail, we computed thezipcenterof each state by averaging the coordinates of the zip
codes contained within that state.

The partial IP-to-location mapping obtained from these sources may contain inaccuracies. For in-
stance, in the case of Hotmail and bCentral users may have registered incorrect location information
or may connect from locations other than the one they registered. In the case of FooTV, users may
enquire about TV programs in areas far removed from their current location, although we believe
this is unlikely. Regardless, we explain in Section 3.4 how GeoCluster is robust to such inaccuracies
in location information.
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Chapter 3

IP-Geography Mapping Techniques

In this chapter, we will present different techniques collectively referred to asIP2Geo, for determin-
ing the geographic location of Internet hosts. Such a service would enable a large and interesting
class of location-aware applications. This is a challenging problem because an IP address does not
inherently contain an indication of location.

We present and evaluate three distinct techniques in IP2Geo. The first technique,GeoTrack, infers
location based on the DNS names of the target host or other nearby network nodes. The second
technique,GeoPing, uses network delay measurements from geographically distributed locations to
deduce the coordinates of the target host. The third technique,GeoCluster, combines partial (and
possibly inaccurate) host-to-location mapping information and BGP prefix information to infer the
location of the target host. Using extensive and varied data sets, we evaluate the performance of
these techniques and identify fundamental challenges in deducing geographic location from the IP
address of an Internet host.

3.1 Fundamental Limitation due to Proxies

Before we describe our techniques, we will illustrate a fundamental limitation imposed by proxies
in solving the IP-location mapping problem. Many Web clients are behind proxies or firewalls.
So the client IP address seen by the external network may actually correspond to a proxy, which
may be problematic for location mapping. In some cases the client and the proxy may be in close
proximity (e.g., a caching proxy on a university campus). However, in other cases they may be far
apart. An example of the latter is the AOL network [35], which has a centralized cluster of proxies
at one location (Virginia) for serving client hosts located all across the U.S. Figure 3.1 shows the
cumulative distribution function (CDF) of the distance between the AOL proxies and clients. (The
likely location of clients was inferred from the data sets described in Section 2.3.2.) We observe that
a significant fraction of the clients are located several hundred to a few thousand kilometers from
the proxies.

Proxies impose a fundamental limitation on all location mapping techniques that depend on client IP
address. This includes techniques based on Whois, traceroute (e.g., GeoTrack), and network delay
measurements (e.g., GeoPing). Not only are these schemes unable to determine the true location
of a client, they are also oblivious to the error (i.e., these schemes would incorrectly return the
location of the proxy without realizing the error). Our GeoCluster technique is an exception in that
it is often able to automatically tell when its location estimate is likely to be erroneous. So rather
than incorrectly deducing the location of the client based on the IP address of the proxy, GeoCluster
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Figure 3.1: Distribution of distance between AOL proxies and clients.

would refrain from making a location estimate at all. We discuss this issue is more detail in Section
3.4.3.

3.2 The GeoTrack Technique

The GeoTrack technique tries to infer location based on the DNS names of the host of interest or
other nearby network nodes. Network operators often assign geographically meaningful names to
routers1, presumably for administrative convenience. For example, the namecorerouter1.SanFran-
cisco.cw.netcorresponds to a router located in San Francisco. We stress that having geographically
meaningful router names isnot a requirement or a fundamental property of the Internet. Rather it
simply an observation that is generally supported by empirical data.

We define a router to berecognizableif its geographic location can be inferred from its DNS name.
Routers whose IP address cannot be mapped to a DNS name or whose DNS name does not contain
meaningful location information are considered as not being recognizable.

GeoTrack uses these geographic hints to estimate the location of the target host. First, it determines
the network path between a probe machine and the target host using the traceroute tool. Traceroute
reports the DNS names of the intermediate routers where possible. Then GeoTrack extracts location
information from the DNS names of recognizable routers along the path. Thus, it traces thegeo-
graphic pathto the target host. Finally, GeoTrack estimates the location of the target host as that of
the last recognizable router in the path (i.e., the one closest to the target).

As noted in Section 1.2.1, traceroute-based approaches that extract geographic hints from router
names have been proposed before (e.g., GTrace [27], VisualRoute [58]). However, we are not aware
of work in the open literature on a quantitative evaluation of the traceroute-based approach to de-
termining the geographic location of hosts. Our goal is precisely to do such an evaluation. Due to
the logistic difficulties associated with obtaining and running existing traceroute-based tools, we
decided to write our own tool based on GeoTrack to do large-scale experimentation. We have tested

1To be precise, DNS names are associated with routerinterfaces, not routers themselves. However, for ease of expo-
sition we only use the term “router”.
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our tool over a large sample of IP addresses and found that its coverage is comparable to Visual-
Route within the U.S. and in Europe.

3.2.1 Extracting Geographic Information from Router Names

Geographic information is typically embedded in the DNS name of a router in the form of acode,
which is usually an abbreviation for a city, state, or country name. There is no standard naming
convention for these codes. Each ISP tends to use its own naming convention. This makes the task
of extracting location information from DNS names challenging.

Based on empirical data, we have observed that there are basically three types of codes that indicate
location: city codes, airport codes, and country codes. Some ISPs assign DNS names to routers based
on the airport code of the city they are located in. Since airport codes are a worldwide standard, such
a naming convention greatly eases the task of determining the router’s location. For examplesjc2-
cw-oc3.sjc.above.netrefers to a router in San Jose, CA (airport codesjc). However, many ISPs use
non-standard codes for cities. We have noticed that the city of Chicago, IL has at least 12 different
codes associated with it (e.g.,chcg, chcgil, cgcil, chi, chicago). We have also observed that many
routers outside the United States have the country codes embedded in their names. For example,
the router with the nameasd-nr16.nl.kpnqwest.netis located in the Netherlands (country codenl).
The country information can be very useful in (partially) validating the correctness of the location
guessed based on city or airport codes.

We examined several thousand distinct router names encountered in the large set of traceroutes that
we performed from our 14 probe locations. We compiled a list of approximately 2000 airport and
city codes for cities in the U.S. and in Europe. Of the entire set of airport codes [45], our list only
includes a relatively small fraction of codes that are actually used in router names. Since GeoTrack
deduces location by doing a string match of router names against the codes, constructing a list with
as few superfluous codes as possible decreases the chances of an inadvertent match.

To further reduce the chances of an inadvertent match, we divided the list of location codes into
separate pieces corresponding to each major ISP (e.g., AT&T, Sprint, etc.). When trying to infer
location from a router name associated with a particular ISP, GeoTrack only considers the codes in
the corresponding subset.

There is the question of how router names are matched against the location codes. Simply trying
to do a string match without regard to position of the matching substring may be inappropriate.
For example, the codecharlotte, which corresponds to Charlotte, NC in the eastern U.S., would
incorrectly match against the namecharlotte.ucsd.edu, which corresponds to a host in San Diego,
CA in the western U.S. Through empirical observation, we have defined ISP-specific parsing rules
that specify the position at which the location code, if any, must appear in router names associated
with a particular ISP. We split the router name into multiple pieces separated by dots. The ISP-
specific parsing rules specify which piece(s) should be considered when looking for a match. For
example, the rule for Sprintlink specifies that the location code, if present, will only be in the first
piece from the left (e.g.,sl-bb10-sea-9-0.sprintlink.netcontaining the codeseafor Seattle). The rule
for AlterNet (UUNET) specifies that the code, if present, will only appear in the third piece from
the right (e.g.,192.atm4-0.sr1.atl5.alter.netcontaining the codeatl for Atlanta).

3.2.2 Coverage of GeoTrack

Of the 11,296.netrouter names in our traceroute data set, 7,842 were recognizable (approximately
70%). We compiled a list of 13 major ISPs with nationwide backbones in the U.S. or with inter-
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national coverage: Sprintlink, AT&T, Cable and Wireless, Internet2, Verio, BBNPlanet2, Qwest,
Level3, Exodus, PSINet, UUNET/Alter.net, VBNS, and Global Crossing. We found that 5,966 of
the 6,859 router names for these major ISPs were recognizable (87%). In some individual cases,
such as AT&T and UUNET, the recognizability was in excess of 95%.
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Figure 3.2: The recognizability of router names as a function of the position of the router in
the end-to-end path. The position is quantified by dividing the number of hops leading up to
the router by the total number of hops end-to-end.

By manual inspection, we found that a large chunk of the router names which are unrecognizable by
our tool have no meaningful codes to decipher their locations. Many unrecognizable router names
tend to be concentrated in regional or campus networks. (For example,cmu.psc.netis a node in
Pittsburgh, PA. However, since it does not contain a valid city or airport code, GeoTrack is unable
to recognize its location.3) Figure 3.2 shows that recognizability is lowest close to the start and the
end of the path. (The peak corresponding to the very beginning of the path is due to the source
location always being known.) Thus most of the unrecognizable nodes are typically located in the
vicinity of the source or the destination, so the resulting error in linearized distance is minimal.

In the case of the 1995 data set, GeoTrack is able to recognize 1,289 out of 1,531 router names
(approximately 84%). Interestingly, we noticed a huge difference in the naming convention used in
1995 and 2000. Hence we needed to create a new set of codes for the 1995 data set.

3.2.3 Performance Evaluation

We compare the performance of GeoTrack and a Whois-based tool, NetGeo [22], both for university
hosts drawn from the UnivHosts data set and for a more diverse set of hosts drawn from the FooTV
data set. The latter consists of a random sample of 2380 client IP addresses drawn from the FooTV
data set. While many of the FooTV clients connected via proxies, none of the university hosts was

2BBNPlanet is now called Genuity, but the router names are still in thebbnplanet.netdomain.
3Of course, it is possible to includepscandcmuas codes. However, we refrain from doing so since we only want

to include those codes in GeoTrack that inherently indicate location. Doing otherwise would lead us down the path of
exhaustive tabulation, which is undesirable.

18



behind a proxy. For this experiment, we used the probe machine at UNC in Raleigh, NC as the
source of all traceroutes.

We quantify the accuracy of a location estimate using theerror distance, which we define as the
geographic distance between the actual location of the destination host and the estimated location.
In the case of FooTV, the “actual” location corresponds to the zip code recorded in the FooTV
data set which, as noted in Section 2.3.2, may not be entirely accurate. Also, an IP address may be
associated with multiple locations, either because it was allocated dynamically (say using DHCP
[8]) or because it belonged to a proxy host (such as a Web proxy or a firewall). GeoTrack, on the
other hand, would only make a single location estimate for a particular IP address. In our evaluation,
we compute separate error distances corresponding to the many “actual” locations associated with
an IP address.
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Figure 3.3: CDF of the error distance for GeoTrack and NetGeo.

Figure 3.3 shows the CDF of error distance for both GeoTrack and NetGeo. It is very interesting to
note the similarity between the “NetGeo-FooTV” and “GeoTrack-FooTV” curves beyond the 70th
percentile mark, and the distribution of distance of AOL clients from their proxies in Figure 3.1.
GeoTrack determines the location of the AOL proxies as Washington, DC while NetGeo returns
the location as Sterling, VA. The similarity in the curves can be attributed to the fact that these
two locations are only about 35 km apart. (Moreover, AOL’s proxies are also located in the same
vicinity.)

We also observe that the performance of GeoTrack is only slightly better than that of NetGeo.
GeoTrack exhibits a median error distance of 590 km and NetGeo a median of 650 km. Since many
of the FooTV clients are behind proxies, neither Geotrack nor NetGeo is able to estimate the client’s
location accurately.

It is interesting to note that there is a significant difference in the performance of GeoTrack for the
well-connected UnivHosts hosts as compared to that for FooTV clients. For instance, the median
error distance is 102 km for the former while is is 590 km for the latter. The reason for this difference
is that (a) none of the hosts in UnivHosts is behind a proxy, and (b) these hosts are well connected
in the sense that a traceroute to them generally completes and yields a last recognizable router that
tends to be close to the target host.
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3.3 The GeoPing Technique

The GeoPing technique seeks to determine the geographic location of an Internet host by exploiting
the relationship between network delay and geographic distance. GeoPing measures the delay to
the target host from multiple sources (e.g., probe machines) at known locations and combines these
delay measurements to estimate the coordinates of the target host.

3.3.1 Correlation between Network Delay and Geographic Distance

Conventional wisdom in the networking community has suggested that there is poor correlation
between network delay and geographic distance [3]. This has largely been attributed to the presence
of circuitous geographic paths in the Internet and bottlenecks links that cause congestion (and hence
delay). However, in recent years, the Internet has grown at a very rapid pace, in terms of bandwidth
as well as coverage (witness the rapid growth in the number and capacity of high-speed links, ISP
points of presence, etc.). The richer connectivity (at least in well-connected portions of the Internet
such as in the U.S.) often implies less circuitous routes.

To quantify impact of richer connectivity, we traced the network paths from several known locations
to hosts in the UnivHosts data set. For each pair of hosts, we defined thelinearized distanceas the
sum of the lengths of the individual hops along the path between the hosts. (We used GeoTrack to
determine the geographic location of the intermediate nodes. We skipped over nodes whose loca-
tions could not be determined, so in general we might underestimate the linearized distance.) We
compute the ratio of the linearized distance to the geographic distance between the hosts. The closer
the ratio is to 1, the more “direct” (i.e., less circuitous) the network path is. Figure 3.4 shows the
cumulative distribution of this ratio for paths originating from 3 different locations. The main obser-
vation we make here is that the ratio of linearized distance to geographic distance is close to 1 in the
vast majority of cases. This implies that the corresponding network paths are not very circuitous.
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Figure 3.4: CDF of the ratio of linearized distance to geographic distance for Internet paths origi-
nating from three locations.

Congestion in the network may lead to significant queuing delays, which would also disrupt the
relationship between network delay and geographic distance. To alleviate this problem, we gather
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several samples for the delay between two hosts and then pick the minimum among them. (This
approach has been used in several networking protocols before, e.g., TCP Vegas [4].) While not
perfect, picking the minimum enables us to eliminate much of the effect of congestion. Our experi-
ments suggest that the minimum delay stabilizes once we have at least 10-15 delay samples.

The above approach would fail in the presence of special links (e.g., dialup, satellite, etc.) that have
an inherent large delay that doesnot necessarily correlate with geographic distance. We discuss
possible approaches to solving this problem in Section 3.3.3.

In the following sub-sections, we present delay measurements that support our contention that there
is significant correlation between (the minimum) network delay and geographic distance. Although
the correlation is not perfect, we are still able to exploit it to determine location at a coarse granu-
larity. We present a robust algorithm for this in Section 3.3.2. We present experimental results that
quantify the accuracy of this algorithm and also indicate the fundamental limitations of a delay-
based approach.

Experimental Setting

We use the UnivHosts data set for performing our measurements. We perform traceroutes and ping
measurements from 14 different sources (All sources shown in Figure 2.1 except Seattle, WA) to all
the 265 university servers in UnivHosts. After identifying the path from a given source to a host, we
determine theround-trip delay to all intermediate routers using ping measurements. From multiple
delay samples, we compute the minimum RTT to the destination and to each intermediate router
in the path. We use GeoTrack to determine the physical location of intermediate routers. Using the
data gathered for each source, we construct a large data set of [minimum delay, geographic distance]
pairs corresponding to the paths from that source to the hosts in UnivHosts (and the intermediate
routers).

CDF of Distance given Network Delay

We investigate whether there is a model that would enable estimation of geographic distance based
on knowledge of network delay. For this purpose, we divide the delay range into several 10 ms wide
bins and compute the CDF of geographic distance within each bin. (We decided to have a separate
bin for the 0-5 ms delay range because we observed empirically that 5 ms often defines the threshold
for a “metropolitan area”. For instance, we found that more than90% of the nodes within an RTT
of 5 ms are located within a range of 50 km from the source.) So the delay bins we used to classify
our measurements were: 0-5 ms, 5-15 ms, 15-25 ms,. . ., 125-135 ms.

Figure 3.5 shows the CDF of geographic distance for our source host located in Seattle. Many of the
delay bins exhibit distinct “cliffs” (i.e., sharp upswings) in the cumulative probability distribution
for specific distance values. For example, the cliff around 1300 km for the 25-35 ms delay bin is
mainly contributed by locations in the San Francisco Bay Area. The other noticeable trend is that
as the delay increases from 0 to 80 ms, the cliff in the CDF shifts to the right. We observed similar
trends for the probes at other locations as well.

While there is a definite trend in the cliffs of the CDF for each delay range, our results suggest
that the relationship between delay and distance is not strong enough to be captured in a precise
mathematical model. For small delay values (under 10 ms), we found that most of the hosts (over
90%) are within a radius of 300 km from the source. However for delay values more than 40 ms, we
observed an error of at least 300-400 km to obtain a 70% confidence in the distance estimate. We
validated this for the data sets obtained from each of the 14 probe locations.
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Figure 3.5: Cumulative Distribution of geographic distance for multiple delay ranges based on data
gathered at the Seattle, WA probe location.

We also investigated how the relationship between delay and distance varies when we consider
hosts belonging to distinct organizations located in the same geographic area. For this purpose, we
considered probes located at Duke University and the University of North Carolina (UNC) located
in the same metropolitan area on the U.S. east coast, and similarly Berkeley and Stanford on the
west coast. We compared the CDFs corresponding to various delay ranges for each of these probe
locations. The cliffs of the CDFs for Duke and UNC matched each other, and likewise for Berkeley
and Stanford. This suggests that the cliffs of the CDFs are largely a function of the geographic
location of a probe rather than the specific probe itself.

One limitation of our measurements is that most of our probe machines were located at university
sites, many of which were connected to the high-speed Internet2 backbone [42]. The delay-distance
relationship for nearby locations might not match quite as well if the probes were located at more
heterogeneous sites with differing ISP connectivity. However, as we discuss next, our methodology
for determining location is robust to such differences since we do not attempt to map directly from
delay measurements to distance estimates.

3.3.2 Nearest Neighbor in Delay Space (NNDS)

We now discuss how GeoPing exploits the relationship between delay and distance to determine the
geographic location of a host. Since we are unable to construct a precise and compact mathematical
model that captures the relationship, we use an empirical approach, which we termnearest neigh-
bor in delay space (NNDS). NNDS is patterned after the nearest neighbor in signal space (NNSS)
algorithm we had developed in the RADAR [2], a system to locate hosts in wireless LANs.

NNDS is motivated by the observation that hosts with similar network delays with respect to other
fixed hosts tend to be located near each other. So the first step is to construct adelay mapthat
records the relationship between delay and location. Each entry of the delay map contains: (a) the
coordinates of a host at a known location, and (b) a delay vector,DV = (d1, . . . , dN ), containing
the measured (minimum) delay to the host fromN probes at known locations. The delay map
constitutes thetraining data and is constructed offline. Given a new target host,T , whose location
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is to be determined, we first measure the network delay to it from theN probes. We then construct
a delay vector forT asDV ′ = (d′1, . . . , d

′
N ). Finally, we search through the delay map to find a

delay vector,DV , that matchesDV ′ the best. To find the best match, we consider the delay vectors
in the delay map as forming anN -dimensionaldelay spaceand find the “nearest” neighbor ofDV ′

in this space. We use Eucledian distance as the measure of distance in delay space — the Eucledian
distance betweenDV andDV ′ is

√
(d1 − d′1)2 + . . . + (dN − d′N )2. Once the nearest neighbor in

delay space has been found, the corresponding location recorded in the delay map is then GeoPing’s
estimate of the location of the target hostT .

Several aspects of NNDS contribute to its robustness: (a) delay is measured from multiple dis-
tributed locations rather than a single location, (b) the minimum among several delay samples is
considered rather than the individual delay samples, and (c) the delays measurements are used as a
“signature” of a geographic location rather than being directly translated into distances and location
coordinates.

Typically, the delay vectors corresponding to geographically proximate locations are clustered to-
gether in delay space. However, this is not essential for NNDS to be effective. Sites located in the
same city but connected via different ISPs may form more than one distinct cluster in delay space.
However, as long as the number of clusters remains small, NNDS will still be effective.

We now turn to evaluating the performance of GeoPing employing NNDS.

Experimental Results

We use the delay measurements from the 14 probe machines to the 265 hosts in UnivHosts to popu-
late the delay map. We also use the hosts in UnivHosts as the target hosts for performance evaluation.
Given a target host,T , in UnivHosts whose location we are trying to determine, we exclude all data
points corresponding toT in the delay map before applying the NNDS algorithm. We study the
impact of the number and distribution of probe machines on the accuracy of the location estimate.
For a given number of probes (sayn), we compute the mean error distance as the average over all
the error distances corresponding to several geographically distributed placements ofn probe loca-
tions chosen from the set of 14 possible locations. For example, for 2 probes, we average the error
distance over different placements of 2 probes in geographically dispersed locations among the 14
possible locations. Due to the large number of possible combinations for certain values ofn (such
asn = 7), we do not necessarily consider all possible choices ofn probes out of the set of 14.

Figure 3.6 shows several percentile levels of the error distance as a function of the number of probes.
For example, the 75th percentile curve corresponds to the distance at which the CDF plot of mean
error distance crosses the 0.75 probability mark. From Figure 3.6, we infer that the error distance
initially decreases sharply as the number of probes increases, then stabilizes and reaches an optimal
value between 7 and 9 probe locations, and finally increases slightly for higher values. This suggests
that having 7 to 9 probes would be ideal for the NNDS algorithm. It is also encouraging to note that
NNDS with 7 probes has an error distance of only about 150 km at its 25th percentile. Our results
suggest that network delay can indeed be used to determine geographic location, albeit at a coarse
granularity. We expect NNDS to perform even better with a delay map constructed using a more
extensive training data set and plan to investigate this is future research.

We have also investigated the impact of various probe placement strategies on the accuracy of lo-
cation estimation. We have examined the effects of probe placement on the error distribution. Our
findings indicate that a geographically well-distributed set of probes yields better accuracy than a
clustered set of probes. For instance, the median error distance with a probe each at Stanford and
Illinois was about 19% lower (i.e., better) than a probe each at Berkeley and San Diego (both of
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Figure 3.6: Error distance versus number of probes.

which are on the U.S. west coast). However, we found that the placement of probes has a smaller
impact on performance than the number of probes.

3.3.3 Miscellaneous Issues

Finally, we discuss a few miscellaneous issues pertaining to GeoPing and NNDS.

Other Statistical Methodologies

Besides the NNDS approach, we have also investigated other statistical techniques for estimating
location from delay measurements. In particular, we tried constructing an approximate model that
captures the relationship between delay and distance by generating a probability density function
for every source based on a large set of measurements. However, none of the alternative techniques
was able to match NNDS in terms of accuracy.

Impact of Congestion and ICMP Traffic

As mentioned earlier, network congestion can introduce significant noise in the delay measurements,
thereby degrading the accuracy of GeoPing (and other delay-based approaches). Our experiments
suggest that 10-15 delay samples are generally (but not always) sufficient to determine the mini-
mum delay with high confidence (i.e., the minimum delay generally did not get any lower beyond
the first 10-15 samples). However, sending or receiving several ICMP packets (for ping) to the target
host from each probe location may be undesirable, both because it may aggravate congestion and
because it may raise a flag with intrusion detection systems. We discuss a way of alleviating this
problem in Section 3.4.5.

The Last Mile

In our evaluation of GeoPing we have only considered hosts in the UnivHosts data set. These are
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typically well-connected hosts on university campuses. The correlation between delay and distance
may break down when we consider hosts with a “last-mile” link that has a large delay (for example,
a dialup link or a satellite link). While this is clearly problematic for GeoPing, we may be able to
work around it in certain situations. For instance, if we are able to tell that the user is on a dialup
line (say based on the observed bandwidth to the user or traceroute measurements), we could use
GeoPing to determine the location of the last router (typically located at the dialup ISP’s point-of-
presence) along the path to the target host. This location may serve as a good approximation for the
location of the target host since users tend to dial in to modem banks in their local area.

3.4 The GeoCluster Technique

The GeoCluster technique is different from GeoTrack and GeoPing in that it does not depend on ac-
tive network measurements. Instead it uses knowledge of network routing information and location
information for a few hosts to build a location map for a large subset of the IP address space.

GeoCluster operates as follows. First, the IP address space is broken up into clusters such that
all hosts with IP addresses within a cluster are likely to be co-located4, i.e., the addresses form
a geographic cluster. Then, knowing the location corresponding to a few hosts in a cluster (and
assuming the locations are largely in agreement), GeoCluster deduces the location of the entire
cluster.

The key to the operation of GeoCluster is IP-to-location mapping information obtained from sources
such as the ones mentioned in Section 2.3.2. (We discuss the general problem of obtaining such
data in Section 3.4.5.) However, this mapping information tends to bepartial in coverage (since it
includes location information only for a relatively small subset of the IP address space) and possibly
inaccurate. These problems limit the utility of the IP-to-location mapping data.

GeoCluster addresses both of these problems by clustering IP addresses according to their (likely)
location. Clustering helps expand the coverage of the partial IP-to-location mapping information.
The aggregation of location information also enables us to identify and eliminate outliers caused by
inaccuracies in the individual location data points.

As an example, suppose we know that 128.127.126.0/245 forms a geographic cluster. Furthermore
assume that the partial mapping information tells us that the location corresponding to 10 different
IP addresses in this cluster is Seattle while that corresponding to one other IP address is Boston.
Then we can reasonably deduce that the Boston data point is erroneous and that all of the (256)
IP addresses in this cluster (if they are indeed in use) are likely to correspond to hosts in (or near)
Seattle.

3.4.1 Identifying Geographic Clusters

Identifying geographic clusters is a challenging problem. The basic approach used by GeoCluster is
to combine partial IP-to-location mapping information with network routing information. We build
on the work presented in [18] on identifyingtopologicalclusters. Address allocation and routing
in the Internet is hierarchical. Routing information is aggregated across hosts that are under a sin-
gle administrative domain (also known as anautonomous system (AS)). For example, the routes for
hosts on a university campus would typically be advertised to the rest of the Internet as a single ag-
gregate, say as the address prefix 128.127.0.0/16, rather than as 65536 individual IP addresses. Thus

4The granularity of the location depends on the application context.
5The notationa.b.c.d/mdenotes an address slice with a prefix of lengthm bits specified.
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knowledge of theaddress prefixes (APs)used by the routing protocol enables us to identifytopo-
logical clusters, as observed in [18]. We surmise that APs are also likely to constitutegeographic
clusters. We elaborate on this below.

We derive information on APs from theborder gateway protocol (BGP)used for inter-domain (i.e.,
inter-AS) routing in the Internet. Each entry in the BGP table at a router specifies a destination AP
and the AS-level path leading to it. For our purposes, we are only interested in the AP information,
so we construct a list of unique APs (over 100000 APs, as mentioned in Section 2.3.1). The number
of APs is an order of magnitude larger than the number of ASs. This is because an AS, such as an
ISP, may advertise more specific routes (say for certain customers) due to policy and/or performance
considerations (e.g., for load balancing).

An AS (and its associated AP(s)) often corresponds to a geographical cluster such as a university
campus or a company office. Even when the AS is an ISP with large geographic coverage, the
associated APs that are advertised via BGP may be more specific (say corresponding to individual
customers), as explained above. In both these cases, GeoCluster is in a good position able to identify
geographic clusters from AP information. However, large ISPs (e.g., AT&T, Sprint, UUNet, etc.)
often advertise only aggregate APs for reasons of scalability. In such cases, a single AP may span
a large geographical area. This problem would be alleviated if we had more detailed knowledge
of how a large aggregate is subdivided by the intra-domain routing protocol used within the ISPs.
However, obtaining such information was not feasible for us, so we only use inter-domain routing
information derived from BGP.

In summary, our baseline GeoCluster algorithm, which we termBGPonly, discovers APs based on
BGP data and surmises that these APs are geographic clusters. However, as explained above this
conjecture may not be always correct, for instance when ISPs only advertise large aggregates. We
now present a sub-clustering algorithm designed to address this problem. We term the variant of
GeoCluster that incorporates this algorithm asBGP+subclustering.

3.4.2 Sub-clustering Algorithm

The BGP+subclustering variant of GeoCluster depends only on inter-domain BGP data just like
BGPonly. But the novel idea is to use partial IP-to-location mapping information to subdivide APs
that have a large geographic spread. For each original AP obtained from E-BGP, we use the IP-
to-location mapping information to determine whether their is “significant” consensus on the ge-
ographic location of the AP. If there is, then we declare the AP to be a geographic cluster. If
not, we subdivide the AP into two halves (e.g., the AP 152.153.0.0/16 would be subdivided into
152.153.0.0/17 and 152.153.128.0/17) and repeat the test on each half. We stop when the subdivi-
sion contains too few IP-to-location mapping data points for a reliable determination of geographic
clustering to be made. In the end, we obtain a mapping from APs (both original and subdivided
ones) to location. Given an IP address, we first find the matching AP using longest prefix match and
then report the corresponding location as the location of the IP address.

Here is the pseudocode for GeoCluster, including the sub-clustering algorithm. LetIPLoclist be
the list of IP-to-location mapping data points sorted by IP address,BGPAPlist be the list of APs
obtained from E-BGP information,
IPLocAPlist be the sorted list obtained by augmenting the entries inIPLoclist with the
APs corresponding to the longest prefix match,newAPLoclist be the new list mapping APs
to location obtained by (possibly) subdividing the original APs, andcthresh be the minimum
threshold on the number of IP-to-location mapping data points within a subdivision.

/* initialization */

26



IPLoclist = sorted IP-to-location mapping
BGPAPlist = APs derived from E-BGP info
/* determine matching APs */
foreach ((IP,location) in IPLoclist) {

AP = LongestPrefixMatch(IP,BGPAPlist)
Add (IP,location,AP) to IPLocAPlist

}
/* subdivide APs using IPLocAPlist */
sameAPlist = EMPTY
curAP = AP in first entry of IPLocAPlist
foreach ((IP,location,AP) in IPLocAPlist) {

if (AP in (IP,location,AP) == curAP) {
/* contiguous list with same AP */
Add (IP,location,AP) to sameAPlist

} else {
/* Subdivide curAP as appropriate */
if ( |sameAPlist |≥ cthresh) {

if (sameAPlist is geographically clustered) {
avgLocation = average location of cluster
Add (curAP,avgLocation) to newAPLoclist

} else {
Divide curAP into two equal halves
Divide sameAPlist accordingly
Recursively test whether either/both of

subdivisions form a geographic cluster
}

}
/* reset/reinitialize sameAPlist */
sameAPlist = NULL
Add (IP,location,AP) to sameAPlist

}
}
newAPLoclist is the new list used for
IP-to-location mapping

Here is a simple example that illustrates the operation of the sub-clustering algorithm (assume that
cthresh = 15). Consider an ISP who owns the address space 152.153.0.0/16. Suppose that the ISP
has allocated half of the address space (152.153.0.0/17) to a customer in New York, and a quarter
each (152.153.128.0/18 and 152.153.192.0/18) to customers in Dallas and San Francisco, respec-
tively. Suppose that the partial IP-to-location mapping information indicates that the location is New
York for 50 IP addresses in 152.153.0.0/17, Dallas for 20 addresses in 152.153.128.0/18, and San
Francisco for 10 addresses in 152.153.192.0/18. The ISP only advertises the 152.153.0.0/16 prefix
via BGP, so the sub-clustering algorithm starts with 152.153.0.0/16 as the presumed geographic
cluster. However, there is not sufficient consensus on the location of this cluster, so the cluster is
subdivided into two halves, 152.153.0.0/17 and 152.153.128.0/17. There is sufficient consensus for
the former address prefix, so the algorithm declares 152.153.0.0/17 as a geographic cluster with
its location as New York. However, 152.153.128.0/17 still lacks consensus, so it is subdivided into
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152.153.128.0/18 and 152.153.192.0/18. There is sufficient consensus on the location correspond-
ing to 152.153.128.0/18, so it is declared as a geographic cluster with its location as Dallas. How-
ever, there are fewer thancthresh IP-to-location data points for 152.153.192.0/18, so the algorithm
terminates without declaring it as a geographic cluster.

The effectiveness of the sub-clustering algorithm depends on the richness of the partial IP-to-
location mapping data available. If insufficient data is available for certain APs, these will not
be included innewAPLoclist . So GeoCluster will be unable to determine the location of IP
addresses that match those APs.

We have not specified how it is determined whether a set of locations is geographically clusterered
or how the consensus location of a cluster is computed. The answers to both of these questions
are context-dependent — dependent on the granularity of the location information contained in the
partial IP-to-location mapping and on the needs of the application.

In case the location information is relatively fine-grained (e.g., zip codes), the location of the indi-
vidual points is quantifiable using latitude and longitude. So we compute acompositelocation using
linear averaging of the latitudes and longitudes6. We also compute a dispersion metric as follows:
dispersion =

∑
l∈L dist(l, lavg)/ | L |, whereL is set of location data points corresponding to

the cluster,lavg is the composite location computed via averaging, anddist(x, y) is the geographic
distance between the locationsx andy. Intuitively, the dispersion quantifies the geographic extent
or spread of a cluster. We decide whether a set of locations is geographically clustered by checking
whether the dispersion is smaller than a threshold.

In case location information is coarse-grained (e.g., states), we test whether there are at leastcthresh
data points in the cluster and whether at least a threshold fraction,fthresh, of the points agree on
location. If both conditions are met, then the consensus location is assigned to the entire cluster.
As mentioned earlier, this aggregation procedure helps eliminate errors due to erroneous location
information.

3.4.3 Impact of Proxies and Firewalls

Many Internet clients lie behind proxies and/or firewalls that separate the corporate or ISP network
from the rest of the Internet. In such a setting, the proxy or firewall typically connects to external
Internet hosts, such as Web servers, on behalf of the client hosts. The IP address of the client hosts
remains hidden from the external network. As such there is no direct way to map from IP address
to location for such clients. (After all we are interested in the location of the client, not that of the
proxy or the firewall.)

The sub-clustering algorithm in GeoCluster deals with this issue elegantly. If the set of clients that
connect via a group of proxies (having IP addresses that are contained within an address prefix
AP ) is clustered geographically (say at locationL), then given a sufficient number of IP-to-location
data points, the sub-clustering algorithm will (correctly) deduce an association between the address
prefix AP and the locationL. This is what happens say in the case of clients on a university or
corporate campus, or clients of an ISP that connect via a local or regional proxy. However, there are
instances, such as with the ISP America Online (AOL), where clients in geographically dispersed
locations share a common pool of proxies. (With AOL we have seen clients thousands of kilometers
apart connect via a proxy with the same IP address!) In such a case, our sub-clustering algorithm
will not find sufficient consensus to be able to identify any geographic clusters, so it will not try
to map the “client” IP address to a location. We believe this is an important property of the sub-

6While not strictly correct, such averaging is a good approximation when the individual points are close to each other
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clustering algorithm because for many applications a highly inaccurate location estimate may be
strictly worse than no location estimate at all. For instance, displaying a generic advertisement on
a New York user’s screen would probably be better than mistakenly displaying an advertisement
tailored for California residents.

3.4.4 Experimental Results

We now analyze the performance of GeoCluster in several ways using a variety of data sets. We
compare the performance of GeoCluster with that of GeoTrack and GeoPing. We analyze two
variants of GeoCluster: (1) only using AP information derived from BGP tables (BGPonly), and
(2) post-processing the BGP tables using the sub-clustering algorithm discussed in Section 3.4.2
(BGP+subclustering). We compare both variants against a simplistic approach that ignores BGP
information and assumes that all APs to have a 24-bit prefix length (/24-clusters).

Locating hosts in UnivHosts

We first analyze the ability of the BGPonly variant of GeoCluster in determining the location of
hosts in the UnivHosts data set (Section 2.2.1). We use partial IP-to-location mapping data contained
in the FooTV data set as input. We convert each zip code contained in the FooTV data to the
corresponding (approximate) latitude and longitude. We then cluster the (IP,latitude,longitude) data
points using BGP address prefix (AP) information and compute the composite location for each
AP (Section 3.4.2). Given a target IP address, we find the matching AP using longest prefix match
and declare the corresponding (latitude,longitude) pair as the location estimate. We quantify the
accuracy of the location estimate using the error distance.
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Figure 3.7: CDF of the error distance computed over the UnivHosts data set for GeoTrack, GeoPing,
and GeoCluster.

Figure 3.7 shows the CDF of error distance for GeoCluster computed over the 265 university hosts.
We also show the CDFs of GeoTrack and the best case of GeoPing (using 9 probe machines) for
comparison. GeoCluster is able to deduce the location of only 233 out of the 265 university hosts
(i.e., about 88% of the hosts). This is because the IP-to-location mapping data derived from FooTV
is partial in coverage, and despite the clustering performed using BGP data, we still have no loca-
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tion information for about 12% of the hosts. However, for the vast majority of hosts whose location
it is able to determine, GeoCluster significantly outperforms both GeoTrack and GeoPing. For in-
stance, the median and 80th percentile marks for GeoCluster are 28 km and 226 km, respectively.
The corresponding numbers are 102 km and 384 km for GeoTrack, and 382 km and 1201 km for
GeoPing.

GeoCluster performs well on the UnivHosts data set because these hosts are often clustered together
geographically on university campuses. Moreover, many universities have distinct address alloca-
tions (e.g., 150.131.0.0/16 for the University of Montana) that are advertised via BGP as distinct
address prefixes (APs). So GeoCluster is able to identify the universities as geographic clusters with
relative ease.

Locating hosts in bCentral

We now analyze the performance of GeoCluster using the much larger bCentral data set. This data
set contains 181246 unique IP addresses and their corresponding zip codes. (As noted in Section
2.3.2, the zip code information may not be entirely accurate. Hence, unlike the case of university
hosts, we are not entirely certain of the true locations of the bCentral client hosts.) As before, we
use the BGPonly variant of GeoCluster, with the FooTV and the BGP data sets as inputs to prime
the GeoCluster algorithm.

For each IP address in bCentral, we estimate its location and then compute the error distance. The
error distance, with the IP addresses sorted in increasing order of error distance, is shown in Figure
3.8. We observe that GeoCluster is only able to estimate location for about 77% of the 181246 hosts.
The 25th, 50th (median), and 75th percentile marks of the error distance are 84 km, 685 km, and
3056 km respectively. In other words, GeoCluster performs much worse for the bCentral data set
than for the UnivHosts data set.
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Figure 3.8: The error distance and the dispersion for hosts in bCentral.

The main reason for the worse performance is that the bCentral data set is much more diverse than
the UnivHosts data set. Unlike UnivHosts, many of the IP addresses in bCentral fall within APs
corresponding to large and
geographically-dispersed ISPs (e.g., 12.0.0.0/8 belonging to AT&T WorldNet) or belong to proxies
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or firewalls (e.g., AOL proxies). Hence GeoCluster is only able to determine location accurately for
a smaller fraction of the hosts.

Given the wide range of error distances for different hosts, it would be useful to be able to tell when
GeoCluster’s estimate is accurate and when it is not. For this purpose, we compute thedispersion
metric for each AP (Section 3.4.2). We would expect that the larger the dispersion is, the less ac-
curate GeoCluster’s estimate of location would be. This is borne out by Figure 3.8, which depicts
the (smoothed version of) dispersion curve for the bCentral data set. In fact, the dispersion curve
matches the error distance curve quite well (except for hosts at the extreme right). This makes intu-
itive sense since the error in location estimation results from the geographic spread of APs, and it is
exactly this spread that the dispersion quantifies.

At the extreme right of the graph, we see that error distance shoots up while the dispersion drops
sharply. To better understand this puzzling phenomenon, we took a closer look at the corresponding
(IP,zip) data points in bCentral. Based on this examination, we have come to the conclusion that
the discrepancy is caused mainly by clients that dial in remotely. For example, bCentral contains
the IP address 140.247.147.42 (DNS nameroam147-42.student.harvard.edu), which presumably
corresponds a dial up connection at Harvard University in the northeastern corner of the U.S. (and
which is what GeoCluster deduces the location to be). However, the corresponding location recorded
in the bCentral data set is Portland, Oregon, 4000 km away in the northwestern corner of the U.S. We
hypothesize that this discrepancy is due to a user in Portland remotely dialing in to a modem bank
at Harvard and then connecting to bCentral. However, it is difficult to know for sure — the Portland
location may simply be erroneous, in which case the (large) error distance would be misleading.

Our results suggest that GeoCluster would not perform as well for a diverse set of hosts as for the
university hosts. Still the error distance is relatively small (within a couple of hundred kilometers)
for a substantial fraction (around 40%) of the hosts. And, quite importantly, GeoCluster is self-
calibrating in the sense that it is often able to tell when a location estimate is likely to be accurate
and when it is not.

Importance of the sub-clustering algorithm

Thus far we have considered the BGPonly variant of GeoCluster, which only uses AP information
derived directly from BGP data. We now turn to the BGP+subclustering variant that employs the
sub-clustering algorithm (Section 3.4.2) to construct an AP-to-location mapping. This algorithm
makes use of both BGP data and partial IP-to-location mapping information. We are interested in
studying what benefit, if any, the sub-clustering algorithm offers.

We use the partial IP-to-location mapping data obtained from Hotmail (Section 2.3.2) as input to
the sub-clustering algorithm. Recall that the location information in Hotmail is at the granularity
of states. As discussed in Section 3.4.2, we deem an AP to correspond to a geographic cluster if it
contains at leastcthresh data points drawn from the IP-to-location mapping data set and at least a
fractionfthresh of those data points agree on location (i.e., correspond to the same state). In most
of the results shown here, we setcthresh = 20 andfthresh = 0.7 and denote this as(20, 0.7).
We also briefly discuss results for the (5,0.6) setting.

We use bCentral as the test data. The location information in bCentral is at the granularity of zip
codes whereas that in Hotmail is at the granularity of states. This raises the question of how to
quantify accuracy. We decided to do all of our calculation at the granularity of the states. We map
the zip codes in bCentral to the corresponding states. We then compute thezipcenterof each state
by averaging the coordinates of the zip codes contained within that state (Section 2.3.2). The error
distance is then computed as the distance between the zipcenters of the actual and deduced states.
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So the error distance is zero if the state is deduced correctly and non-zero otherwise.
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Figure 3.9: CDF of the error distance (computed at the granularity of states) for the BGPonly and
BGP+subclustering variants of GeoCluster, and for the /24-clusters method.

Figure 3.9 shows the CDF of error distance. We observe that BGP+subclustering significantly out-
performs BGPonly. In particular, with the(20, 0.7) setting BGP+subclustering gets the state right
(i.e., an error distance of zero) for 53% of the hosts while BGPonly does so only for 36% of the
hosts. The reason is that BGPonly is often stuck with large and geographically dispersed APs ob-
tained directly from BGP data while the sub-clustering algorithm is often able to break these down
into smaller and geographically more compact APs. It is interesting to note that even /24-clusters,
which completely ignores BGP data, outperforms BGPonly slightly, although it is still much worse
than BGP+subclustering.

Finally, we see that BGP+subclustering performs slighly better with the(5, 0.6) setting compared
to (20, 0.7) (the correct state is deduced for 56% of the hosts compared to 53%). Nevertheless
we believe that a(5, 0.6) setting may be too aggresive in the sense that it may often misidentify
geographic clusters (after all(5, 0.6) requires just 3 out of 5 data points to agree on location for an
AP to be deemed a geographic cluster). We are presently investigating this issue further.

3.4.5 Discussion

In summary, GeoCluster employs a novel algorithm that combines partial IP-to-location mapping
information with BGP routing information to make an intelligent determination of a client’s loca-
tion. The algorithm is able to tolerate a limited amount of inaccuracy in the IP-to-location mapping
information and remain effective in certain situations where clients connect via proxies or firewalls.

An interesting question is how one would obtain partial IP-to-location mapping information in gen-
eral. There are several possible ways one might do this.

1. Thelikely location of a user can be inferred from the kind of information accessed or queries
issued by the user (for example, as in the case of FooTV). Since it only considers such in-
formation in an aggregated form (corresponding to clusters), GeoCluster is able to tolerate a
limited amount of inaccuracy in the inference.
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2. Certain Web sites, such as Yahoo [59], offer a mix of generic content (e.g., news) and user-
specific content (e.g., email). Partial IP-to-location mapping information may be derived from
accesses made by registered users to the latter content and then used in conjunction with
GeoCluster to infer the location of (the presumably much larger number of) registered and
casual users who access generic content.

In general, we expect that there will be a relatively small number of content providers and “location
servers” (akin to advertisement servers such as DoubleClick [39]) that will employ GeoCluster (and
possibly other techniques) to map IP addresses to geographic locations. The vast majority of Web
sites would simply subscribe to the services provided by the location servers and so would not need
to be concerned with the details of the location mapping techniques.

On a final note, we believe that the idea in GeoCluster of clustering hosts together based on geo-
graphic location may be quite useful in conjunction with GeoTrack and GeoPing. Both GeoTrack
and GeoPing conductactivemeasurements by injecting traffic into the network. This may be un-
desirable for several reasons (network load, security, etc.). Clustering can alleviate this problem by
making it unnecessary to do pings or traceroutes toeachnew target host. It may suffice to do these
measurements to just a fraction of the hosts within an address prefix cluster. In fact, GeoTrack and
GeoPing, used in this manner, can help GeoCluster construct the partial IP-to-location mapping that
it needs.
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Chapter 4

Geographic Properties of Internet
Routing

In this chapter, we study the geographic properties of Internet routing. Our work is distinguished
from most previous studies of Internet routing in that we consider the geographic path traversed
by packets, not just the network path. We examine several geographic properties including the cir-
cuitousness of Internet routes, how multiple ISPs along an end-to-end path share the burden of
routing packets, and the geographic fault tolerance of ISP networks. We evaluate these properties
using extensive network measurements gathered from a geographically diverse set of probe points.
Our analysis shows that circuitousness of Internet paths depends on the geographic and network
locations of the end-hosts, and tends to be greater when paths traverse multiple ISP. Using geo-
graphic information, we quantify the degree to which an ISP’s routing policy resembles hot-potato
or cold-potato routing. We find evidence of certain tier-1 ISPs exhibiting hot-potato routing.

4.1 Circuitousness of Internet paths

In this section, we examine the nature of circuitous routes in the Internet. Since there is not a
standard measure of circuitousness, we define a metric,distance ratio, as the ratio of the linearized
distance of a path to the geographic distance between the source and destination of the path. The
distance ratio reflects the degree to which the network path between two nodes deviates from the
direct geographic path between the nodes. A ratio of 1 would indicate a perfect match (i.e., an
absolutely direct route) while a large ratio would indicate a circuitous path.

We present several different analysis with a view to studying the impact of spatial factors as well
as temporal factors. Under spatial factors, we study the effect of the geographic and network lo-
cations of end-hosts on the circuitousness of paths. To study temporal properties, we compare the
circuitousness of paths drawn from Paxson’s 1995 data set to the ones drawn from our 2000 data
set. Finally, we analyze the relationship between the minimum delay between two end-hosts and the
linearized distance along their path.

4.1.1 Effect of network location

In this section, we will vary the network location of the end-hosts (source and destination) and study
its effect on the distance ratio of paths. In our first analysis, we fix a source and compare the distance
ratio of paths to destinations in different networks. In our second analysis, we compare the distance
ratio of paths from different sources in the same geographic location but with different network
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connectivities to a set of end-hosts in the same network.

Paths from a single source

We consider paths from our traceroute sources in U.S. universities to two varied set of end-hosts:
UnivHosts and TVHosts. Many of the hosts in UnivHosts (including our sources) connect to the
Internet2 high-speed backbone via a local GigaPOP. So much of the wide-area path between our
sources and a host in UnivHosts traverses the Internet2 backbone. On the other hand, TVHosts is a
more diverse set that includes hosts located in various commercial networks (AOL, MSN, @Home,
etc.) as well as university campuses. So the wide-area paths from our sources to the hosts in TVHosts
typically traverse one or more commercial ISP backbones.
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Figure 4.1: CDF of distance ratio for paths from UC Berkeley to UnivHosts and TVHosts.

This difference between the two groups of destination hosts is reflected in the cumulative distri-
bution function (CDF) of the distance ratio for the two cases. As Figure 4.1 shows (for source in
UC Berkeley), the distance ratio is close to 1 for many of the destinations. The ratio is 1.1 or less
(corresponding to a linearized distance that exceeds the end-to-end geographic distance by no more
than 10%) for 55% of the destinations in UnivHosts and 45% in TVHosts. This finding is consistent
with the rich Internet connectivity of the San Francisco Bay Area (where UC Berkeley is located).
The area includes several public Internet exchanges (e.g., MAE-West, PAIX, etc.) as well as private
peering points. So a path from the UC Berkeley host to a destination host is often (but not always)
able to transition to the latter’s ISP within the SF bay area itself. So there is little need to take a
detour through another city just to transition to the destination’s ISP.

There is a far more pronounced difference between the UnivHosts and TVHosts cases if we look
at the tail of the distribution. For instance, at the 90th percentile mark, the distance ratio is 1.41 in
the case of UnivHosts but 1.72 in the case of TVHosts; in other words, the detour is 1.75 times as
large for TVHosts destinations as it is for UnivHosts (72% versus 41%). The paths to some of the
hosts in TVHosts tend to be more circuitous because they traverse multiple commercial ISPs whose
peering relationships may cause detours in the end-to-end path. We discuss this issue in more detail
in Section 4.2. We observe qualitatively the same trends for other university sources as well; i.e.,
the distance ratio tends to be smaller for paths leading to UnivHosts compared to TVHosts.
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Multiple sources in the same location

We now consider paths from pairs of hosts in the same location but on entirely different networks to
destinations in the UnivHosts set. We consider two such pairs of traceroute sources: (a) a machine
on the Berkeley campus and another also in Berkeley but on @Home’s cable modem network, and
(b) a machine at the University of Washington (UW) campus in Seattle and another on the Microsoft
Research network 10 km away.
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Figure 4.2: CDF of distance ratio for paths from pairs of co-located sources to UnivHosts.

Figure 4.2 shows the CDF of the distance ratio for all 4 sources. For the two sources located in
Berkeley, we find that the one on the university campus has a significantly smaller distance ratio,
especially at the tail of the distribution. For instance, the 90th percentile of the distance ratio for the
UC Berkeley source is 1.41 while that for the cable modem source is 1.83. Since the destination set
is UnivHosts, the UC Berkeley source tends to have more direct routes (via Internet2) than the cable
modem client has (via @Home and other commercial ISPs).

We observe a similar trend for the UW-Microsoft pair. The UW source has more direct routes to
other university hosts than does the Microsoft source. For instance, the path from Microsoft to the
University of Chicago follows a highly circuitous route through BBNPlanet’s (Genuity) network.
The geographic path traversed includes Los Angeles, Carlton (TX), Indianapolis and Chicago (in
that order). The linearized distance of the path is 4976 km while the geographic distance between
Seattle and Chicago is only 2795 km. In contrast, the path from UW (via Internet2) is far more
direct: it passes through Denver, Kansas City, Indianapolis, and finally Chicago, for a total linearized
distance of 3533 km.

These results indicate that the nature of network connectivity of the source and the destination has
a significant impact on how direct or circuitous the network paths are.

4.1.2 Effect of geographic location

The geographic location of a source indirectly determines its network connectivity. Sources near
well-connected geographic locations like the Bay Area can potentially have less circuitous routes
since many commercial ISPs will have a POP very close to them. To better understand the effect of
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geographic location, we compare the distance ratios of sources in different locations to a common set
of destination end-hosts. We extend this analysis to study the role of network structures in different
continents (U.S and Europe) on the circuitousness of paths.

Multiple sources in different locations

We consider paths from sources in three geographically distributed locations in the U.S.: Stanford,
Washington University at St. Louis (WUSTL), and the University of North Carolina (UNC). The
destination set is LibWeb, which is a larger and more diverse set than the UnivHosts set considered
in Section 4.1.1.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Ratio

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

 LibWeb: Different sources

UNC     
Stanford
WUSTL   

Figure 4.3: CDF of distance ratio for paths from multiple sources to LibWeb.

As shown in Figure 4.3, the distance ratio tends to be the smallest for paths originating from Stanford
and the largest for those originating from WUSTL. Stanford, like Berkeley, is located in the San
Francisco Bay area, which is well served by many of the large ISPs with nationwide backbones.
In contrast, WUSTL is much less well connected. Almost all paths from WUSTL enter Verio’s
network in St. Louis and then take a detour either to Chicago in the north or Dallas in the south. At
one of these cities, the path transitions to another major ISP such as AT&T, Cable & Wireless, etc.
and proceeds to the destination. Any detour is particularly expensive in terms of the distance ratio
because the central location of St. Louis in the U.S. means that the geographic distance to various
destinations is relatively small.

In general, paths (such as those from WUSTL) that traverse significant distances in the backbones
of two or more large ISPs tend to be more circuitous than paths (such as those from Stanford) that
traverse much of the end-to-end distance in the backbone of a single ISP (regardless of who the ISP
is). One example of a highly circuitous path we found involved two large ISPs, Verio and AT&T.
The path originates in WUSTL in St. Louis and terminates at a host in Indiana University, 328 km
away. However, the geographic path goes from St. Louis to New York via Chicago, all on Verio’s
network. In New York, it transitions to AT&T’s network and then retraces its path back through
Chicago to St. Louis, before finally heading to Indiana. The linearized distance is 3500 km, more
than 10 times as much as the geographic distance. We examine the impact of multiple ISPs in greater
detail in Section 4.2.
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While the specific findings pertaining to Stanford and WUSTL may not be important in general, our
results suggest that the distribution of the distance ratio is consistent with our intuition about the
richness of connectivity of hosts in different geographic locations.

U.S. versus Europe

We now analyze the distance ratios for paths in Europe and compare these to the distance ratios for
paths in the U.S. We consider paths from the 17 U.S. sources to destinations in the LibWeb set and
also paths from the 3 European sources to destinations in the EuroWeb set. Thus, all of these paths
are contained either entirely within the U.S. or entirely within Europe. We do not consider paths
from U.S. sources to European destinations (or vice versa) because the distance ratio for such paths
tends to be dominated by long transatlantic links (which tends to push the ratio towards 1).
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Figure 4.4: CDF of distance ratio for paths within the U.S. and those within Europe.

In Figure 4.4, we show the distribution of the distance ratio for three sources: Berkeley in the U.S.,
and Stockholm (Sweden) and Bologna (Italy) in Europe. We observe that the distance ratio tends to
be larger for the European sources compared to Berkeley, especially in the tail of the distribution.
We attribute this to three causes.

First, paths in Europe tend to traverse multiple regional or national ISPs. The complex peering re-
lationships between these ISPs often results in convoluted paths. For instance, a path from Bologna
to a host in Salzburg, Austria traverses 3 ISPs – GARR (Italian Academic and Research Network),
Eqip/Infonet, and KPNQwest (a leading pan-European ISP based in the Netherlands) – and passes
through Milan (Italy), Geneva (Switzerland), Paris (France), Amsterdam (Netherlands), Frankfurt
(Germany), and Vienna (Austria). The linearized distance of the path is 2506 km whereas the geo-
graphic distance between Bologna and Salzburg is only 383 km.

Second, in some cases the path from a European source to a European destination passes through
nodes in the U.S. For instance, a path from Stockholm (Sweden) to Zagreb (Croatia) passes through
a node in New York City belonging to Teleglobe, a large international ISP. In the event that the ISPs
in Europe have better connectivity to ISPs in U.S., it would be appropriate for them to route their
traffic through U.S. though the route may be more circuitous. Third, geographic distances in Europe

38



tend to be smaller than the ones in U.S. As in the case of St Louis in Section 4.1.2, small detours in
routing can be particularly expensive in terms of the distance ratio for paths between end-hosts in
Europe.

4.1.3 Temporal properties of routing

To better understand some of the temporal properties of routing, we compare the distribution of the
distance ratio computed from our 2000 data set with that computed from Paxson’s 1995 data set [43].
The paths in the 1995 data set correspond to traceroutes conducted amongst the 33 nodes (mainly
at academic locations) that were part of the testbed. We considered 340 paths between the subset of
20 nodes that were located in the U.S. The 1995 data set includes multiple traceroute measurements
between each pair of hosts. In our study, we only use data from one successful traceroute between
each pair of hosts. To keep the nature of the measurement points similar, in the 2000 data set we
only consider paths between the 15 source hosts located at universities and the 265 hosts in the
UnivHosts set.
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Figure 4.5: CDF of distance ratio for paths in Paxson’s 1995 data set and our data set from
2000.

Figure 4.5 plots the CDF of the distance ratio for the 1995 and 2000 data sets. By observing the tail
of the cumulative distribution, we find that the distance ratios tend to be smaller in the 2000 data
set. This improvement is not surprising because the Internet is more richly connected today than it
was 5 years ago. There now exist direct point-to-point links between locations that were previously
connected only by an indirect path.

4.1.4 Correlation between delay and distance

Finally, we analyze the relationship between geography and the end-to-end delay along a path.
Though geography by itself cannot provide any information about many performance characteristics
like bandwidth, congestion along a path, the linearized distance of a path does enforce a minimum
delay along a path (propagation delay along a path).

To study this correlation, we use the TVHosts data set since it represents a wide variety of end-hosts.
In our traceroute data, we obtain3 RTT samples for every router along the path. Since not all routers
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in a path are recognizable, we consider the minimum RTT, geographic distance and linearized dis-
tance to the last recognizable router along the path. In this analysis, we restrict ourselves to the list
of probes in the U.S.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum RTT (ms)

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

Lin Dist 100−500 kms
Geo Dist 100−500 kms
Lin Dist 1000−1500 kms
Geo Dist 1000−1500 kms
Lin Dist 2000−2500 kms
Geo Dist 2000−2500 kms

Figure 4.6: CDF of minimum end-to-end RTT to TVHosts for different ranges of linearized
distances and geographic distances of paths

Figure 4.6 illustrates the correlation of the minimum RTT along a path to the linearized distance of
a path and the geographic distance between the end-hosts. We make three important observations.
First, at low values of the linearized distance there exists a strong correlation between the delay
and linearized distance for a large fraction of end-hosts especially for small values of linearized
distances. We expect this correlation to be much stronger as we compute the minimum over a larger
number of samples. Second, linearized distance along a path does enforce a minimum end-to-end
RTT which is an important performance metric for latency sensitive applications. Third, the mini-
mum RTT between two end-hosts has lesser correlation to the geographic distance between them as
compared to the linearized distance of the path connecting them. We observe that for a given range of
linearized distance of a path, the RTT variation is much smaller than its variation for the same range
of geographic distance between the end-hosts. Hence linearized distance of a path conveys more
about the minimum RTT characteristics of a path than merely the geographic distance between the
end-hosts. We also verified that these observations hold across the other data sets we collected. The
coarse correlation between minimum delay and geographic distance was used in building GeoPing,
an IP-to-location mapping service [24].

4.1.5 Summary of Results

From Sections 4.1.1 and 4.1.2, we observe that the circuitousness of a route depends on both the
geographic and network location of the end-hosts. In many cases, the trends we observe in the
distance ratio are consistent with our intuition. A large value of the distance ratio enables us to
automatically flag paths that are highly circuitous, possibly (though not necessarily) because of
routing anomalies. Finally, we show that the minimum delay between end-hosts and the linearized
distance of their path are strongly correlated. This relationship indicates that the circuitousness of
a route does have an effect on the delay observed along the route (though this does not completely
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dictate the performance along the route).

4.2 Impact of multiple ISPs

Our analysis in Section 4.1 focused on the characteristics of the end-to-end path from a source to
a destination. The end-to-end path typically traverses multiple autonomous systems (ASes). Some
of the ASes are stub networks such as university or corporate networks (where the source and
destination nodes may be located) whereas others are ISP networks. The relationships between
these networks is often complex. There are customer-provider relationships (such as those between
a university network and its ISP or between a regional ISP and a nationwide ISP) and peering
relationships (such as those between two nationwide ISPs). A stub network may be multi-homed
(i.e., be connected to multiple providers). Two nationwide ISPs may peer with each other at multiple
locations (e.g., San Francisco and New York).

These complex interconnections between the individual networks have an impact on end-to-end
routing. In this section, we show that geography can indeed be used as a means to analyze these
complex interconnections. Specifically, we investigate the following questions: (a) are Internet paths
within individual ISP networks as circuitous as end-to-end paths?, (b) what impact does the presence
of multiple ISPs have on the circuitousness of the end-to-end path?, (c) what is the distribution of
the path length within individual ISP networks, and (d) can geography shed light on the issue of
hot-potato versus cold-potato routing?

4.2.1 Circuitousness of end-to-end paths versus intra-ISP paths
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Figure 4.7: CDF of distance ratio of end-to-end paths versus that of sections of the path that
lie within individual ISP networks.

We now take a closer look at the circuitousness of end-to-end Internet paths, as quantified by the
distance ratio. We compare the distance ratio of end-to-end paths with that of sections of the path
that lie within individual ISP networks. We consider paths from the U.S. sources to the LibWeb data
set for this analysis.

As shown in Figure 4.7, the distance ratio of end-to-end paths tend to be significantly larger than
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that of intra-ISP paths. In other words, end-to-end paths tend to be more circuitous than intra-ISP
paths. Furthermore, the distribution of the ratio tends to vary from one ISP to another, with Internet2
doing much better than the average and Alter.Net (part of UUNET) doing worse.

We believe the reason that end-to-end paths tend to more circuitous is that the peering relationship
between ISPs may create detours that would otherwise not be present. Inter-domain routing in the
Internet largely uses the BGP [29] protocol. BGP is a path vector protocol that operates at the level
of ASes. It offers limited visibility into the internal structure of an AS (such as an ISP network). So
the actual cost of an AS-hop (in terms of latency, distance, etc.) is largely hidden at the BGP level.
As a result the end-to-end path may include large detours.

Another issue is that ISPs typically employ BGP policies to control how they exchange traffic with
other ISPs (i.e., which traffic enters or leaves their network and at which ingress/egress points). The
control knobs made available by BGP include import policies such as assigning a local preference to
indicate how favorable a path is and export policies such as assigning a multiple exit discriminator
to control how traffic enters the ISP network [11]. These policies are often influenced by business
considerations. For instance, packets from a customer of ISP A to a customer of ISP B in the same
city might have to go via a peering point in a different city simply because a local service provider
in the origin city who peers with both ISP A and ISP B does not provide transit service between the
two ISPs.

Such BGP policies may partly explain the example mentioned in Section 4.1.2, where packets from
a host in St. Louis to a nearby location had to travel on Verio’s network all the way to New York
to enter AT&T’s network. We have seen several other such examples: a path from Austin, TX to
Memphis, TN where the transition from Qwest to Sprintlink happens in San Jose, CA; a path from
Madison, WI to St. Louis, MO where the transition from BBNPlanet to Qwest happens in Washing-
ton DC. We do not have specific information on the policies that were employed by these ISPs, so
we cannot make a definitive claim that BGP is to blame. However, in view of the complex policies
that come into play in the context of inter-domain routing, it is not surprising that end-to-end paths
tend to be more circuitous.

In contrast, routing within an ISP network is much more controlled. Typically, a link-state routing
protocol, such as OSPF [23], is used for intra-domain routing. Since the internal topology of the
ISP network is usually known to all of its routers, routing within the ISP network tends to be close
to optimal. So the section of an end-to-end path that lies within the ISP’s network tends to be less
circuitous. Referring again to the example in Section 4.1.2, both the St. Louis→ Chicago→ New
York path within Verio’s network and the New York→ Chicago→ St. Louis path within AT&T’s
network are much less circuitous than the end-to-end path.

However, this does not mean that intra-ISP paths are never circuitous. As noted in Section 4.1.1, we
found a circuitous path through BBNPlanet (Genuity), from Microsoft Research in Seattle to the
University of Chicago, that has a linearized distance of 4976 km whereas the geographic distance is
only 2795 km. This does not imply that the path is necessary sub-optimal. In fact, the circuitous path
may be best from the viewpoint of network load and congestion. The point is that while geography
provides useful insights into the (non-)optimality of network paths, it only presents part of the
picture.

Impact of path length on circuitousness

One question that arises from the above analysis is whether there is a connection between the cir-
cuitousness of a path and its length (i.e., the geographic distance between the two ends of the path).
In other words, are longer paths inherently more circuitous, regardless of whether they traverse one
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Figure 4.8: Distance ratio versus the geographic distance between the ends of a path. The
median distance ratio is computed over 400 km buckets (0-400 km, 400-800 km, and so on).
A minimum distance threshold of 100 km is imposed to prevent the ratio from blowing up, so
the first bucket is actually 100-400 km.

ISP or many? If so, the fact that end-to-end paths tend to be longer than intra-ISP paths may explain
the greater circuitousness of the former.

However, as shown in Figure 4.8, the trend is quite the opposite. The distance ratio tends to decrease
as the geographic distance increases.1 The reason is that the impact of a detour is smaller (in relative
terms) in the context of a longer path. The distance ratio for the end-to-end path tends to be greater
than that for the intra-ISP path, regardless of geographic distance. Thus the greater circuitousness
of end-to-end paths is most likely due to the presence of multiple ISP networks in the path.

4.2.2 Impact of multiple ISPs on circuitousness

In Section 4.2.1 we hypothesized that the presence of multiple ISPs in an end-to-end path contributes
to the circuitousness of the path. We now examine this issue more carefully. We classify end-to-end
paths into two categories – non-circuitous (distance ratio< 1.5) and circuitous (distance ratio>
2).2 For each path in either category, we identify the top two ISPs that account for most of the end-
to-end linearized distance. We then compute the fraction of the end-to-end linearized distance that
is accounted for by the top two ISPs, and denote these fractions bymax1 andmax2. For example,
if an end-to-end path with a linearized distance of 1000 km traverses 400 km in AT&T’s network
and 300 km in UUNET’s network (and smaller distances in other networks), thenmax1 = 0.4 and
max2 = 0.3. Note that it is possible formax1 to be 1.0 (and somax2 to be 0.0) if the entire end-to-
end path traverses just one ISP network. We note that local-area networks confined to a city (e.g., a

1The jaggedness of the curves arises because of the large variance in distance ratio for small values of geographic
distance. The 5th and 95th percentile marks for the 100-400 km bucket are (1.00,20.50) for the end-to-end case and
(1.00,4.22) for the intra-ISP case. The corresponding marks for the 4000-4400 km bucket are (1.01,1.57) for the end-to-
end case and (1.00,1.18) for the intra-ISP case.

2While the choice of these thresholds is arbitrary, they capture the intuitive notion of circuitous and non-circuitous
routes. Note that there may be paths that do not fall into either category.
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Figure 4.9: CDF of the fraction of the end-to-end path that lies within the top 2 ISPs in the
case of circuitous paths and non-circuitous paths.

university network) contribute nil to the linearized distance and therefore are ignored.

Figure 4.9 shows the CDF ofmax1 andmax2 for the circuitous and non-circuitous paths. The dif-
ference in the characteristics of these two categories of paths is striking. Themax1 andmax2 curves
are much closer together in the case of circuitous paths than in the case of non-circuitous paths. In
other words, in the case of circuitous paths, the end-to-end path traverses substantial distances in
each of the top two ISPs (and perhaps other ISPs too). In contrast, non-circuitous paths tend to be
dominated by a single ISP. For instance, the median values ofmax1 andmax2 in the case of cir-
cuitous paths is approximately 0.65 and 0.3, respectively. In other words, the top two ISPs account
for 65% and 30%, respectively, of the end-to-end path in the median case. However, the fractions
for the non-circuitous paths are approximately 95% and 4%, respectively – much more skewed in
favor of the top ISP.

We also consider the impact of the number ofmajor ISPs traversed along an end-to-end path on
the distance ratio. Figure 4.10 shows a clear trend: the distance ratio tends to increase as the path
traverses a greater number of ISPs. For instance, the median distance ratios are 1.18, 1.25, and 1.38,
respectively with 1, 2, and 3 major ISPs. The 90th percentile of the distance ratio is 1.81, 2.26, and
2.35, respectively. A path that traverses a larger number of major ISPs may span a greater distance.
However, as noted in Section 4.2.1, this would not explain the larger distance ratio. In fact, a greater
geographic distance would tend to make the distance ratio smaller, not larger

These findings reinforce our hypothesis that there is a correlation between the circuitousness of a
path (as quantified by the distance ratio) and the presence or absence of multiple ISPs that account
for substantial portions of the path.

4.2.3 Distribution of ISP path lengths

In this section, we further examine the distribution of the end-to-end linearized distance that is
accounted for by individual ISPs. We wish to understand how the effort of carrying traffic end-to-
end over a wide-area path is apportioned between different ISPs. For each of the 13 nationwide ISPs
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Figure 4.10: CDF of the distance ratio as a function of the number of major ISPs traversed
along an end-to-end path. There were few paths that traversed more than 3 major ISPs.

in the U.S. listed in Section 3.2.2, we consider the set of paths that traverse one or more nodes in
that ISP’s network. For each such path, we compute the fraction of the end-to-end path that lies
within the ISP’s network.

Figure 4.11 plots the CDF of this fraction for a few ISPs. In each case, we consider the paths from the
U.S. university sources to the LibWeb data set. We observe that the distributions look very different.
For instance, the median fraction of the end-to-end path that lies within Sprintlink is only about 0.35
whereas the corresponding fraction for UUNet is 0.75 and for Internet2 is over 0.9. Internet2 is a
high-speed backbone network that connects many university campuses in the U.S. An end-to-end
path that traverses Internet2 typically originates and terminates at university campuses. Therefore,
the Internet2 backbone accounts for an overwhelming fraction of such end-to-end paths. UUNET
accounts for a larger fraction of the paths that traverse its backbone than any other commercial
ISP we considered. This may reflect the close relationship between UUNET’s parent company,
Worldcom (which runs the vBNS backbone [57]), and academic sites.

The much smaller fraction in the case of Sprintlink is harder to explain definitively. From our con-
versations with people at Sprint [7, 21], we have learned that academic sites are not their major
customers, so Sprintlink participates minimally in carrying academic traffic. The location of our
traceroute sources at academic sites may explain why Sprintlink only accounts for a small fraction
of the end-to-end path.

We stress, however, that the point of our analysis is not to make general claims about certain ISPs
being better or worse than others. Rather it is to show that geographic analysis of end-to-end paths
yields interesting insights into the role played by multiple ISPs in specific contexts (e.g., academic
sites) and that these insights are consistent with our intuition.

4.2.4 Hot-potato versus Cold-potato routing

Finally, we investigate whether geographic information can be helpful in assessing whether ISP
routing policies in the Internet conform to either hot-potato routing or cold-potato routing. In hot-
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Figure 4.11: CDF of the fraction of the end-to-end path that lies within individual ISP net-
works.

potato routing, an ISP hands off traffic to a downstream ISP as quickly as it can. Cold-potato routing
is the opposite of hot-potato routing where an ISP carries traffic as far as possible on its own network
before handing it off to a downstream ISP. These two policies reflect different priorities for the ISP.
In the hot-potato case, the goal is to get rid of traffic as soon as possible so as to minimize the
amount of work that the ISP’s network needs to do. In the cold-potato case, the goal is carry traffic
on the ISP’s network to the extent possible so as to maximize the control that the ISP has on the
end-to-end quality of service. In general, an ISP’s routing policy would lie somewhere in between
the extremes of hot-potato and cold-potato routing.

We consider the set of paths from U.S. sources to TVHosts. For each path that traverses two or
more major ISPs (with nationwide backbones), we compute the fraction of the end-to-end path that
lies within the first major ISP (ISP1) and the second major ISP (ISP2) in sequence. We use these
fractions as measures of the amount of work that these ISPs do in conveying packets end-to-end.
The distributions of these fractions is plotted in Figure 4.12. We observe that the fraction of the path
that lies within the first ISP tends to be significantly smaller than that within the second ISP. For
instance, the median is 0.22 for the first ISP and 0.64 for the second ISP. This is consistent with
hot-potato routing behavior because the first ISP tends to hand off traffic quickly to the second ISP
who carries it for a much greater distance.

Figure 4.12 also plots the distributions of the path lengths in the case where the first ISP is Sprintlink.
We find that the difference between the ISP1 and ISP2 curves is even greater in this case. Again,
this is consistent with hot-potato routing behavior on the part of Sprintlink for routes from academic
locations.

4.2.5 Summary

In this section, we have used geographic information to study various aspects of wide-area Internet
paths that traverse multiple ISPs. We found that end-to-end Internet paths tend to be more circuitous
than intra-ISP paths, presumably because of the peering relationships between ISPs. Furthermore,
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Figure 4.12: CDF of the fraction of the end-to-end path that lies within the first and second
ISP networks in sequence.

paths that traverse substantial distances within two or more ISPs tend to be more circuitous than
paths that largely traverse only a single ISP. Some of this circuitous routing behavior can be at-
tributed to sub-optimal geographic peering between ISPs. Finally, the findings of our geography-
based analysis are consistent with the hypothesis that ISPs generally employ hot-potato routing.
The presence of hot-potato routing may also explain for why some major ISPs only account for a
relatively small fraction of the end-to-end path.

4.3 Limitations and Possible Inaccuracies

Our analysis of geographic properties of Internet routing suffers from a few limitations. We will
first describe some of the possible inaccuracies in our results due to our methodology and how we
reduce the effect of these inaccuracies.

4.3.1 Possible Inaccuracies

First, the city codes used in GeoTrack for computing the location of router given its label are man-
ually determined and encoded. Hence there is always a possibility that the location of a router as
determined by GeoTrack is incorrect. However, we have greatly reduced the possibility of such
errors by using delay-based verification, ISP specific parsing rules and manual inspection. In delay-
based verification, we perform the following simple check: if the difference between the minimum
RTTs to two adjacent routers in a path is not high, the distance between them cannot be large. This
simple check helped us distinguish between two cities namedGenevathat had similar city codes —
one in Switzerland and the other in Texas. We have enumerated specific rules for52 different ISPs
(all major ISPs in our data set) which specify the exact position where a city code is embedded in
a label. This, in conjunction with ISP specific city-codes, greatly reduces the chances of a wrong
location output. We have also manually inspected the geographic paths corresponding to a large
sample of our traceroute data to check for any possible errors.

Second, the linearized distance computed can be distorted if the geographic locations of many
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routers in a path are unknown. We reduce this distortion by restricting our analysis to paths that have
at least4 recognizable intermediate routers. The linearized distance of a path can also be skewed
due to intra-metro distances. Intra-metro distances will affect our analysis only for small values of
linearized distances. To reduce this skew, we only consider paths with a linearized distance greater
than100 kms in our study.

4.3.2 Limitations

We now discuss the limitations of our study arising both due to the inherent limitations of geographic
information and due to limitations of our experimental methodology.

1. Geography does not determine performance:There is not a perfect relationship between
geographic distance and network performance. It is possible that a circuitous path yields better
performance than a less circuitous one. For instance, the most optimal path between certain
countries may be via the U.S. even if that means a large detour in geographic terms. However,
in Section 4.1.5, we show that there exits a strong correlation between the minimum end-
to-end delay between two end-hosts and the linearized distance of their connecting path. In
light of this, we view our geographic analysis of network paths as providing (a) hints on paths
that arepotentiallyanomalous and should be examined more closely to determine if they are
indeed anomalous, (b) an indication of how much improvement there could be in end-to-end
latency if a non-circuitous path between source and destination were feasible, and (c) a way to
quantify network properties such as hot-potato routing, which may provide new insight into
these properties.

2. IP-level topology is incomplete:Our linearized distance computation only considers the
router-level (i.e., IP-level) topology. We have no way of discovering the underlying physical
topology (which may be based on ATM, SONET, or other technologies), so in general we
would underestimate the linearized distance. While this is a limitation of our methodology,
we note that the trend in high-speed networks (OC-48 and faster) is away from separate layer-
2 and layer-3 architectures (e.g., IP-over-ATM) and towards an all-IP network [30]. This trend
increases the applicability of our methodology.
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Chapter 5

Geographic Fault Tolerance

An important component of studying Internet routing is to understand its fault tolerance aspects.
Fault tolerance of a network is normally studied at the granularity of router or link failures. How-
ever such a failure model does not capture the fact that two seemingly independent routers can be
susceptible to correlated failures.

We ask the question: what is the tolerance of an ISP’s network to atotal network failure in a geo-
graphic region, i.e., a failure that affects all paths traversing the region? We refer to such a failure
as ageographic failure. Potential reasons for such a failure include natural calamities such as earth-
quakes or power blackouts.

By using the geographic location information of the routers, we can identify routers that are co-
located and thereby construct ageographic topologyof an ISP. In this topology, each geographic
region is associated with a node and an edge between two nodes signifies the existence of at least
one long-haul backbone link that connects the corresponding geographic regions.

We obtained the geographic topologies for 9 of the 13 major ISPs listed in Section 3.2.2 from
the CAIDA MapNet site [49]. These are: AT&T, Cable and Wireless, Sprintlink, Genuity, Qwest,
PSINet, UUNet, Verio and Exodus. Many of these topologies are obtained from information pub-
lished at the ISPs’ Web sites and are between 6-12 months out of date. Although it may be possible
to construct an ISP’s geographic topology using extensive traceroute measurements, it would be
hard to assess the completeness of the constructed topology. Hence we restrict ourselves to the
geographic topologies obtained from CAIDA. However, as acknowledged by CAIDA [49], it is
possible that these topologies may themselves be incomplete. This may be due to limited tracing
or the presence of backup paths in routing. We will perform our analysis under the assumption that
these topologies are reasonably complete and only have a few missing links.

5.1 Degree distributions

The degree of a node provides a first-level quantification of the fault tolerance of that node in a given
topology. A node with a degreek can tolerate up tok geographic failures before getting completely
disconnected from all other nodes in the topology. In particular, a leaf node is not resilient to the
geographic failure of its neighbor, but the failure of a leaf node itself has minimal impact on the rest
of the network. On the other hand, the failure of a node with a very high degree would impact its
many neighbors (corresponding to many different geographic regions).

Given complete freedom in placingE = k ∗ N edges onN nodes, it is possible to construct a
topology that has a minimum vertex-cut of2k. In other words, theE edges can be placed in such a
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way that even in the presence of any2k − 1 node failures in the graph, the resulting topology will
still remain connected. We term such a placement of edges that maximizes the size of the vertex
cut as anoptimal placement. In the optimal placement, all the vertices have the same degree, viz.
2 ∗ k. For the simple case ofk = 1, the optimal placement results in a ring topology. Although this
optimal placement may be difficult to construct due to practical constraints, it provides us a nice
reference point for comparing the fault tolerance of ISP topologies. In order to contrast an ISP’s
topology from the optimal scenario, we look at the degree distribution of the nodes. We say that a
graph has askeweddegree distribution if its node degrees are distributed over a wide range with a
few large node degrees and a high percentage of the nodes are leaves. The Internet topology exhibits
a skewed degree distribution which can be characterized by a power law as described in [10].
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Figure 5.1: Degree Distribution of Geographic Topologies of ISPs

Among the 9 commercial ISPs, some of them such as AT&T and Genuity have a very skewed degree
distributions while other ISPs such as PSINet and Verio have much less skewed degree distributions
(closer to optimal). The degree distribution will not be affected much due to a few missing links.
Figure 5.1 shows the degree distributions of AT&T and PSINet. AT&T’s topology has the maximum
percentage of leaves among the 9 ISP topologies (62%) and has a few nodes with a degree greater
than 12 (Chicago, Dallas). On the other hand, more than 50% of PSINet’s nodes have a degree
of either 2 or 3. This matches the optimal degree for Verio given that it has an edge to node ratio
k = 1.5, which corresponds to an optimal degree of2 ∗ k = 3. The ISP-Combine curve shows the
degree distribution of the geographic topology obtained by combining the topology graphs of all 9
ISPs. The geographic nodes corresponding to the same city in the individual ISP topologies map
to a single node in the combined topology. The combined topology still has a significant skew in
its degree distribution.29% of the nodes continue to be leaves. This happens despite the combined
topology having an edge to node ratio ofk = 2.5, which corresponds to an optimal degree of 5. On
the other hand, nodes located in the important networking hubs of U.S. (e.g, San Jose, Washington
DC, Chicago) have a degree of more than20 in the combined topology.
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5.2 Failure of high connectivity nodes

The skewed degree distributions of many tier-1 ISPs indicate that many geographic regions of an
ISP may get disconnected if some high connectivity geographic nodes fail. To evaluate this, we
consider the failure scenario where thef nodes of highest degrees in a graph fail.

We define a pair of geographic nodes that are connected by a network path and can communicate
with each other as acommunicating pair. A connected topology ofN nodes can supportN(N+1)/2
communicating pairs. (Since each node represents a geographicregion, we also consider intra-node
communication of a node with itself.) Under the scenario where thef nodes of highest degrees fail,
the graph is disconnected into a forest where a node can only communicate with other nodes in
its connected component. A connected component withm < N nodes can supportm ∗ (m + 1)/2
communicating pairs. In the simple case where the parent of a leaf node fails, it produces a connected
component of size1 which supports exactly one communicating pair.
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Figure 5.2: Tolerance to Geographic Failures

Figure 5.2 shows the percentage of communicating pairs supported in the various ISP networks in
face of a varying number of geographic failures. The combined topology of the 9 ISPs supports
68% of the communicating pairs even after the removal of 5 important networking hubs in the US
(San Jose, New York, Washington DC, Chicago, Los Angeles). Among the 9 ISPs, while Genuity
and PSINet exhibit the least and the best fault tolerance characteristics. In the face of a single node
failure, most of the ISPs lose between 15% and 30% of their communicating pairs in the worst case.

It is important to note that these results may represent a near-worst case failure scenario for the
ISPs. If, however, many backup links are missing from our topology, the fraction of communicating
pairs may be much higher than what we have portrayed. However, our essential message from this
analysis is that a balanced degree distribution is a good feature for building a fault tolerant topology
for an ISP.
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Chapter 6

Conclusions

In this work, we have analyzed and inferred different geographic properties of the Internet. We
classify our work into three categories:

• IP-Geography mapping: An investigation of geographic mapping techniques of Internet
hosts.

• Geographic properties of routing: Quantify different properties of routing like circuitous
routing and hot-potato routing which cannot be quantified without geographic information.

• Geographic Fault Tolerance:Analyze the fault tolerance of an ISP in the presence of geo-
graphic node failures.

6.1 IP-Geography mapping

In IP-Geography mapping, we have examined the interesting but challenging problem of determin-
ing the geographic location of an Internet host knowing only its IP address. We have designed and
evaluated three distinct techniques, collectively referred to as IP2Geo, to address this problem: (a)
GeoTrack, which extracts location information from DNS names of hosts and routers, (b)GeoPing,
which determines location using network delay measurements made from several known locations,
and (c)GeoCluster, which combines partial IP-to-location mapping information with BGP rout-
ing data to determine location. These techniques span a broad spectrum. Our evaluation of these
techniques was based on extensive and varied data sets.

Our findings suggest that GeoCluster is the most promising one of the IP2Geo techniques. The
median error distance for GeoCluster varies from 28 km for well-connected university hosts to a
few hundred kilometers for a more heterogeneous set of clients. Importantly, however, GeoCluster is
self-calibrating in that thedispersionmetric offers an indication of how accurate a location estimate
is likely to be. Furthermore, thesub-clusteringtechnique is often able to infer more fine-grained
(geographic) structure in Internet address ranges than is present in BGP routing data. Both these
features make GeoCluster more suitable than the other techniques in the presence of clients that
connect via proxies. Finally, GeoCluster is passive in that it does not inject extra traffic into the
network.

Our investigation of GeoTrack and Whois-based techniques reveals the fundamental limitation due
to proxies. Our evaluation of GeoPing suggests that contrary to conventional wisdom there is a
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significant correlation between network delay and geographic distance that can be exploited to de-
termine coarse-grained location. We believe this will be the case even more as the Internet becomes
richly connected.

Our study also indicates that geography can be an interesting tool for analyzing the behavior of net-
work routing. The ratio oflinearizeddistance to geographic distance is indicative of how “direct” a
network route is. A large ratio may be indicative of an anomalous route. For instance, by computing
this ratio, GeoTrack was able to automatically flag an a highly circuitous route from Austin, Texas
to Kentucky via California, New Jersey, and Indiana!

Besides the specific techniques that we have developed, we believe an important contribution of
our paper is that the systematic study of the IP-to-location mapping problem using a wide range of
interesting data sets.

6.2 Geographic properties of routing

Our study on geographic properties of routing concentrated mainly on quantifying those aspects of
Internet routing which are not characterizable using network-centric metrics like delay and band-
width. First, our analysis based on extensive traceroute data shows the existence of many circuitous
routes in the Internet. From the end-to-end perspective, we observe that the circuitousness of routes
depends on the geographic and network locations of the end-hosts. We also find that the minimum
delay along a path is more strongly correlated with the linearized distance the path than it is with
the geographic distance between the end-points. This suggests that the circuitousness of a path does
impact its minimum delay characteristics, which is an important end-to-end performance metric. In
ongoing work, we are studying the correlation between geography and network performance.

Second, a more careful examination shows that many circuitous paths tend to traverse multiple ma-
jor ISPs. Although many of these major ISPs have points of presence in common locations, the
peering between them is restricted to specific geographic locations, which causes the paths travers-
ing multiple ISPs to be more circuitous. We also found that intra-ISP paths are far less circuitous
than inter-ISP paths. An important requirement to reduce the circuitousness of paths is for ISPs to
have peering relationships at many geographic locations.

Third, the fraction of the end-to-end path that lies within an ISP’s network varies widely from one
ISP to another. Furthermore, when we consider paths that traverse two or more major ISPs, we find
that the path generally traverses a significantly shorter distance in the first ISP’s network than in the
second. This finding is consistent with the hot-potato routing policy. Using geographic information,
we are able to quantify the degree to which an ISP’s routing policy resembles hot-potato routing.
The traceroute data we collected is available on-line at [54].

6.3 Geographic Fault Tolerance

Finally, our analysis of geographic fault tolerance of ISPs indicates that the (IP-level) network
topologies of many tier-1 ISPs exhibit skewed degree distributions which may induce a low tol-
erance to the failure of a single, critical geographic node. The combined topology of multiple ISPs
exhibits better fault tolerance characteristics, assuming that the ISPs peer at all geographic locations
that are in common. In our analysis, we assume that the published topologies of ISPs are reasonably
complete.
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6.4 Directions for Future Work

An important dimension that we have not carefully explored in our study is the relationship between
geography and performance. In our analysis of routing properties, we found a strong correlation be-
tween the end-to-end delay between two end-hosts and the linearized distance of the path connecting
them. This seems to suggest that geography may have a certain level of correlation with some per-
formance metrics like delay. One open question that arises is the usefulness of Geography-based
service redirection. Though this basic idea has been suggested in previous works [13], the trade-offs
of such a solution have not been carefully studied. The main advantage of geography based redi-
rection is its simplicity and flexibility. Not surprisingly, geography is a simple and understandable
user interface which is used by popular web servers to make end users choose the closest site for
downloading large data content like software distributions.

Some aspects of our IP-Geography mapping work need further exploration. We are trying to see
whether we can combine the different techniques proposed in our work to build a mapping service
which has a much better accuracy than the individual techniques themselves. Also, we are exploring
alternatives to overcome the fundamental limitations imposed by proxies. With the advent of IPv6,
we expect a better way of allocating IP addresses to end-hosts. We hope the IP-Geography mapping
would be easier to solve for IPv6 addresses.

Finally, our geographic fault tolerance analysis of ISP topologies is a very preliminary study and can
be expanded across many dimensions. First, we found that the combined topology of ISPs has much
better tolerance to geographic failures than individual ISP topologies. Though this is true from a
topology perspective, we require the underlying ISPs to peer at all common geographic locations to
realize this level of fault tolerance. An associated optimization problem is to determine the optimal
set of peering locations between ISPs to realize a certain level of fault tolerance. Second, from a
single ISP’s perspective, there exists a trade-off between the fault tolerance of its topology and the
amount of fiber that needs to be laid. Similar to the previous case, we can optimize the fault tolerance
of an ISP’s topology given the corresponding economic constraints.
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