
THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35
http://theoryofcomputing.org

SDP gaps and UGC-hardness for
Max-Cut-Gain∗

Subhash Khot Ryan O’Donnell†

Received: July 9, 2008; published: .

Abstract: Given a graph with maximum cut of (fractional) size c, the Goemans–Williamson
semidefinite programming (SDP)-based algorithm is guaranteed to find a cut of size at least
.878 · c. However this guarantee becomes trivial when c is near 1/2, since making random
cuts guarantees a cut of size 1/2 (i.e., half of all edges). A few years ago, Charikar and
Wirth (analyzing an algorithm of Feige and Langberg) showed that given a graph with max-
imum cut 1/2+ ε , one can find a cut of size 1/2+Ω(ε/ log(1/ε)). The main contribution
of our paper is twofold:

1. We give a natural and explicit 1/2 + ε vs. 1/2 + O(ε/ log(1/ε)) integrality gap for the
Max-Cut SDP based on Euclidean space with the Gaussian probability distribution. This
shows that the SDP-rounding algorithm of Charikar-Wirth is essentially best possible.

2. We show how this SDP gap can be translated into a Long Code test with the same param-
eters. This implies that beating the Charikar-Wirth guarantee with any efficient algorithm
is NP-hard, assuming the Unique Games Conjecture (UGC). This result essentially settles
the asymptotic approximability of Max-Cut, assuming UGC.

Building on the first contribution, we show how “randomness reduction” on related
SDP gaps for the Quadratic-Programming problem lets us make the Ω(log(1/ε)) gap as
large as Ω(logn) for n-vertex graphs. In addition to optimally answering an open question

∗An extended abstract appeared as [30].
†Supported in part by NSF CAREER grant CCF-0747250.

Authors retain copyright to their papers and grant “Theory of Computing” unlimited
rights to publish the paper electronically and in hard copy. Use of the article is permit-
ted as long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, see http://theoryofcomputing.org/copyright.html.

c© 2008 Subhash Khot, Ryan O’Donnell

http://theoryofcomputing.org/copyright.html

S. KHOT, R. O’DONNELL

of Alon, Makarychev, Makarychev, and Naor, this technique may prove useful for other
SDP gap problems.

Finally, illustrating the generality of our second contribution, we also show how to
translate the Davie–Reeds SDP gap for the Grothendieck Inequality into a UGC-hardness
result for computing the ‖ · ‖∞ 7→1 norm of a matrix.

ACM Classification: F.2.2,G.2.2

AMS Classification: 68Q17,68Q25,68W25,52A40,90C20,90C22

Key words and phrases: Max-Cut, Max-Cut-Gain, semidefinite programming, semidefinite pro-
gramming gaps, Unique Games Conjecture, dictator testing, Gaussian space, quadratic programming,
Grothendieck inequality.

1 Introduction

1.1 Max-Cut

Constraint satisfaction problems (CSPs) constitute some of the most fundamental algorithmic tasks. For
most interesting CSPs, finding an optimum solution is NP-hard; hence it is of interest to study “ap-
proximation algorithms”, i. e., efficient algorithms guaranteed to find a solution within a certain factor
of the optimum. Unfortunately, the computational complexity of approximating CSPs is still not well
understood; for example, it is not known if approximating Vertex-Cover to a factor of 3/2 is in P, nor is
the problem known to be NP-hard.

The main topic of this paper is the approximability of the Max-Cut problem — arguably the simplest
of all NP-hard constraint satisfaction problems. Recall that Max-Cut is the following algorithmic task:
Given an undirected graph G with nonnegative weights on the edges, partition its vertices into two parts
so as to maximize the “value” of the “cut” — i. e., the sum of the weights of the edges that straddle the
partition. Throughout this paper we will assume that graphs’ edge-weights are normalized so that their
total sum is 1.

Regarding approximation algorithms for Max-Cut, the trivial solution of picking a random partition
guarantees (in expectation) a cut of value at least 1/2. No essential improvement on this was known
until the breakthrough paper of Goemans and Williamson [20]. Let us very briefly review the Goemans–
Williamson algorithm. Given an n-vertex input graph G with weight ai j on edge (i, j) (and weights
summing to 1), the algorithm writes down the associated Max-Cut problem as an integer program:

max 1
2 + 1

2

n
∑

i, j=1
(−ai j)(yi · y j) (1.1)

subject to: yi ∈ {−1,1}.

The algorithm then relaxes this to a semidefinite program (SDP) which can be solved
efficiently —

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 2

MAX-CUT-GAIN

max 1
2 + 1

2

n
∑

i, j=1
(−ai j)(yi · y j) (1.2)

subject to: yi ∈ Sn−1.

Here Sn−1 denotes the unit sphere in n dimensions: {y ∈ Rn : ‖y‖2 = 1}, and · is interpreted as inner
product. Finally, given the optimal unit vector solution {y∗i }, the algorithm “rounds” the vectors to a ±1
solution as follows: It picks a random vector r from the n-dimensional Gaussian distribution (i. e., each
component ri is an independent standard Gaussian) and sets

yi = sgn(y∗i · r).

Goemans and Williamson showed that their algorithm has the following two guarantees (in expectation,
but the results can be made to hold with high probability):

• Given a graph with maximum cut 1− ε the algorithm finds a cut of value at least 1−Θ(
√

ε).

• Given a graph with maximum cut s the algorithm finds a cut of value at least αGW · s, where
αGW ≈ .878 is a certain trigonometric quantity.

On the hardness-of-approximation side, the best NP-hardness result known for Max-Cut, due to Håstad [24]
and Trevisan–Sorkin–Sudan–Williamson [44], shows that given a graph with maximum cut 17/21 it is
NP-hard to find a cut with value 16/21+ ε .

However recently, Khot, Kindler, Mossel and O’Donnell [28] showed hardness results that match
the above two guarantees of Goemans and Williamson, assuming Khot’s “Unique Games Conjec-
ture” (UGC) [27]. For a discussion of why assuming UGC seems necessary for sharp results given
our current knowledge, see [27, 28].

1.2 Max-Cut-Gain

Despite the results from [28], the Goemans–Williamson algorithm is certainly suboptimal in some cases.
For example, given a graph with optimum cut .55, the Goemans–Williamson algorithm is only guaran-
teed to return a cut with value .878 · .55 < .49, which is worse than the trivial random algorithm. Indeed,
Alon, Sudakov, and Zwick [4] have shown that there exist graphs on which the Goemans–Williamson
algorithm performs just this poorly. The issue was addressed first by Zwick [45] who gave an alternate
SDP rounding procedure which on graphs with maximum cut of fractional size c is guaranteed to find
a cut of size at least β (c), where β is a somewhat explicitly defined function satisfying β (c)/c→ 1
as c→ 1/2. The function β was improved by Feige and Langberg [19] using a different rounding
algorithm:

Step 1: Set y′i = roundT (y∗i · r), where roundT (t) =

{
t/T if t ∈ [−T,T],
sgn(t) otherwise.

(1.3)

Step 2: Randomly round y′i ∈ [−1,1] to yi ∈ {−1,1}. (1.4)

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 3

S. KHOT, R. O’DONNELL

In Step 1 (where again r is a random Gaussian vector), the algorithm may try different values for T . The
meaning of Step 2 is that we take yi to be 1 with probability 1

2 + 1
2 y′i and −1 otherwise (so E[yi] = y′i),

independently for each i. Note that we may as well view the [−1,1] values {y′i} as the final “solution”,
since with respect to Step 2,

E
[1

2 + 1
2 ∑(−ai j)(yi · y j)

]
= 1

2 + 1
2 ∑(−ai j)(y′i · y′j).

Feige and Langberg believed the rounding functions used in Step 1, which they called “s-linear func-
tions”, were “close to being [optimal]” given their rounding technique.

Since the trivial random algorithm finds cuts of value at least 1/2, it makes sense to measure the
performance of a Max-Cut approximation algorithm in terms of how much more than 1/2 it can guar-
antee. Indeed, Håstad and Venkatesh [25] suggest measuring the performance of algorithms for CSPs
by looking at how well they approximate the gain over a random solution; Håstad and Venkatesh were
particularly interested in this question for the Max-Lin (mod 2) problem, of which Max-Cut is a special
case. To that end, we define the “Max-Cut-Gain” approximation problem as follows: Given a weighted
graph with maximum cut 1/2+ ε , find a cut of value 1/2+αε for α as large as possible.

Neither Zwick [45] nor Feige–Langberg [19] provided any analysis of their algorithms in the Max-
Cut-Gain framework. However, Charikar and Wirth [12] subsequently gave an analysis of the Feige–
Langberg algorithm showing that when T = Θ(

√
log(1/ε)), it has the following guarantee:

• Given a graph where (1.2) is at least 1/2 + ε (e.g., if the maximum cut (1.1) is at least 1/2 + ε),
the algorithm finds a cut of value at least 1/2+Ω(ε/ log(1/ε)).

As for hardness of Max-Cut-Gain, the 16/17 NP-hardness result can be trivially translated into NP-
hardness of finding cuts of value 1/2 +(11/13)ε in graphs with maximum cut 1/2 + ε . The methods
of [28] slightly improve this to 1/2+(2/π)ε , assuming UGC.

1.3 Our main results — informal statement and discussion

The first two main results of this paper can now be stated.

Main Result 1: (For details, see Theorem 4.1.) For each ε > 0, the Goemans–Williamson SDP for
Max-Cut-Gain has an “integrality gap” of 1/2 + ε vs. 1/2 + O(ε/ log(1/ε)). In other words, there are
nonnegative ai j’s summing to 1 such that (1.2) has value at least 1/2 + ε but (1.1) has value at most
1/2+O(ε/ log(1/ε)). Thus the Charikar-Wirth SDP-rounding algorithm is essentially optimal.

Main Result 2: (For details, see Theorems 4.2, 4.3.) The above SDP gap can be translated into an
equivalent “Long Code test”. As a consequence, we get that for each ε > 0, given a graph with maxi-
mum cut 1/2 + ε it is UGC-hard to find a cut of value at least 1/2 + O(ε/ log(1/ε)). In other words,
beating the Charikar-Wirth Max-Cut-Gain guarantee with any efficient algorithm is NP-hard, assuming
UGC.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 4

MAX-CUT-GAIN

Recall that [28] proved sharp UGC-hardness in the “high end” — maximum cut near 1 — and
also sharp UGC-hardness of .878-factor approximation. Since our second theorem proves sharp UGC-
hardness in the “low end” — maximum cut near 1/2 — we consider the question of Max-Cut’s approx-
imability to be qualitatively completely settled, up to UGC.

We view these two results as an interesting continuation of the flurry of work in the last four years
on 2-bit constraint satisfaction problems such as Vertex-Cover, Max-Cut and Sparsest-Cut. This recent
work has made intriguing connections among the following topics:

• semidefinite programming (SDP) algorithms [6, 12, 26, 1, 3, 2, 11];

• SDP integrality gaps [32, 29, 33];

• Fourier analysis-based hardness results [31, 28, 13, 37, 18] subject to the Unique Games Conjec-
ture (UGC) [27].

In particular, within these papers we see SDP rounding algorithms, SDP gap constructions, and Fourier
analysis results all motivating one another. It was not until recently — two years subsequent to the ini-
tial conference publication of this work — that the full extent of these relationships became clear. See
Section 1.5.

The main theme in the present paper is the illustration of how SDP gaps for 2-bit constraint satis-
faction problems arise naturally in Gaussian space, and how these SDP gaps can be naturally translated
into Long Code tests and UGC-hardness results.

1.4 Related problems: Correlation-Clustering and Quadratic-Programming

Max-Cut-Gain is a special case of an algorithmic problem called (weighted) Correlation-Clustering. The
unweighted (i.e., all edges having equal weight) version of the problem, introduced by Bansal, Blum and
Chawla [7], has the following setting: Given is an unweighted graph G with some edges labeled “simi-
lar” and the remaining edges labeled “dissimilar”. The goal is to partition the vertices into any number
of “clusters” with the idea that edges labeled “similar” should be contained within clusters and edges
labeled “dissimilar” should straddle clusters. The authors of [7] considered three different goals for a
solution: “MaxAgree”, namely maximizing the number of correctly positioned edges, “MinDisagree”,
minimizing the number of incorrectly positioned edges, and “MaxCorr”, maximizing the “correlation”
— i. e., the difference of the number of correctly positioned edges and incorrectly positioned edges.

Although the approximability of the MaxAgree and MinDisagree versions became fairly well un-
derstood, progress on the approximability of the MaxCorr was not made until the paper of Charikar and
Wirth [12]. Charikar-Wirth first showed that up to a constant factor (at most 3), partitions into just two
clusters are as good as partitions into arbitrary numbers of clusters. Thus not much is lost by restricting
to the two-cluster version of Correlation-Clustering. It is easy to see that the weighted two-cluster ver-
sion of Correlation-Clustering is essentially the same as the Quadratic-Programming problem: Given a

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 5

S. KHOT, R. O’DONNELL

matrix of weights A = (ai j),

max
n
∑

i, j=1
(ai j)(yi · y j) (1.5)

subject to: yi ∈ {−1,1}.

To see the equivalence to two-cluster Correlation-Clustering, think of the yi’s as indicating which clus-
ter i is in and think of the positive weights ai j as measuring similarity and the negative weights ai j

measuring dissimilarity. Also, note that Max-Cut-Gain is the special case of Quadratic-Programming
in which all the weights are nonpositive.

Quadratic-Programming was shown to admit a Ω(1/ logn)-approximation algorithm in works of
Nesterov [39], Nemirovski, Roos and Terlaky [38], and Megretski [36]; as described in Charikar and
Wirth [12], running the Feige–Langberg rounding procedure with T = Θ(

√
logn) on the natural SDP

relaxation (1.5) yields a Ω(1/ logn)-approximation algorithm. Thus Correlation-Clustering also has an
Ω(1/ logn)-approximation algorithm.

On the hardness side, Arora, Berger, Hazan, Kindler and Safra [5] showed that giving a (1/ logγ0 n)-
approximation is hard for some universal γ0 > 0 unless NP is contained in quasipolynomial time. The
instances constructed in that paper use heavily skewed positive and negative weights and are thus not
relevant for the Max-Cut-Gain problem. Alon, Makarychev, Makarychev and Naor [2] showed a tight
SDP gap for Quadratic-Programming of Ω(logn). Their proof, however, was completely nonconstruc-
tive; they used duality to argue that such a gap existed without giving any explicit instance. They gave
as an open problem the question of finding an explicit instance demonstrating the Ω(logn) gap. The
work [5] gives a fairly complicated construction showing an Ω(logn/ log logn) gap.

The third main result in this paper is the following:

Main Result 3: (For details, see Theorem 4.4.) There is a relatively simple and essentially explicit
Ω(logn) SDP gap for Quadratic-Programming, based on “randomness reduction” of the 1/2 + ε vs.
1/2+O(ε/ log(1/ε)) SDP gap we prove for Max-Cut-Gain.

Finally, the two-cluster Correlation-Clustering problem is of special interest when the underlying
graph is bipartite. Following Alon, Makarychev, Makarychev, and Naor [2], we call the weighted version
of this problem KN,N-Quadratic-Programming:

max
n
∑

i, j=1
(ai j)(yi · z j) (1.6)

subject to: yi ∈ {−1,1},z j ∈ {−1,1}.

This problem is equivalent to that of computing the ‖ · ‖∞ 7→1 norm of the matrix A, which is closely
related to its “cut norm”. See Alon and Naor [3] for a discussion of the algorithmic significance of
this problem. Alon and Naor studied approximation algorithms for this problem and noted that the

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 6

MAX-CUT-GAIN

Grothendieck Inequality [22] from the theory of Banach spaces is nothing more than a constant up-
per bound on the SDP gap of (1.6). They took the best known constant for Grothendieck’s inequal-
ity — KKrivine = π/2ln(1 +

√
2) ≈ 1.78, due to Krivine [34] — and translated it into a (1/KKrivine)-

approximation algorithm for the problem of approximating ‖A‖∞7→1.

The last main theorem of our paper is the analogue of this for lower bounds/hardness:

Main Result 4: (For details, see Theorems 4.5, 4.6.) The best known lower bound on the Grothendieck
SDP gap (1.6) — namely, KDavie–Reeds ≈ 1.67, due independently to Davie [17] (see [23]) and Reeds [43]
— can be translated into a UGC-hardness result for (1/KDavie–Reeds)-approximating KN,N-Quadratic-
Programming.

1.5 Subsequent work

Subsequent to the 2006 publication of the extended abstract of this work [30], research has progressed
on the connections between SDP algorithms and gaps, Fourier analysis, and Long Code test described
in Section 1.3. Two papers appearing recently are particularly relevant. In [40], O’Donnell and Wu
continue the research in the present paper. Using a combination of the von Neumann Minimax Theorem
and Borell’s theorem on Gaussian rearrangement [10], the authors show that the Gaussian graphs used
to prove our two main theorems are indeed the “worst” graphs. More specifically, they show that the
optimal SDP gaps and UGC-hardness for Max-Cut-Gain come from negative probability operators of
the form−(pT1 +(1− p)Tρ0), where p∈ [0,1], ρ0 ∈ [−1,0] — just as in the present paper’s Theorem 5.5.
This allows O’Donnell and Wu to determine, for every c, the precise number s such that c vs. s is the
optimal SDP gap and UGC-hardness for Max-Cut-Gain. In [41], Raghavendra significantly extends the
methods in these papers, showing (roughly speaking) that for all constraint satisfaction problems, the
optimal SDP gaps and UGC-hardness match. The only downside of this result is that it is somewhat
inexplicit; determining what the matching values are is not so easy. In particular, to determine the best s
for a given c up to an additive δ , Raghavendra gives only an algorithm taking doubly-exponential time
in δ .

1.6 Outline of this paper

The remainder of the paper is organized as follows. In Section 2 we formally define the algorithmic
problems we are interested in for this paper — Max-Cut-Gain, Quadratic-Programming, and KN,N-
Quadratic-Programming. We also describe the SDP relaxations for these problems, as well as a prob-
abilistic rephrasing of them that allows us to consider instances on Gaussian space. In Section 3 we
introduce the Fourier and Hermite expansion tools we will need, define “Long Code tests”, and intro-
duce the “Davie–Reeds operator” that provides the basis for our SDP gaps and UGC-hardness results.
Section 4 is devoted to formal statements of our main results. Section 5 contains the proofs of our first
two main results, for Max-Cut-Gain. Section 6 gives the proof of our “randomness reduction” for the
Quadratic-Programming SDP. Finally, Section 7 proves our UGC-hardness result for KN,N-Quadratic-
Programming.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 7

S. KHOT, R. O’DONNELL

2 Problem definitions

In this section we give formal definitions of the problems studied in this paper.

2.1 Algorithmic problems

The most general algorithmic problem we are concerned with is Quadratic-Programming:

Definition 2.1. The Quadratic-Programming problem is the following: Given a symmetric real matrix
A = (ai j), compute

max ∑
i, j

(ai j)(yi · y j)

subject to: yi ∈ [−1,1].

Convention: We will always assume that ∑i, j |ai j|= 1. This is without any loss of generality because
we can scale all ai j’s by the same positive constant.

The assumption that A is symmetric is without loss of generality. Also, our definition of Quadratic-
Programming has a slight difference from the definition given in [12, 5, 2]: namely, we allow the
variables to take values in [−1,1], not just {−1,1}, and we also allow nonzero diagonal entries in A,
corresponding to “self-loops” in the graph in the Correlation-Clustering problem. We believe our defi-
nition is mathematically more natural, and in any case, the two definitions are essentially equivalent for
all intents and purposes — see Section 2.3.

We are interested in two special cases of Quadratic-Programming. The first is our main problem of
interest, Max-Cut-Gain:

Definition 2.2. The Max-Cut-Gain problem is the special case of Quadratic-Programming in which all
ai j’s are nonpositive. This corresponds to the graphical instance of Max-Cut-Gain in which the weight
on edge (i, j) is −ai j/2.

We remark that Crescenzi, Silvestri and Trevisan [16] showed that the weighted and unweighted
versions of Max-Cut-Gain have the same polynomial-time approximability up to an additive 1/poly(n).

We also define the bipartite special case of the Quadratic-Programming problem, investigated by
Alon and Naor [3] using the Grothendieck Inequality. This is equivalent to the problem of computing
‖A‖∞7→1.

Definition 2.3. The KN,N-QUADRATIC-PROGRAMMING problem is the following: Given a real matrix
A = (ai j), compute

max ∑
i, j

(ai j)(yi · z j) (2.1)

subject to: yi,zi ∈ [−1,1].

It is easy to check that the optimizers in this problem are always in {−1,1} and thus the issue of
“zeros on the diagonal” is irrelevant.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 8

MAX-CUT-GAIN

2.2 SDP relaxations, and the probabilistic viewpoint

We begin this section by defining the semidefinite programming (SDP) relaxation of the Quadratic-
Programming problem.

Definition 2.4. For d ∈N, we define Bd to be the d-dimensional unit ball, Bd = {x ∈Rd : ‖x‖2 ≤ 1}. In
particular, B1 = [−1,1].

Note that the Quadratic-Programming problem can be written as:

max
n
∑

i, j=1
(ai j)(yi · y j) (2.2)

subject to: yi ∈ B1.

Definition 2.5. The d-dimensional SDP relaxation of (2.2) is defined to be:

max
n
∑

i, j=1
(ai j)(yi · y j) (2.3)

subject to: yi ∈ Bd .

If unspecified, the value d is assumed to be n.

The interest in the SDP relaxation is that if d = n, it can be solved in polynomial time (strictly
speaking, it can be solved to within additive error 2−poly(n); see [20]). Thus we have the following
strategy for approximating (2.2): solve the SDP relaxation and then try to “round” the optimal vectors
y∗i into reals yi in [−1,1] such that the value of the quadratic form does not go down too much. This
strategy motivates the definition of “SDP integrality gaps”:

Definition 2.6. Given the matrix A, we say that the SDP has an SDP (integrality) gap of κ vs. κ ′ if the
value of (2.3) is at least κ and the value of (2.2) is at most κ ′. The associated SDP gap ratio is defined
to be κ ′/κ . The SDP gap of the problem Quadratic-Programming is defined to be the worst SDP gap
ratio over all possible inputs A. We make the same definitions for Max-Cut-Gain and KN,N-Quadratic-
Programming.

The input instances A we construct in exhibiting SDP gaps for Max-Cut-Gain and Quadratic-
Programming are most naturally set in Gaussian space. One can think of this setting as the one in
which the matrices A are infinite, their “coordinates” are indexed by points in Rn, and their coordinates
are also “weighted” according to the Gaussian probability distribution. The most natural way to allow
for this is to rephrase the Quadratic-Programming problem and its SDP relaxation in a probabilistic
manner. In the remainder of this section we therefore give definitions for the probabilistic versions of
Quadratic-Programming and Max-Cut-Gain .

Making these definitions requires some preparation. Let (X ,µ) be any probability space. The three
cases of interest to us are X = {1, . . . ,N} with µ the uniform distribution, X = {−1,1}n with µ the

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 9

S. KHOT, R. O’DONNELL

uniform distribution, and X = Rn with µ = γ , the n-dimensional Gaussian probability distribution. We
consider the set of functions f : X → R as an inner product space, with

〈 f ,g〉= E
x

µ←X
[f (x)g(x)],

We will sometimes write
∫

X F(x)dµ(x) in place of E
x

µ←X
[F(x)]. We also write ‖ f‖2 =

√
〈 f , f 〉.

Definition 2.7. An instance of the probabilisitic version of Quadratic-Programming is a (bounded)
linear operator A on the above inner product space, and the associated problem is to determine

sup
f :X→[−1,1]

〈 f ,A f 〉. (2.4)

Note that in the case of X = {1, . . . ,N} this is the same as the Quadratic-Programming originally
defined, after scaling (the matrix) A by a factor of N.

Definition 2.8. The probabilistic version of KN,N-Quadratic-Programming is to determine

sup
f ,g:X→[−1,1]

〈 f ,Ag〉.

Finally, to define the probabilistic version of Max-Cut-Gain, we require the following:

Definition 2.9. A probability operator X is any linear operator B satisfying the following two conditions:
B f ≥ 0 for all f ≥ 0, and 〈1,B1〉= 1.

In the simple case of X = {1, . . . ,N}, a probability operator is precisely a nonnegative matrix with
entries summing to 1. We therefore make the following definition:

Definition 2.10. The probabilistic version of Max-Cut-Gain is defined to be the special case of Quadratic-
Programming in which A is the negative of a probability operator.

To define the probabilistic version of the SDP for Quadratic-Programming, we need to introduce a
few more notions. First, we extend the inner product space defined above to functions f : X → Rd by
defining

〈 f ,g〉= E
x

µ←X
[〈 f (x),g(x)〉],

where the 〈·, ·〉 inside the expectation is just the usual inner product in Rd . Next:

Definition 2.11. Given a linear operator A on functions X→R, we say its component-wise version is the
linear operator A(d) on functions f : X → Rd given by applying A component-wise on the d coordinate
functions of f .

We now can define the probabilistic version of the SDP:

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 10

MAX-CUT-GAIN

Definition 2.12. The probabilistic d-dimensional SDP relaxation of (2.4) is defined to be

sup
f :X→Bd

〈 f ,A(d) f 〉. (2.5)

We make the analogous definitions also for the probabilistic SDP relaxations of KN,N-Quadratic-Programming
and Max-Cut-Gain. When X = Rn with the Gaussian measure and d is not mentioned, we assume d = n.

Regarding the possibility of an infinite domain X , the reader can be assured of the following facts:
First, for any constants κ and κ ′, a probabilistic SDP gap of κ vs. κ ′ in the Gaussian space setting for
any of our problems implies the same gap in the usual {1, . . . ,N} setup for sufficiently large N, by a
limiting argument. Furthermore: a) our Long Code test and UGC-hardness result for Max-Cut-Gain
take place entirely in the finite setting of X = {−1,1}n, using the Gaussian space setting

only for motivation; b) our third theorem on “randomness reduction” shows how to effectively
convert an ε vs. O(ε/ log(1/ε)) SDP gap in Gaussian space into one with the same parameters over
{1, . . . ,N} with N = poly(1/ε). We stress that the extension to the Gaussian space framework is made
because this is the setting in which our SDP gaps naturally occur.

2.3 A slight annoyance: zeros on the diagonal

In this section we consider a minor technical point — the issue of “self-loops”, or “zeros on the diago-
nal”.

As noted, our definition of Quadratic-Programming, Definition 2.1, is slightly different from the
definition of the problem used by [12, 5, 2]. In their definition, the variables are maximized only over
{−1,1}, and the diagonal entries of the matrix A must be zero. Let us call this version of the problem
“Restricted-Quadratic-Programming”.

Let us compare the two definitions. First, note that if A has zero diagonal entries then the definitions
are completely equivalent: given optimal (y∗i) for our problem, rounding them randomly as in the Feige–
Langberg algorithm yields a solution in {−1,1} that is equally good in expectation, and thus there exists
maximizers in {−1,1} with the same value.

On the other hand, if nonzero diagonal entries are allowed then the maximum over yi ∈ {−1,1} can
be negative, leading to trouble in defining approximation guarantees. However with our definition the
solution yi ≡ 0 is always allowed, showing that the maximum is always nonnegative. We believe this
makes our definition more mathematically natural.

In any case, the definitions are essentially equivalent for all intents and purposes, as the following
proposition (whose trick appears implicitly in [5]) shows:

Proposition 2.13. There is an efficient reduction mapping Quadratic-Programming instances to Restricted-
Quadratic-Programming instances on M2 times as many variables under which the SDP value and the
actual value change by at most an additive O(1/M).

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 11

S. KHOT, R. O’DONNELL

Proof. Suppose we have an instance of Quadratic-Programming, with our convention that ∑ |ai j| = 1
(which is without loss of generality). Replace each variable i with M copies of itself. Split the old
weights ai j into M2 new weights in the natural way: put weight ai j/M2 between each new i-variable and
new j-variable when i 6= j; and, put weight 2aii/M2 between each pair of distinct i-variables and weight
aii/M2 on each i-variable’s self-loop. This gives a new instance of Quadratic-Programming and it is
easy to see that it has the same value and SDP value as the old one. Indeed, any solution (yi) in the old
instance can be duplicated into an equal-value solution in the new instance, and any solution (yi) in the
new instance can be averaged into an equal-value solution in the old instance (SDP value or real value).
But note that if the total weight on the diagonal, ∑ |aii| was α in the old instance, the new instance has
only total weight α/M ≤ 1/M on its diagonal. If we simply delete this diagonal weight (and rescale
slightly) we get an instance of Restricted-Quadratic-Programming, and this deletion changes the value
of any solution by at most an additive O(1/M).

From this, we conclude that the Restricted-Quadratic-Programming and Quadratic-Programming
problems have identical SDP gaps and also the same polynomial-time approximability up to arbitrarily
small inverse-polynomial additive factors.

3 Long Code tests and Fourier analysis

3.1 Fourier and Hermite expansions

We begin by defining the notions we need for Fourier analysis of Boolean functions and Hermite analysis
of functions on Gaussian space.

Definition 3.1. Recall the inner product space on functions f : {−1,1}n→R defined in Section 2.2. Un-
der this definition, the set of functions (χS)S⊆[n] defined by χS(x1, . . . ,xn) = ∏i∈S xi forms an orthonormal
basis, and thus we have the Fourier expansion of any f : {−1,1}n→ R,

f = ∑
S⊆[n]

f̂ (S)χS,

where f̂ (S) = E[f χS]. The functions χi = ±χ{i} are called the dictator functions or Long Codes. We
also have the Plancherel identity,

〈 f ,g〉= ∑
S⊆[n]

f̂ (S)ĝ(S).

We define the projection to level k operator Pk (for 0≤ k≤ n) and the Bonami-Beckner operator Tρ (for
0≤ ρ ≤ 1) by

Pk f = ∑
|S|=k

f̂ (S)χS, Tρ f =
n

∑
k=0

ρ
kPk.

The Bonami-Beckner operator also acts as (Tρ f)(x) = Ey[f (y)], where the string y is formed by letting
yi = xi with probability ρ and letting yi be uniformly random otherwise, independently for each i. Thus
the Bonami-Beckner operator is a probability operator.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 12

MAX-CUT-GAIN

Definition 3.2. Recall the inner product space on functions f : (X ,γ)→ Rd defined in Section 2.2,
where X = Rn and γ is the n-dimensional Gaussian probability distribution. Under this definition there
is a complete set of orthonormal polynomials Rn→ R called the Hermite polynomials, (Hk)k∈Nn (see,
e.g., the book of Ledoux and Talagrand [35]). We write |k| = k1 + · · ·+ kn. Any function f : Rn→ Bd
has a Hermite expansion,

f = ∑
k∈Nn

f̂ (k)Hk,

where the Hermite coefficients f̂ (k) =
∫
Rn f (x)Hk(x)dγ(x) are in Bd . We have the Plancherel identity

〈 f ,g〉= ∑
k∈Nn

〈 f̂ (k), ĝ(k)〉.

We define the projection to level k operator Pk (for k ∈ N) and the Ornstein-Uhlenbeck operator Tρ (for
0≤ ρ ≤ 1) by

Pk f = ∑
|k|=k

f̂ (S)Hk, Tρ f = ∑
k≥0

ρ
kPk.

As H0(x) = 1 and Hei(x) = xi, we have

P0 f = E[f], (P1 f)(x) =
∫

Rn
〈x,y〉 f (y)dγ(y).

We also have that
(Tρ f)(x) =

∫
Rn

f (ρx+
√

1−ρ2y)dγ(y),

so the Ornstein-Uhlenbeck operator is a probability operator. From these facts we also see that P0, P1,
and Tρ are component-wise operators.

3.2 Long Code tests

Our second main theorem in this paper is a hardness result for Max-Cut-Gain. Being a “2-variable
constraint satisfaction problem”, it seems very difficult to prove a sharp inapproximability NP-hardness
result for it using current techniques (see Khot [27]). Thus we prove a UGC-hardness result; i. e., we
reduce the “Unique Label Cover” problem to that of approximating Max-Cut-Gain. The paper [28]
provides a relatively clean template for such reductions in its UGC-hardness result for Max-Cut; the
reduction is through the use of gadgets known as “Long Code tests”. (Such reductions originate in the
work of Bellare, Goldreich and Sudan [8] and were developed significantly by the work of Håstad [24].)

Long Code tests are usually defined as property testing algorithms for testing whether a given func-
tion f : {−1,1}n → {−1,1} is correlated to a “Long Code” or “dictator” — i. e., ±χi for some i. For
our purposes, however, we can think of a Long Code test as something like an instance A demonstrating
a probabilistic SDP integrality gap in the setting X = {−1,1}n. The difference is that we don’t com-
pare 〈 f ,A f 〉 for functions f : {−1,1}n→ Bd and f : {−1,1}n→ [−1,1]. Instead we compare dictator
functions f =±χi versus functions f : {−1,1}n→ [−1,1] that are far from being dictators. Note that a
function f is far from being a dictator if | f̂ (i)| is small for all i. We make the following definition:

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 13

S. KHOT, R. O’DONNELL

Definition 3.3. In the context of Quadratic-Programming and its subproblems, a linear operator A on
functions f : {−1,1}n→ [−1,1] is said to be a Long Code test with completeness c and soundness s if:

〈χi,Aχi〉 ≥ c for all i,

and sup
f :{−1,1}n→[−1,1]
∀i | f̂ (i)|≤ε

〈 f ,A f 〉 ≤ s+δ (ε), (3.1)

where δ (ε) is a function such that δ (ε)→ 0 when ε → 0.

As a rule of thumb, given a c vs. s Long Code test for a 2-query constraint satisfaction problem, the
techniques in [28] tend to yield UGC-hardness of finding solutions of value at least s+δ on inputs with
optimum value at least c−δ , for every δ > 0. We will see that this applies in our case of Max-Cut-Gain,
and thus to get our sharp ε vs. O(ε/ log(1/ε)) UGC-hardness for approximating Max-Cut-Gain it will
suffice for us to construct a Long Code test with these parameters.

Indeed, the methodology of [28] can even work in a more relaxed setting, where instead of show-
ing (3.1), one only needs to show

sup
f :{−1,1}n→[−1,1]

Inf≤k(δ)
i (f)≤ε

〈 f ,A f 〉 ≤ s+δ (ε),

where
Inf≤k

i (f) := ∑
|S|≤k,k3i

f̂ (S)2

and k(δ) < ∞ is a function independent of n. We will use this relaxation in our UGC-hardness result for
KN,N-Quadratic-Programming.

3.3 The Davie–Reeds operator

We now define a linear operator that plays a crucial role in all of our results:

Definition 3.4. For each 0 < λ < 1, define the Davie–Reeds operator DRλ on functions f : (X ,µ)→Rd

by DRλ = P1−λ · id. This definition makes sense both for X = {−1,1}n and µ the uniform distribution,
and for X = Rn and µ = γ , the n-dimensional Gaussian distribution. Indeed, as we will see in Section 5.1,
this definition makes sense in an even more general context.

Davie [17] and Reeds [43] used this operator (with a suitable value of λ) to give the best known lower
bound on the integrality gap of the KN,N-Quadratic-Programming SDP (2.1) (i.e., the Grothendieck con-
stant). See Section 7 for further details.

Although a Davie–Reeds operator is not a negative probability operator, it can be closely related to
one; we will use it to give our SDP gaps for Max-Cut-Gain and also our Long Code test for this problem.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 14

MAX-CUT-GAIN

Our “randomness reduction” will also be for Quadratic-Programming instances with Davie–Reeds op-
erators, and our UGC-hardness result for KN,N-Quadratic-Programming relies on the Davie–Reeds SDP.

Note that in general, id = ∑k≥0 Pk. Thus we can also write the Davie–Reeds operator DRλ as

DRλ f =−λP0 +(1−λ)P1−λP2−λP3−·· ·

Intuitively, the Davie–Reeds operator mostly keeps the “linear” part of a function and also “negatively
highlights” the nonlinear parts of a function. Thus it makes sense that it plays a useful role in Long Code
tests, where the functions to be distinguished, dictator functions ±χ , are precisely the linear {−1,1}-
valued functions.

4 Formal statements of our results

In this section we formally state our main results. They illustrate the main theme of the paper — natural
SDP gaps on Gaussian space yielding Long Code tests yielding UGC-hardness results.

First, an SDP gap on Gaussian space for a Max-Cut-Gain operator:

Theorem 4.1. Let ε > 0 and set d = poly(1/ε). Let A denote either the Davie–Reeds operator DR1−ε

or the negative probability operator Aε defined in Section 5.4. Then we have the following SDP gap on
d-dimensional Gaussian space:

sup
f :(Rd ,γ)→Bd

〈 f ,A f 〉 ≥Ω(ε),

and sup
f :(Rd ,γ)→[−1,1]

〈 f ,A f 〉 ≤ O(ε/ log(1/ε)).

For negative probability operators — i. e., those operators used in the Max-Cut-Gain problem —
this tradeoff is optimal, by the SDP rounding algorithm of Charikar and Wirth [12]. The key part of
this theorem is the study of 〈 f ,DR1−ε f 〉 for functions f : (Rd ,γ)→ [−1,1]. Interestingly, our analysis
suggests that the optimizing f ’s should be close to the form f (x) = roundT (〈x,r〉) for some vector r,
where roundT is as in the Feige–Langberg rounding algorithm (1.3). This would corroborate a sugges-
tion made in [19], that such functions seem to be close to optimal for rounding the SDP.

We next show that this gap can be translated into an equivalent Long Code test.

Theorem 4.2. Let ε > 0 and assume n ≥ O(log(1/ε)). Let A be as in Theorem 4.1. Then we have the
following Long Code test on {−1,1}n:

〈χi,Aχi〉 ≥Ω(ε) for all i ∈ [n],

and sup
f :{−1,1}n→[−1,1]

∀i | f̂ (i)|≤Ω(1/ log(1/ε))

〈 f ,A f 〉 ≤ O(ε/ log(1/ε)).

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 15

S. KHOT, R. O’DONNELL

Using the Unique Label Cover reduction from [28], we easily obtain the following:

Theorem 4.3. Assume UGC holds. Then for all (sufficiently small) constant ε > 0, it is NP-hard to dis-
tinguish Max-Cut-Gain instances with gain at least ε from instances with gain at most O(ε/ log(1/ε)).

Again, because of [12] this result is optimal up to constant factors. It also closes all qualitative as-
pects of the hardness of Max-Cut subject to UGC: from [28] we have hardness of 1−ε versus 1−Θ(

√
ε)

at the “high end” and also .878 factor hardness (both sharp due to [20]); Theorem 4.3 gives the sharp
“low end” tradeoff, 1/2+ ε versus 1/2+O(ε/ log(1/ε)).

Regarding Quadratic-Programming, we show that we can perform “randomness reduction” on The-
orem 4.1’s SDP gap for DR1−ε on Gaussian space; i. e., this SDP gap can be highly efficiently “dis-
cretized”. In particular, we can discretize to poly(d) = poly(1/ε) many points and maintain the gap.

Theorem 4.4. Let ε > 0 be sufficiently small, let d = 1/ε3 and N = Θ(d7). Let G be a set of N points
drawn at random from d-dimensional Gaussian space and think of G as having the uniform probability
distribution. Then for almost all choices of G (specifically, with probability at least 1−1/N), we obtain
an SDP gap on G with factor Ω(log(1/ε)) = Ω(logN):

sup
f :G→Bd

〈 f ,DR1−ε f 〉 ≥Ω(ε),

and sup
f :G→[−1,1]

〈 f ,DR1−ε f 〉 ≤ O(ε/ log(1/ε)).

(Here we are using our general definition of the Davie–Reeds operator on arbitrary L(d)
2 (Rn,µ)

spaces; see Section 5.1 for more details.) This SDP gap for Quadratic-Programming is optimal up to
constant factors by the O(logN)-approximation algorithm of [12]. The fact that Quadratic-Programming
has an SDP gap of Ω(logN) was first established by Alon, Makarychev, Makarychev, and Naor in [2].
However the argument used there was completely nonconstructive; they used duality to argue an Ω(logN)
gap exists without explicitly giving any instance. They left the problem of describing an instance achiev-
ing the gap as an open problem. Arora, Berger, Hazan, Kindler and Safra [5] gave a somewhat com-
plicated construction achieving gap Ω((logN)/(log logN)). We believe our construction essentially
resolves the problem by providing a natural and more or less explicit instance with gap Ω(logN).

Finally, we describe our hardness result for the KN,N-Quadratic-Programming problem. Here we
show that the Davie–Reeds SDP gap for the Grothendieck Inequality can be translated into a “two-
function Long Code test” on {−1,1}n:

Theorem 4.5. For all 0 < λ < .4, d ≥ 1, and δ > 0,

sup
f ,g:{−1,1}n→Bd

〈 f ,DRλ g〉= 〈χi,DRλ χi〉= 1−λ for all i ∈ [n],

and sup
f ,g:{−1,1}n→{−1,1}

∀i |ĝ(i)|≤δ

〈 f ,DRλ g〉 ≤ s(λ)+O(δ).

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 16

MAX-CUT-GAIN

Here s(λ) is SDP “soundness” arising in the Davie–Reeds proof; see Section 7 for more details. This
Long Code test is not yet sufficient for a UGC-hardness result because it only shows that if f and g pass
the test with probability significantly more than s(λ) then each has a coordinate with large low-degree
influence. However we need f and g to share such a coordinate. This technical difficulty can be over-
come, however, with a novel application of Green’s “Szemerédi Regularity Lemma for (Z/2Z)n” [21].
Having done this, we get a UGC-hardness result for KN,N-Quadratic-Programming:

Theorem 4.6. Assume UGC holds. Then for every constant ε > 0 it is NP-hard to approximate the
KN,N-Quadratic-Programming problem to within factor 1/KDavie–Reeds + ε ≈ .597.

This result complements the SDP rounding algorithm of Alon and Naor [3] which uses Krivine’s
upper bound on Grothendieck’s constant to give a 1/KKrivine ≈ .561 approximation for KN,N-Quadratic-
Programming. The result also improves significantly on the 12/13≈ .923 NP-hardness result for KN,N-
Quadratic-Programming given in [3], albeit only under UGC.

5 Quadratic-Programming and Max-Cut-Gain

5.1 Elementary identities

In this section we give some elementary identities regarding the operators P1 and DR1−ε . Most of the
identities hold completely formally from the definitions and work in the setting of functions Rn→ Rd .
Let us give some general definitions:

Definition 5.1. Let µ be any probability distribution on Rn, discrete or continuous. We write E[·] for
integration with respect to µ . For functions f : Rn→Rd in the inner product space L(d)

2 (Rn,µ) we define
the following:

• The ith “orthogonal coefficient” f̂ (i) ∈ Rd , for 1≤ i≤ n, via

f̂ (i) = E
y
[yi f (y)].

• The operator P1 via

(P1 f)(x) = E
y
[〈x,y〉 f (y)] =

n

∑
i=1

f̂ (i)xi.

• The “projection deficiency” operator ∆1 via

∆1 = P2
1 −P1.

• The Davie–Reeds operator DR1−ε via

DR1−ε f = P1 f − (1− ε) · id.

The following identities hold immediately from expanding the definitions:

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 17

S. KHOT, R. O’DONNELL

Lemma 5.2. For any f in L(d)
2 (Rn,µ),

〈 f ,P1 f 〉=
n

∑
i=1
‖ f̂ (i)‖2

2 (5.1)

= ‖ f‖2
2−‖P1 f − f‖2

2 + 〈∆1 f , f 〉 (5.2)

〈 f ,DR1−ε f 〉=
n

∑
i=1
‖ f̂ (i)‖2

2− (1− ε)‖ f‖2
2 (5.3)

= ε

n

∑
i=1
‖ f̂ (i)‖2

2− (1− ε)‖P1 f − f‖2
2 +(1− ε)〈∆1 f , f 〉 (5.4)

〈∆1 f , f 〉=
n

∑
i, j=1

(E[xix j]−δi j) · 〈 f̂ (i), f̂ (j)〉 (5.5)

(Here δi j is the Kronecker delta.)

Our main interest is in the case that µ is either the n-dimensional Gaussian distribution or the uni-
form distribution on {−1,1}n. (The general case is only necessary for the Gaussian SDP discretization
argument in Section 6.) In these two cases we have E[xix j] = δi j; hence 〈∆1 f , f 〉 = 0 for every f and
P1 is indeed a projection operator (P2

1 = P1). This implies all the familiar identities from Fourier and
Hermite analysis; e.g., 〈 f ,P1 f 〉= ‖P1 f‖2

2.

5.2 SDP gap for DR1−ε on Gaussian space

In this section we show an ε versus O(ε/ log(1/ε)) SDP gap for the Davie–Reeds operator DR1−ε on
Gaussian space. This yields the A = DR1−ε part of Theorem 4.1.

Theorem 5.3. There is a universal constant C such that for every ε > 0 and d ≥ 1 we have

sup
f :(Rd ,γ)→Bd

〈 f ,DR1−ε f 〉 ≥ ε−C/d, (5.6)

and sup
f :(Rd ,γ)→[−1,1]

〈 f ,DR1−ε f 〉 ≤C ε/ log(1/ε). (5.7)

Proof. To prove (5.6), take f : (Rd ,γ)→ Bd to be the function f (z) = z/‖z‖2. In this case,

f̂ (i) =
∫

yi
y
‖y‖

dγ(y), and hence f̂ (i) j =
∫ yiy j

‖y‖2
dγ(y).

It is easy to see that for j 6= i we have f̂ (i) j = 0 (since the density function of y j is even, say). Thus

‖ f̂ (i)‖2 =
∫ y2

i

‖y‖2
dγ(y), and hence

d

∑
i=1
‖ f̂ (i)‖2 =

∫
‖y‖2 dγ(y).

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 18

MAX-CUT-GAIN

It is well known that the expected length of a random d-dimensional Gaussian is at least
√

d−C/
√

d,
for some universal constant C (this also follows from Lemma 6.2). Thus we have ∑

d
i=1 ‖ f̂ (i)‖2 ≥

√
d−

C/
√

d. But all summands here are in fact the same, by symmetry; thus

〈 f ,P1 f 〉=
d

∑
i=1
‖ f̂ (i)‖2

2 ≥ (
√

d−C/
√

d)2/d ≥ 1−2C/d,

where we used (5.1). Substituting this into (5.3) and using ‖ f‖2 ≤ 1 we get

〈 f ,DR1 f 〉 ≥ ε−2C/d

for our particular f , thus proving the “completeness” (5.6).

We now prove the “soundness” (5.7) using identity (5.4); note that the 〈∆1 f , f 〉 term is 0 in our
Gaussian setting. Given any f : (Rd ,γ)→ [−1,1], the orthogonal coefficients f̂ (i) are just d real numbers
and (P1 f)(x) is just the linear form ∑

d
i=1 f̂ (i)xi with the xi’s being independent standard one-dimensional

Gaussians. Thus P1 f is distributed as a mean-zero one-dimensional Gaussian with variance equal to
σ2 = ∑

d
i=1 f̂ (i)2. Note that σ2 ≤ ‖ f‖2

2 ≤ 1, by (5.2). Using (5.4), we have

〈 f ,DR1−ε f 〉= εσ
2− (1− ε)‖P1 f − f‖2

2. (5.8)

Now whenever |P1 f | > 2 there is a contribution of at least 1 to ‖P1 f − f‖2
2, simply because f ’s values

are in [−1,1]. Hence by the “heavy tail” property of mean-zero one-dimensional Gaussians, i. e.

Pr[|P1 f |> 2]≥ exp(−C ·22/σ
2)

for some universal constant C, we have

〈 f ,DR1−ε f 〉 ≤ εσ
2− (1− ε)exp(−4C/σ

2).

If σ2 ≥ C′/ log(1/ε), where C′ is a sufficiently large constant, then (1− ε)exp(−C/σ2) ≥ 2ε; since
σ2 ≤ 1 this would make 〈 f ,DR1−ε f 〉 negative. Thus we can assume σ2 ≤C′/ log(1/ε). But this means
〈 f ,DR1−ε f 〉 ≤C′ ε/ log(1/ε) and so (5.7) is proved.

Let us make a remark about the analysis of the soundness case. Our upper bound worked by first
considering the linear part of f to be fixed; say, P1 f (x) = 〈x,r〉 for some vector r with ‖r‖2

2 = σ2. It then
considered the “worst possible” values f could have in (5.8), assuming that these values could be chosen
arbitrarily in [−1,1]. Of course they can’t be, since P1 f was fixed. But if they could, it’s clear from (5.8)
that it’s worst if f (x) equals P1 f (x) whenever this value is in [−1,1], and equals sgn(P1 f (x)) otherwise.
Then optimizing σ2 to Θ(1/ log(1/ε)), we conclude that the worst functions “for our analysis” are of
the form

f (z) = roundT (〈z,r〉),

where T = Θ(
√

log(1/ε)). Interestingly, this precisely mimics the SDP rounding algorithm for Quadratic-
Programming/Max-Cut-Gain suggested by Feige and Langberg [19] and analyzed by Charikar and
Wirth [12].

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 19

S. KHOT, R. O’DONNELL

5.3 Long Code test with DR1−ε on the discrete cube

When DR1−ε operates on functions on the discrete cube {−1,1}n rather than functions on Gaussian
space, it turns out that the “dictator” functions ±χi become optimal for 〈 f ,DR1−ε f 〉. Thus the com-
pleteness bound (5.6) becomes simply ε even for d = 1, and therefore the soundness bound (5.7) no
longer holds. However the soundness bound holds if we restrict to functions which have all the quan-
tities f̂ (i)2 small enough. (Note that f̂ (i)2 = Inf≤1

i (f).) The following gives the A = DR1−ε part of
Theorem 4.2.

Theorem 5.4. There is a universal constant C such that for every 0 < ε < 1/2 and d ≥ 1 we have

sup
f :{−1,1}n→Bd

〈 f ,DR1−ε f 〉= 〈χi,DR1−ε χi〉= ε for all i, (5.9)

and sup
f :{−1,1}n→[−1,1]
∀i | f̂ (i)|≤1/C log(1/ε)

〈 f ,DR1−ε f 〉 ≤C ε/ log(1/ε). (5.10)

Proof. The proof of (5.9) is trivial: By identity (5.4) (with the 〈∆1 f , f 〉 term dropping out) we see that
〈 f ,DR1−ε f 〉 is always at most ε . Since dictators achieve ε , they are indeed optimal. As for (5.10), the
proof is similar to the Gaussian case, except now P1 f is a Rademacher average, P1 f = ∑

n
i=1 f̂ (i)xi with

the xi independent uniform ±1. Nevertheless the heavy tail property still holds assuming all | f̂ (i)| are
small enough: the following result appears in, e.g., the book of Ledoux-Talagrand [35, p. 92]:

There is a universal constant C such that if ∑
n
i=1 α2

i = σ2, t ≥ σ , and |αi| ≤ σ2/Ct for all i, then

Pr
x∈{−1,1}n

[∑n
i=1αixi ≥ t]≥ exp(−Ct2/σ

2).

The result (5.10) now follows by the same argument as in the Gaussian case.

We now have a “Long Code test” for Quadratic-Programming using DR1−ε very much like the one
for Max-Cut used in [28]. However DR1−ε is not a Max-Cut-Gain operator, which we would prefer.
However, as we will see in the next section, it can be replaced by one.

5.4 The relation of DR1−ε to Max-Cut-Gain

In this section we show that DR1−ε can be replaced by a negative probability operator with essentially
the same properties. This gives us an SDP gap and Long Code test for Max-Cut-Gain with essentially
the same soundness and completeness as in Theorems 5.3 and 5.4, completing the proof of Theorems 4.1
and 4.2.

Theorem 5.5. Let X denote either L2(Rn,γ) or L2({−1,1}n). Then for each 0 < ε < 1/2 there is a
negative probability operator Aε on X such that for all d ≥ 1,

sup
f :X→Bd

〈 f ,DR1−ε f 〉 ≤ sup
f :X→Bd

〈 f ,Aε f 〉 ≤ 1
4

sup
f :X→Bd

〈 f ,DR1−4ε f 〉. (5.11)

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 20

MAX-CUT-GAIN

Proof. We let Aε =−(pT1 +(1− p)T−1/2), where Tρ denotes the Bonami-Beckner operator in the dis-
crete cube case and the Ornstein-Uhlenbeck operator in the Gaussian case; and, where p is chosen so
that the projection function g(y) = y1 satisfies 〈g,Aεg〉= ε; specifically, p = 1

3 −
2
3 ε . Since the Bonami-

Beckner and Ornstein-Uhlenbeck operators are probability operators, Aε is clearly a negative probability
operator.

Let us now calculate 〈 f ,Aε f 〉. We write f in terms of its Fourier or Hermite expansion, f = ∑k≥0 Pk f ,
and recall that TρPk f = ρkPk f . Hence

〈 f ,Aε f 〉 = ∑
d≥0

cd‖Pd f‖2
2,

where cd =−(p ·1d +(1− p) · (−1/2)d). It’s not very difficult to check that c1 = ε and that

−1≤ cd ≤ c3 =−(1
4 −

3
4 ε)

for all d 6= 1. Hence

ε‖P1 f‖2
2−‖ f −P1 f‖2

2 ≤ 〈 f ,Aε f 〉 ≤ ε‖P1 f‖2
2− (1

4 − ε)‖ f −P1 f‖2
2.

Comparing this with (5.4) (which reads 〈 f ,DR1−ε f 〉 = ε‖P1 f‖2
2− (1− ε)‖P1 f − f‖2

2 in the Gaussian
setting since 〈∆1 f , f 〉= 0) yields the theorem, (5.11).

5.5 UGC-hardness of Max-Cut-Gain

Using the Long Code test just developed, we can get Theorem 4.3, an ε versus O(ε/ log(1/ε)) UGC-
hardness result for Max-Cut-Gain which matches the algorithm of Charikar and Wirth [12]. The proof
follows by repeating almost verbatim the reduction in [28] that proves .878+ε UGC-hardness for Max-
Cut.

More specifically, we first modify [28]’s reduction in Section 8.1. That reduction picks x∈ {−1,1}M

uniformly, forms y = xµ ∈ {−1,1}M by picking µ from the ρ-biased distribution, and “accepts” if and
only if fw(x ◦σ) 6= fw(y ◦σ ′). Instead, given a constant ε > 0, our reduction chooses the pair (x,y)
with probability−Axy, where A = Aε is the negative probability operator from Theorem 4.1. This makes
sense: since A is a negative probability operator, its entries are all negative and their absolute values sum
to 1. Under this distribution, for f : {−1,1}M →{−1,1} we have, as in (1.1),

Pr[f (x) 6= f (y)] = ∑
x,y

(−Axy)
(1

2 −
1
2 f (x) f (y)

)
= 1

2 + 1
2〈 f ,A f 〉;

and hence the “gain” over 1/2 is 〈 f ,A f 〉.

The reduction’s completeness is as in [28]: If f is a dictator (Long Code) then the first part of
Theorem 4.2 implies that the Max-Cut-Gain instance will have value at least Ω(ε)−O(η). (The label
size M can be increased to O(log(1/ε)) if necessary.) This value is still Ω(ε) if η > 0 is taken to be

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 21

S. KHOT, R. O’DONNELL

a small enough constant compared to ε . As for soundness, the same analysis as in [28] gives that the
value of the Max-Cut-Gain instance is 〈gv,Agv〉, where gv is as defined in [28]. We define a vertex v to
be “good” if 〈gv,Agv〉 is, say, at least twice the O(ε/ log(1/ε)) quantity in Theorem 4.2. Then at least an
Ω(ε/ log(1/ε)) fraction of v’s are good, and for each, our Theorem 4.2 implies that gv has at least one
coordinate i with |ĝv(i)| ≥ Ω(1/ log(1/ε)). We can interpret this as Inf≤1

i (gv) ≥ Ω(1/ log2(1/ε)) and
proceed with the proof from [28], taking its “k” to be 1. Overall, we get a Unique Label Cover labeling
satisfying at least a γ ′ = Ω(ε/ log5(1/ε)) fraction of edges, a positive constant as necessary.

6 Discretizing the Gaussian SDP gap for DR1−ε

6.1 Overview

As an interlude before we move on to KN,N-Quadratic-Programming, we describe how to perform a
discretization or “randomness-reduction” on our Gaussian SDP gap for DR1−ε . The ideas in this section
may be useful for shortening the Long Code and possibly eliminating the loss of a logarithm in certain
SDP gap constructions, such as those in [32, 33].

By taking the constant ε → 0, Theorem 5.3 shows that there is no constant integrality gap for the
Quadratic-Programming problem. We would like to give a construction where ε is “subconstant”; i. e.,
a function of the number of points in the domain. This doesn’t make sense in Gaussian space since
this is an infinite domain. However we will show that we can discretize Gaussian space into N points
in such a way that the SDP gap still holds. In particular we will show how to do this with dimension
d = poly(1/ε) and number of points N = poly(d) = poly(1/ε). Since the SDP gap is Ω(log(1/ε)),
this yields a Quadratic-Programming integrality gap of Ω(logN) on N-vertex graphs. As discussed in
Section 4, this is tight up to constant factors.

6.2 How to discretize

The discretization we perform is as simple as possible: We simply pick a set G ⊂ Rd of N points
randomly according to the d-dimensional Gaussian distribution. We view G as having the uniform dis-
tribution µ . We can define orthogonal coefficients, P1, ∆1, and DR1−ε on L(d)

2 (G,µ) as in Section 5.1.
We then show that with high probability over the choice of G, the ε versus O(ε/ log(1/ε)) SDP gap
from Theorem 5.3 still holds. The basic idea is that the proof of Theorem 5.3 uses only a small number
of facts about Gaussian random variables; we will isolate the facts used and ensure that G has each of
them, at least approximately.

Specifically, given d ≥ 1, we will require following three facts about G⊂ Rd :

∀ x ∈ G,
√

d−O(
√

logd)≤ ‖x‖2 ≤
√

d +O(
√

logd), (6.1)

∀ 1≤ i, j ≤ n,

∣∣∣∣ E
x∈G

[xix j]−δi j

∣∣∣∣≤ 1/d3, (6.2)

∀ v ∈ Rd with ‖v‖2 = 1, Pr
x∈G

[
〈v,x〉> Ω(

√
logd)

]
≥ α, where α = d−1/4. (6.3)

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 22

MAX-CUT-GAIN

(Here δi j denotes the Kronecker delta.) In words: Property (6.1) demands that all vectors in G have
length about

√
d; Property (6.2) demands that products of pairs of coordinate have essentially the cor-

rect expectation, since
∫

xix j dγ(x) = δi j; and Property (6.3) demands that the random variable 〈v,x〉,
which should act like a linear combination of Gaussians, has an appropriately heavy tail for all unit-
length coefficient vectors v.

Standard arguments based on the probabilistic method and the union bound show that G has all three
properties with high probability when N = dO(1):

Lemma 6.1. Let d be at least a sufficiently large constant and let N = Θ(d7). Then with probability at
least 1−1/N, G satisfies Properties (6.1), (6.2), and (6.3).

Proof. For Property (6.1), if g is drawn from the d-dimensional Gaussian distribution then E[‖g‖2
2] = d

and there is sharp concentration around the mean; in particular, Part 1 of Lemma 6.2 below implies

Pr
[∣∣‖g‖2

2−d
∣∣≤ O(

√
d logN)

]
= Pr

[√
d−O(

√
d logd)≤ ‖g‖2 ≤

√
d +O(

√
d logd)

]
≥ 1− 1

3N2

if the constant in the O(·) is large enough and d is at least a large constant. So by a union bound we have
that Property (6.1) holds for G except with probability 1/(3N).

The proof of Property (6.2) is essentially similar. Fix some particular i 6= j; then when G is chosen
at random, the distribution of the quantity Ex∈G[xix j] is that of the average of N i.i.d. random variables
whose distribution is the product of two independent normals. By Part 2 of Lemma 6.2 below, the
quantity is within O(

√
(logN)/N) ≤ 1/d3 of the desired value δi j = 0 except with probability at most

1/(3N2). Similarly, when j = i we have that the quantity is within 1/d3 of δi j = 1 except with proba-
bility at most 1/(3N2), using Part 1 of Lemma 6.2 below. Taking a union bound over all d2 < N pairs
(i, j), we get that Property (6.2) holds for G except with probability at most 1/(3N).

The proof of Property (6.3) is only a little bit trickier. Let us first fix a particular vector v ∈ Rd with
‖v‖2 = 1 and analyze the probability (over the choice of G) that Yv ≥ αN, where Yv is defined by

Yv = #{x ∈ G : 〈v,x〉> Ω(
√

logd)}.

We can write Yv = ∑
N
i=1 Xi, where Xi is an indicator random variable for the event that 〈v,gi〉≥Ω(

√
logd).

Since 〈v,gi〉 is distributed as a standard one-dimensional Gaussian, by the heavy tail property of Gaus-
sians we get that Pr[Xi = 1] ≥ 2α , assuming the constant in the Ω(·) is small enough. Hence by stan-
dard large deviation bounds with respect to the sum Yv = ∑

n
i=1 Xi we conclude that Pr[Yv < αN] ≤

exp(−Ω(2αN))≤ exp(−d6).

Now let N be a (1/d)-net on the d-dimensional unit sphere; by a standard bound we may assume
|N| ≤ 2O(d logd). Since |N|exp(−d6) is much less than 1/(3N), another union bound lets us conclude
that when G is chosen at random, except with probability at most 1/(3N) we have

∀ v ∈N, Pr
x∈G

[
〈v,x〉> Ω(

√
logd)

]
≥ α.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 23

S. KHOT, R. O’DONNELL

Assuming this happens, and also assuming Property (6.1) holds, Property (6.3) follows easily. To see
this, let w be any unit vector in Rd , and let v be the closest point in N to w. We know that at least an α

fraction of the points x in G satisfy 〈v,x〉> Ω(
√

logd). But for these x’s,

〈w,x〉 ≥ 〈v,x〉−‖v−w‖2 · ‖x‖2 > Ω(
√

logd)− (1/d)(
√

d +O(
√

logd)) = Ω(
√

logd);

thus Property (6.3) holds for w. The proof is complete.

Following are the large deviation bounds we used in the above proof:

Lemma 6.2. There is a universal constant C < ∞ such that the following hold:

1. Let X1, . . . ,Xn be i.i.d. random variables, where Xi is distributed as the square of a standard
Gaussian. Then for all s <

√
n,

Pr
[∣∣(X1 + · · ·+Xn)−n

∣∣≥ s
√

n
]
≤ 2exp(−s2/C).

2. If Xi is instead distributed as the product of two independent standard Gaussians, then for all
t <
√

n,
Pr
[∣∣(X1 + · · ·+Xn)/n

∣∣≥ s/
√

n
]
≤ 2exp(−s2/C).

Proof. These are completely standard applications of the Cramér-Chernoff theory of large deviations [15,
14]; we include the proofs for convenience. For Part 1, direct calculation shows that the moment gener-
ating function of X1−1 is g(t) = exp(−t)/

√
1−2t, converging for t < 1/2. Writing ε = s/

√
n < 1 and

selecting t = ε/(2+2ε) < 1/2, the theory tells us that

Pr
[
(X1 + · · ·+Xn−n)/n≥ s/

√
n
]
≤
(

exp(−ε/2)
√

1+ ε

)n
.

We have the Taylor expansion exp(−ε/2)
√

1+ ε = 1− ε2/4+ ε3/6−·· · and so it’s easy to check that
for ε < 1 the quantity is upper-bounded by exp(−ε2/C) for some C < ∞; indeed, C = 7 suffices. Thus

Pr
[
X1 + · · ·+Xn−n≥ s

√
n
]
≤
(
exp(−ε

2/C)
)n

= exp(−s2/C).

The proof of Pr[X1 + · · ·+Xn−n≤−s
√

n]≤ exp(−s2/C) is the same, replacing t with −t.

As for Part 2, direct calculation shows that the moment generating function of X1 is 1/
√

1− t2,
converging for |t|< 1. Again we write ε = s/

√
n < 1, and we then select t = ε . Then Chernoff’s theory

tells us that
Pr
[
(X1 + · · ·+Xn)/n≥ s/

√
n
]
≤
(

exp(−ε
2)/
√

1− ε2
)n

.

We have the Taylor expansion exp(−ε2)/
√

1− ε2 = 1− ε2/2+(3/8)ε4 + · · · , and the remainder of the
proof is very similar to that for Part 1.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 24

MAX-CUT-GAIN

6.3 Reproving the SDP gap on G

We can now prove Theorem 4.4:

Proof. Applying Lemma 6.1 we have that G satisfies Properties (6.1), (6.2), and (6.3). We now proceed
with the proof of Theorem 5.3, making the corrections necessary given that we are on the domain G
rather than (Rd ,γ).

For the “completeness” lower bound we use the same function f (z) = z/‖z‖2. Now

f̂ (i)i = E
y∈G

[y2
i

‖y‖2

]
≥ 1−1/d3
√

d +O(
√

logd)
≥ 1√

d
−O

(√logd
d

)
using Properties (6.1) and (6.2); hence

d

∑
i=1
‖ f̂ (i)‖2

2 ≥ 1−O(
√

(logd)/d)≥ 1− ε/2,

and therefore 〈 f ,DR1−ε f 〉 ≥ ε/2, using (5.3) again.

For the “soundness” lower bound, given f : G→ [−1,1] we can no longer use 〈∆1 f , f 〉= 0. However
using Properties (6.1) and (6.2) it is not hard to show that |〈∆1 f , f 〉| is very small. Combining (5.5) and
Property (6.2) we have

|〈∆1 f , f 〉| ≤ (1/d3)
d

∑
i, j=1
| f̂ (i) f̂ (j)| ≤ (1/d2)

d

∑
i=1

f̂ (i)2.

We can crudely upper-bound ∑
d
i=1 f̂ (i)2 using the following formal identity:

d

∑
i=1

f̂ (i)2 = E
x,y∈G

[〈x,y〉 f (x) f (y)].

Since f ’s range is [−1,1] and |〈x,y〉| ≤O(d) for every x,y∈G (using Property (6.1)), we get ∑
d
i=1 f̂ (i)2≤

O(d). Overall we conclude that
|〈∆1 f , f 〉| ≤ O(1/d)≤ ε

2. (6.4)

We now continue as in the proof of Theorem 5.3. Let w ∈ Rd be the vector whose coefficients are the
f̂ (i)’s and let σ2 = ‖w‖2

2 = ∑ f̂ (i)2. Now that we know |〈∆1 f , f 〉| ≤O(1/d)≤ ε2, the identity (5.2) lets
us conclude the much sharper upper bound σ2 ≤ 1+ ε2. We will again use (5.4) (combined with (6.4)):

〈 f ,DR1−ε f 〉 ≤ εσ
2− (1− ε)‖P1 f − f‖2

2 + ε
2. (6.5)

Now (P1 f)(x) = 〈w,x〉 is no longer a Gaussian; however, Property (6.3) still lets us conclude that

Pr
x∈G

[
(P1 f)(x) > Ω(

√
logd/σ)

]
≥ α = ε

3/4.

So as in the old proof, if σ2 ≥C′/ log(1/ε) for C′ a sufficiently large constant, then Ω(
√

logd/σ > 2.
In this case, (P1 f)(x) exceeds 2 with probability at least ε3/4 hence ‖P1 f − f‖2

2 ≥ ε3/4 and so (6.5)
is negative (using σ2 ≤ 1 + ε2). Thus we may assume σ2 ≤ C′/ log(1/ε) and we get 〈 f ,DR1−ε f 〉 ≤
O(ε/ log(1/ε)) from (6.5), as required.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 25

S. KHOT, R. O’DONNELL

7 KN,N-Quadratic-Programming

7.1 SDP gap for DRλ on Gaussian space: the Davie–Reeds lower bound on Grothendieck’s
constant

In this section we review the best known lower bound on the Grothendieck constant. This bound (i. e.,
SDP gap) was first proven by Davie [17], although his paper is unpublished and difficult to obtain. We
will instead follow the independent proof of Reeds [43], which uses the same operator. Reeds’s proof
is less slick but it is the one that we will be able to translate into an equivalent Long Code test in the
{−1,1}n setting. The main translational difficulty is that both papers begin by simplifying the analysis
using the rotational symmetry of the Gaussian distribution. This is of course missing in the {−1,1}n

case. We show in this section how to change Reeds’s proof so that it does not use this step. For more on
SDP gaps and Long Codes tests for the KN,N-Quadratic-Programming problem, the reader may consult
the very recent paper of Raghavendra and Steurer [42].

Let us begin with some notation from Reeds’s paper. For 0 < λ < .4, define s(λ) to be (λ/η)2 +
λ (1− 4Φ(−η)), where η ∈ (0,1) satisfies

√
2/πη exp(−η2/2) = λ and Φ is the cdf of a standard

normal.1 The Davie–Reeds result shows an SDP gap of 1− λ versus s(λ); in particular, this gives a
lower bound of

KDavie–Reeds = sup
0<λ<.4

(1−λ)/s(λ)≈ 1.6769

for Grothendieck’s constant, taking λ = λ ∗ ≈ .19748.

We now sketch (a slight alteration of) Reeds’s proof:

Theorem 7.1. There is a universal constant C such that for all 0 < λ < .4 and d ≥ 1,

sup
f ,g:(Rd ,γ)→Bd

〈 f ,DRλ g〉 ≥ 1−λ −C/d (7.1)

and sup
f ,g:(Rd ,γ)→[−1,1]

〈 f ,DRλ g〉= sup
g:(Rd ,γ)→[−1,1]

∫
|DRλ g| ≤ s(λ). (7.2)

Proof. (Sketch of Reeds’s proof.) The bound (7.1) follows immediately from (5.6). To prove (7.2),
first note that it suffices to take the supremum over functions g : (Rd ,γ)→ {−1,1}, since

∫
|DRλ g| is a

convex function of g. Hence we must determine

sup
g:(Rd ,γ)→{−1,1}

∫
|P1g−λg|. (7.3)

So suppose g : (Rd ,γ)→ {−1,1}. Let ` denote P1g and σ = ‖`‖2 ≤ 1. If σ = 0 then clearly (7.3)
equals λ , which is smaller than s(λ) for λ < .4. Hence we may assume σ > 0; in this case, let φ

1Reeds’s proof considers all 0≤ λ ≤
√

2/eπ ≈ .484, but the proof is slightly simpler if one restricts λ ’s range slightly so
that we always have λ < s(λ). This doesn’t hurt because the optimal λ turns out to be .19748. (Note that Reeds’s paper states
the optimal λ is .25573 but this is a typo — that’s the optimal value of η).

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 26

MAX-CUT-GAIN

denote the pdf of `/σ (so in fact here φ is the standard Gaussian pdf). Let θg : R→ [−1,1] be defined by
θg(z) = E[g | `/σ = z], so Pr[g = 1 | `/σ = z] = 1/2+θg(z)/2 and Pr[g =−1 | `/σ = z] = 1/2−θg(z)/2.
Note that, by definition, ∫

R
φ(z)zθg(z)dz = σ (7.4)

and ∫
|P1g−λg|=

∫
R

φ(z)
((

1
2 + 1

2 θg(z)
)∣∣∣σz−λ

∣∣∣+(1
2 −

1
2 θg(z)

)∣∣∣σz+λ

∣∣∣) dz. (7.5)

Now (7.3) can be bounded from above as follows: First fix the value σ . Then the supremum in (7.3),
conditioned on g satisfying ‖P1g‖2

2 = σ2, is upper-bounded by what can thought of as an (infinite) linear
program: the unknowns are the values of θg, the objective is (7.5) (which is linear in θg), and (7.4)
and |θg| ≤ 1 serve as the constraints. For each value of σ an optimal θ ∗ is determined; substituting
this into (7.5) gives an upper bound for (7.3) conditioned on ‖P1g‖2

2 = σ2. Finally, this upper bound is
maximized over 0 < σ ≤ 1.

Let us rewrite the objective (7.5) as∫
R

φ(z)ψ(z)θ(z)dz+Cλ ,σ (7.6)

where
ψ(z) = 1

2 (|σz−λ |− |σz+λ |) , Cλ ,σ =
∫

R
φ(z) · 1

2(|σz−λ |+ |σz+λ |)dz.

Since φ is an even function (and ψ is odd), we see that both the constraint (7.4) and the objective (7.6)
involve integrating θ against an odd function. It follows that the optimal θ ∗ may as well be odd as well,
since one can replace an arbitrary optimizer θ ∗ by θ ′(z) = (θ ∗(z)−θ ∗(−z))/2. Thus we equivalently
are trying to find θ : R+→ [−1,1] maximizing∫

∞

0
2φ(z)ψ(z)θ(z)dz+Cλ ,σ subject to

∫
∞

0
2φ(z)zθ(z)dz = σ .

Since ψ(z)/z is increasing in z for all σ , λ , it follows that the optimizing θ ∗ is of the form

θ
∗(z) =

{
1 if z ∈ (−h,0)∪ (h,∞)
−1 if z ∈ (−∞,−h)∪ (0,h),

(7.7)

where h = h(σ)≥ 0 is selected to be as large as possible such that the constraint (7.4) holds.

Thus we conclude that

sup
f ,g:(Rd ,γ)→[−1,1]

〈 f ,DRλ g〉 ≤ sup
0<σ≤1

∫
R

φ(z)Ψλ ,h(z)dz, (7.8)

where Ψλ ,h : R→ R is defined by

Ψλ ,h(z) = 1
2(|σz−λ |− |σz+λ |)θ ∗(z)+ 1

2(|σz−λ |+ |σz+λ |),

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 27

S. KHOT, R. O’DONNELL

h is defined in terms of σ via ∫
R

φ(z)zθ
∗(z)dz = σ , (7.9)

and θ ∗ is defined in (7.7).

With φ(z) = exp(−z2/2)/
√

2π , everything in the expression on the right in (7.8) is completely
explicit, and Reeds calculates that it is equal to (7.2).

7.2 Long Code test with DRλ on the discrete cube

We now transfer the SDP gap from the previous section to the discrete cube setting, just as we did in
the Quadratic-Programming case. This time the SDP gap used more than just the “heavy tail” property
of the linear part of a Gaussian function; it uses estimates on certain piecewise linear functionals of the
linear part. The following is a restatement of Theorem 4.5.

Theorem 7.2. There is a universal constant C such that for all 0 < λ < .4, d ≥ 1, and δ > 0,

sup
f ,g:{−1,1}n→Bd

〈 f ,DRλ g〉= 〈χi,DRλ χi〉= 1−λ for all i, (7.10)

and sup
f ,g:{−1,1}n→{−1,1}

∀i |ĝ(i)|≤δ

〈 f ,DRλ g〉= sup
g:{−1,1}n→{−1,1}
∀i |ĝ(i)|≤δ

E[|DRλ g|]≤ s(λ)+Cδ . (7.11)

Proof. We begin by noting that for f ,g : {−1,1}n→ Bd ,

〈 f ,DRλ g〉 ≤ ‖DRλ g‖2 ≤
√

(1−λ)2‖P1g‖2
2 +λ 2∑i 6=1‖Pig‖2

2; (7.12)

thus certainly 〈 f ,DRλ g〉 ≤ 1−λ and so (7.10) is proved.

To prove (7.11) we proceed as in the proof of (7.2) from Reeds’s proof; we bound E[|DRλ g|] as-
suming g : {−1,1}n→ {−1,1} is some function satisfying |ĝ(i)| ≤ δ for all i. Again we let ` = P1g, a
Rademacher average, and define σ = ‖`‖2. We may assume

σ
2 ≥ .001 (7.13)

because otherwise E[|DRλ g|]≤‖DRλ g‖2≤
√

.001+λ 2 using (7.12), and it can be checked numerically
that
√

.001+λ 2 ≤ s(λ). (In fact, we only need this for the optimal λ ∗.)

We now define φ ′ to be the pmf (probability mass function) of `/σ and proceed with the linear
programming part of Reeds’s proof. We continue to use the notation∫

R
φ
′(z)F(z)dz

for the expected value of the discrete random variable F(z) when z is distributed as `/σ . Note that
are now only a finite number of “variables” θ(z), corresponding to the values that `/σ can attain. The

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 28

MAX-CUT-GAIN

pmf φ ′ is still an even function, so the optimizing θ ∗ can again be odd. Again, the fact that ψ(z)/z is
increasing implies that the optimizing θ ∗ is of the form (7.7) for some h that `/σ attains; the value of
θ ∗ precisely at ±h may be in the interior of [−1,1] so as to satisfy the constraint (7.4). Thus we have

sup
g:{−1,1}n→{−1,1}
∀i |ĝ(i)|≤δ

E[|DRλ g|]≤ sup
.001≤σ≤1

∫
R

φ
′(z)Ψλ ,h(z)dz

as in Reeds’s proof.

Our goal is to show this is the at most the same quantity with φ in place of φ ′ (as in (7.8)), up to
an additive O(δ). By the piecewise-linearity of θ ∗ and Ψλ ,h, it is easy to check that this would follow
immediate from:

Claim 7.3. If F(z) is any piecewise-linear function on R with O(1) pieces, each of the form az+b with
|a|, |b| ≤ O(1), then ∣∣∣∣∫ φ

′(z)F(z)dz−
∫

φ(z)F(z)dz
∣∣∣∣≤ O(δ).

We complete the overall proof by proving the claim. The key is to use the fact that (`/σ) is a
Rademacher average with variance 1 and all coefficients at most δ/σ ≤ 1000δ in magnitude (us-
ing (7.13)). Thus the Central Limit Theorem implies that φ ′ is “close” to the normal pdf φ . More
precisely, for I ⊆ R an interval, define Φ′(I) = Pr[`/σ ∈ I] and define Φ(I) = Pr[N(0,1) ∈ I]. Then the
non-uniform Berry-Esseen Theorem due to Bikelis [9] implies that∣∣Φ′(−∞, t]−Φ(∞, t]

∣∣≤ O(δ)
1+ |t|3

∀ t ∈ R. (7.14)

In particular, |Φ′(I)−Φ(I)| ≤ O(δ) for all intervals I ⊆ R, and Pr[`/σ = t]≤ O(δ) for each t ∈ R.

To prove the Claim it suffices to prove the following: for any linear function F(z) = az + b on any
interval I 63 0, ∣∣∣∣∫I

φ
′(z)F(z)dz−

∫
I
φ(z)F(z)dz

∣∣∣∣≤ O(δ)(|a|+ |b|)

(here the notation
∫

I φ ′(z)F(z)dz should be interpreted as
∫

φ ′(z)1z∈IF(z)dz). We will show this for
I = [u,v) with u≥ 0, leaving the other cases to the reader. We have∫

[u,v)
φ
′(z)F(z)dz = bΦ

′[u,v)+a
∫

[u,v)
φ
′(z)zdz = bΦ

′[u,v)+a
(

uΦ
′[u,v)+

∫ v

u
Φ
′[t,v)dt

)
.

Subtracting this from the same expression with Φ gives an error term of

b
(
Φ
′[u,v)−Φ[u,v)

)
+a
(

u
(
Φ
′[u,v)−Φ[u,v)

)
+
∫ v

u
(Φ′[t,v)−Φ[t,v))dt

)
,

the magnitude of which, by (7.14), is indeed at most

|b|O(δ)+ |a|
(

u ·O(δ)/(1+u3)+O(δ)
∫ v

u
1/(1+ t3)dt

)
≤ O(δ)(|a|+ |b|),

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 29

S. KHOT, R. O’DONNELL

as claimed.

Using this theorem we get a sort of “two-function KN,N-Quadratic-Programming Long Code test”:
we see that if f ,g : {−1,1}n → {−1,1} have 〈 f ,DRλ g〉 > s(λ)+Cδ then g must have a coordinate i
with Inf≤1(f)≥ δ 2. Indeed, since DRλ is self-adjoint, both f and g must have at least one influential co-
ordinate. However this is not a proper two-function Long Code test, because to get something useful for
UGC-hardness we need to show that f and g share an influential coordinate when 〈 f ,DRλ g〉 is too large.

It’s not clear whether or not this is true. However in the next section we will show that such a
statement can be made if we slightly “smooth” the operator DRλ .

7.3 A smoothed version of DRλ

To get a useful two-function KN,N-Quadratic-Programming Long Code test we introduce the following
operator, for small ε > 0:

DR(1−ε)
λ

= DRλ T1−ε = T1−εDRλ ;

here T1−ε is the Bonami-Beckner operator with parameter 1− ε . Introducing the slight smoothing T1−ε

does not hurt completeness very much, and on the soundness side it helps by making general influences
and low-degree influences essentially equivalent. With T1−ε built into our operator it might seem that
a straightforward averaging trick — like the one used by Dinur, Mossel, and Regev [18] in the context
of noise stability tests — should suffice to give us a two-function Long Code test. However there is a
technical difficulty: we only know how to prove soundness (7.11) for functions g : {−1,1}n→ {−1,1}
with small |ĝ(i)|’s, not for the functions g : {−1,1}n→ [−1,1] that arise from averaging. Bypassing this
difficulty requires some technical machinations.

The main trick involves a twist on the so-called Szemerédi Regularity Lemma for (Z/2Z)n due to
Green [21]. Given f : {−1,1}n→{−1,1}, 0 < ε < 1/2, and J ⊆ [n] we say that f is ε-flat for J if for all
but an ε fraction of the strings xJ ∈ {−1,1}J , it holds that | f̂xJ (i)| ≤ ε for all i ∈ [n]\J. Here fxJ denotes
the restricted function on {−1,1}[n]\J gotten by fixing the inputs xJ .

Theorem 7.4. There is a universal function W : (0,1/2)→ N such that the following holds: For any
f : {−1,1}n→{−1,1} and 0 < ε < 1/2 one can associate a canonical set of coordinates J = J f ,ε ⊆ [n]
satisfying |J| ≤W (ε) such that f is ε-flat for J.

To prove this theorem one only needs to repeat Green’s proof with the notion of ε-flatness replacing
his notion of ε-regularity.

We can now state our two-function Long Code test based on KN,N-Quadratic-Programming.

Theorem 7.5. There is a universal constant C′ such that the following holds: Given 0 < ε < 1/2, set
k = dlog(1/ε)/εe and δ = ε2/W (ε), where W is the function from Theorem 7.4. Then

sup
f ,g:{−1,1}n→{−1,1}

〈 f ,DR(1−ε)
λ

g〉= 〈χi,DR(1−ε)
λ

χi〉= (1−λ)(1− ε) for all i, (7.15)

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 30

MAX-CUT-GAIN

and sup′
f ,g:{−1,1}n→{−1,1}

〈 f ,DR(1−ε)
λ

g〉 ≤ s(λ)+C′ε, (7.16)

where the sup′ in (7.16) is taken over all f and g such that Inf≤k
i (g)≤ δ for all i∈ J = J f ,ε , the canonical

set of coordinates given by Theorem 7.4.

Proof. The completeness statement (7.15) follows easily from (7.12), so we now focus on the soundness
statement. Specifically, assume f ,g : {−1,1}n→ {−1,1}, J = J f ,ε is the set of coordinates guaranteed
by Theorem 7.4, and Inf≤k

i (g)≤ δ for all i ∈ J.

Write Q = DR(1−ε)
λ

for short and note that the notation Qg≤k makes sense, in that Q “commutes”
with taking the low degree part. We have

〈 f ,Qg〉= 〈 f ,Qg≤k〉+ 〈 f ,Qg>k〉 ≤ 〈 f ,Qg≤k〉+‖Qg>k‖2.

We have ‖Qg>k‖2
2 = ‖DRλ T1−εg>k‖2

2; also ‖T1−εg>k‖2
2 ≤ (1− ε)2k ≤ ε2 and DRλ is a contraction on

L2. Thus it suffice to show
〈 f ,Qg≤k〉 ≤ s(λ)+C′ε.

Given a function h : {−1,1}n→{−1,1}, let us use a bar to denote averaging over the coordinates of J.
In other words, we write h̄ : {−1,1}n → [−1,1] for the function ExJ [hxJ] = ∑S∩J= /0 ĥ(S)χS, and this is
a function which doesn’t depend on the coordinates of J. Note that this averaging also commutes with
taking the low degree part. We have

‖g≤k− ḡ≤k‖2
2 = ∑

|S|≤k,S∩J 6=0
ĝ(S)2 ≤∑

i∈J
Inf≤k

i (g)≤ |J|δ = ε
2.

Using the fact that DR(1−γ)
λ

is a contraction on L2, an argument similar to the last one implies that it
suffices for us to show

〈 f ,Qḡ≤k〉 ≤ s(λ)+C′ε.

Now since Qḡ≤k does not depend on the coordinates of J we may write

〈 f ,Qḡ≤k〉= 〈 f̄ ,Qḡ≤k〉,

where here 〈,〉 is the inner product on {−1,1}[n]\J . We will henceforth work over this probability space.
Using the fact that DRλ is self-adjoint and then using linearity, we have

〈 f̄ ,Qḡ≤k〉= E
xJ
〈DRλ fxJ ,T1−ε ḡ≤k〉.

Now again, ‖T1−ε ḡ>k‖2 ≤ (1− ε)k ≤ ε so it suffices for us to prove

E
xJ
〈T1−ε ḡ,DRλ fxJ 〉 ≤ s(λ)+C′ε.

Since T1−ε ḡ has range [−1,1], it suffices to show

E
xJ

E[|DRλ fxJ |]≤ s(λ)+C′ε.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 31

S. KHOT, R. O’DONNELL

We now use the fact that f is ε-flat for J. There are at most ε exceptional strings xJ for which we have
no control over fxJ . For these xJ we use simply E[|DRλ fxJ |]≤ 1. For the remainder of the strings xJ we
have that fxJ is a {−1,1}-valued function with | f̂xJ (i)| ≤ ε for all i. Thus E[| fxJ |]≤ s(λ)+Cε for these
strings, by (7.11). This completes the proof.

7.4 UGC-hardness of KN,N-Quadratic-Programming

Using the two-function Long Code test from Theorem 7.5, we can get Theorem 4.6, a 1/KDavie–Reeds + ε ≈
.597 UGC-hardness result for KN,N-Quadratic-Programming. This complements the approximation al-
gorithm of Alon and Naor [3], which gives an approximation algorithm for KN,N-Quadratic-Programming
with factor 1/KKrivine≈ .561, where KKrivine denotes the best known upper bound on Grothendieck’s con-
stant, due to Krivine [34].

The proof of Theorem 4.6 is again very easily derived by substituting the Long Code test from
Theorem 7.5 into the UGC-hardness result for Max-Cut given in [28]. Indeed, the proof is even sim-
pler because one directly replaces each constraint in the bipartite Unique Label Cover instance by the
DR(1−Ω(ε))

λ ∗ Long Code test, instead of putting tests between pairs of vertices on the right side and aver-
aging over Long Codes on the left side.

References

[1] AMIT AGARWAL, MOSES CHARIKAR, KONSTANTIN MAKARYCHEV, AND YURY

MAKARYCHEV: O(
√

logn) approximation algorithms for Min-Uncut, Min-2CNF-Deletion,
and directed cut problems. In Proc. 37th ACM STOC, pp. 573–581, 2005. 1.3

[2] NOGA ALON, KONSTANTIN MAKARYCHEV, YURY MAKARYCHEV, AND ASSAF NAOR:
Quadratic forms on graphs. Inventiones Mathematicae, 163(3), 2006. 1.3, 1.4, 1.4, 2.1, 2.3,
4

[3] NOGA ALON AND ASSAF NAOR: Approximating the Cut-Norm via Grothendieck’s Inequality.
SIAM J. on Computing, 35(4):787–803, 2006. 1.3, 1.4, 2.1, 4, 7.4

[4] NOGA ALON, BENNY SUDAKOV, AND URI ZWICK: Constructing worst case instances for
semidefinite programming based approximation algorithms. SIAM J. on Discrete Mathematics,
15(1):58–72, 2002. 1.2

[5] SANJEEV ARORA, ELI BERGER, ELAD HAZAN, GUY KINDLER, AND MULI SAFRA: On non-
approximability for quadratic programs. In Proc. 46th IEEE FOCS, pp. 206–215, 2005. 1.4, 2.1,
2.3, 4

[6] SANJEEV ARORA, SATISH RAO, AND UMESH VAZIRANI: Expander flows, geometric embed-
dings and graph partitioning. In Proc. 36th ACM STOC, pp. 222–231, 2004. 1.3

[7] NIKHIL BANSAL, AVRIM BLUM, AND SHUCHI CHAWLA: Correlation clustering. Machine
Learning, 56(1-3):89–113, 2004. 1.4

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 32

MAX-CUT-GAIN

[8] MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN: Free bits, PCPs, and nonapprox-
imability — towards tight results. SIAM J. on Computing, 27(3):804–915, 1998. 3.2

[9] ALGIMANTAS BIKELIS: Estimates of the remainder in the Central Limit Theorem. Litovsk. Mat.
Sb., 6(3):323–346. In Russian. 7.2

[10] CHRISTER BORELL: Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z. Wahrsch.
Verw. Gebiete, 70(1):1–13, 1985. 1.5

[11] MOSES CHARIKAR, KONSTANTIN MAKARYCHEV, AND YURY MAKARYCHEV: Near-optimal
algorithms for unique games. In Proc. 38th ACM STOC, pp. 205–214, 2006. 1.3

[12] MOSES CHARIKAR AND ANTHONY WIRTH: Maximizing quadratic programs: Extending
Grothendieck’s Inequality. In Proc. 45th IEEE FOCS, pp. 54–60, 2004. 1.2, 1.3, 1.4, 1.4, 2.1,
2.3, 4, 4, 4, 5.2, 5.5

[13] SHUCHI CHAWLA, ROBERT KRAUTHGAMER, RAVI KUMAR, YUVAL RABANI, AND

D. SIVAKUMAR: On the hardness of approximating Multicut and Sparsest-Cut. Computational
Complexity, 15(2):94–114, 2006. 1.3

[14] HERMAN CHERNOFF: A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Annals of Mathematical Statistics, 23(4), 1952. 6.2

[15] HARALD CRAMÉR: Sur un nouveau théroème-limite de la théorie des probabilités. Actualités
Scientifiques et Industrielles, 736, 1938. 6.2

[16] PIERLUIGI CRESCENZI, RICCARDO SILVESTRI, AND LUCA TREVISAN: On weighted vs
unweighted versions of combinatorial optimization problems. Information and Computation,
167(1):10–26, 2001. 2.1

[17] ALEXANDER DAVIE: Lower bound for KG. Unpublished, 1984. 1.4, 3.3, 7.1

[18] IRIT DINUR, ELCHANAN MOSSEL, AND ODED REGEV: Conditional hardness for approximate
coloring. In Proc. 38th ACM STOC, pp. 344–353, 2006. 1.3, 7.3

[19] URIEL FEIGE AND MICHAEL LANGBERG: The RPR2 rounding technique for semidefinite pro-
grams. J. Algorithms, 60(1):1–23, 2006. 1.2, 1.2, 4, 5.2

[20] MICHEL GOEMANS AND DAVID WILLIAMSON: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. of the ACM, 42:1115–
1145, 1995. 1.1, 2.2, 4

[21] BEN GREEN: A Szemerédi-type regularity lemma in abelian groups, with applications. Geometric
And Functional Analysis, 15(2):340–376, 2005. 4, 7.3

[22] ALEXANDRE GROTHENDIECK: Résumé de la théorie métrique des produits tensoriels
topologiques. Bol. Soc. Mat. Sao Paulo, 8:1–79, 1953. 1.4

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 33

S. KHOT, R. O’DONNELL

[23] UFFE HAAGERUP: A new upper bound for the complex Grothendieck constant. Israel J. of Math-
ematics, 60(2):199–224, 1987. 1.4

[24] JOHAN HÅSTAD: Some optimal inapproximability results. J. of the ACM, 48(4):798–859, 2001.
1.1, 3.2

[25] JOHAN HÅSTAD AND SRINIVASAN VENKATESH: On the advantage over a random assignment.
Random Structures & Algorithms, 25(2):117–149, 2004. 1.2

[26] GEORGE KARAKOSTAS: A better approximation ratio for the Vertex Cover problem. In Proc.
32nd ICALP, pp. 1043–1050, 2005. 1.3

[27] SUBHASH KHOT: On the power of unique 2-prover 1-round games. In Proc. 34th ACM STOC, pp.
767–775, 2002. 1.1, 1.3, 3.2

[28] SUBHASH KHOT, GUY KINDLER, ELCHANAN MOSSEL, AND RYAN O’DONNELL: Optimal
inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. on Computing,
37(1):319–357, 2007. 1.1, 1.2, 1.2, 1.3, 3.2, 3.2, 4, 4, 5.3, 5.5, 7.4

[29] SUBHASH KHOT AND ASSAF NAOR: Nonembeddability theorems via Fourier analysis. Mathe-
matische Annalen, 334(4):821–852, 2006. 1.3

[30] SUBHASH KHOT AND RYAN O’DONNELL: SDP gaps and UGC-hardness for MaxCutGain. In
Proc. 47th IEEE FOCS, pp. 217–226, 2006. ∗, 1.5

[31] SUBHASH KHOT AND ODED REGEV: Vertex Cover might be hard to approximate to within 2−ε .
In Proc. 18th IEEE CCC, pp. 379–386, 2003. 1.3

[32] SUBHASH KHOT AND NISHEETH VISHNOI: The Unique Games Conjecture, integrality gap for
cut problems and embeddability of negative type metrics into `1. In Proc. 46th IEEE FOCS, pp.
53–62, 2005. 1.3, 6.1

[33] ROBERT KRAUTHGAMER AND YUVAL RABANI: Improved lower bounds for embeddings into l1.
In Proc. 17th ACM-SIAM SODA, pp. 1010–1017, 2006. 1.3, 6.1

[34] JEAN-LOUIS KRIVINE: Sur la constante de Grothendieck. Comptes Rendus Acad. Sci. Paris Sér.
A-B, 284:445–446, 1977. 1.4, 7.4

[35] MICHEL LEDOUX AND MICHEL TALAGRAND: Probability in Banach Spaces. Springer, 1991.
3.2, 5.3

[36] ALEXANDRE MEGRETSKI: Relaxations of Quadratic Programs in Operator Theory and System
Analysis. In Systems, Approximation, Singular Integral Operators, and Related Topics: Interna-
tional Workshop on Operator Theory and Applications. Birkhauser, 2001. 1.4

[37] ELCHANAN MOSSEL, RYAN O’DONNELL, AND KRZYSZTOF OLESZKIEWICZ: Noise stability
of functions with low influences: invariance and optimality. In Proc. 46th IEEE FOCS, pp. 21–30,
2005. Accepted to appear, Annals of Mathematics. 1.3

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 34

MAX-CUT-GAIN

[38] ARKADI NEMIROVSKI, CORNELIS ROOS, AND TAMÁS TERLAKY: On maximization of
quadratic form over intersection of ellipsoids with common center. Mathematical Programming,
86(3):463–473, 1999. 1.4

[39] YURII NESTEROV: Global quadratic optimization via conic relaxation, pp. 363–384. Kluwer
Academic Publishers, 2000. 1.4

[40] RYAN O’DONNELL AND YI WU: An optimal SDP algorithm for Max-Cut, and equally optimal
Long Code tests. In Proc. 40th ACM STOC, pp. 335–344, 2008. 1.5

[41] PRASAD RAGHAVENDRA: Optimal algorithms and inapproximability results for every CSP? In
Proc. 40th ACM STOC, pp. 245–254, 2008. 1.5

[42] PRASAD RAGHAVENDRA AND DAVID STEURER: Towards computing the Grothendieck Con-
stant. In Proc. 19th ACM-SIAM SODA, pp. 525–534, 2009. 7.1

[43] JAMES REEDS: A new lower bound on the real Grothendieck constant. Manuscript
(http://www.dtc.umn.edu/∼reedsj/bound2.dvi), 1991. 1.4, 3.3, 7.1

[44] LUCA TREVISAN, GREGORY SORKIN, MADHU SUDAN, AND DAVID WILLIAMSON: Gadgets,
approximation, and linear programming. SIAM J. on Computing, 29(6):2074–2097, 2000. 1.1

[45] URI ZWICK: Outward rotations: A tool for rounding solutions of semidefinite programming re-
laxations, with applications to MAX CUT and other problems. In Proc. 31st ACM STOC, pp.
679–687, 1999. 1.2, 1.2

ABOUT THE AUTHORS

RYAN O’DONNELL received a B. Sc. from the University of Toronto in 1999 and a Ph. D.
from the MIT Mathematics Department in 2003. His Ph. D. advisor was Madhu Sudan.
Following this he was a postdoc at IAS for a year in Avi Wigderson’s group, and a
postdoc at Microsoft Research for two years in Jennifer Chayes’s group. Since 2006 he
has been an assistant professor in the Computer Science Department at Carnegie Mellon
University. Ryan’s research interests include Analysis of Boolean Functions, Hardness
of Approximation, Learning Theory, and Probability. He enjoys his spare time.

SUBHASH KHOT is an Associate Professor in the Computer Science Department at New
York University, part of the Courant Institute of Mathematical Sciences. He completed
his Ph. D. in the summer of 2003 at the Princeton CS Department under the supervision
of Sanjeev Arora. He stayed in Princeton for another year as a member of School of
Mathematics at IAS. He has been an Assistant Professor at the College of Computing at
Georgia Tech since the fall of 2004, currently on leave.

THEORY OF COMPUTING, Volume 0 (2008), pp. 1–35 35

	Introduction
	Max-Cut
	Max-Cut-Gain
	Our main results --- informal statement and discussion
	Related problems: Correlation-Clustering and Quadratic-Programming
	Subsequent work
	Outline of this paper

	Problem definitions
	Algorithmic problems
	SDP relaxations, and the probabilistic viewpoint
	A slight annoyance: zeros on the diagonal

	Long Code tests and Fourier analysis
	Fourier and Hermite expansions
	Long Code tests
	The Davie--Reeds operator

	Formal statements of our results
	Quadratic-Programming and Max-Cut-Gain
	Elementary identities
	SDP gap for DR1- on Gaussian space
	Long Code test with DR1- on the discrete cube
	The relation of DR1- to Max-Cut-Gain
	UGC-hardness of Max-Cut-Gain

	Discretizing the Gaussian SDP gap for DR1-
	Overview
	How to discretize
	Reproving the SDP gap on G

	KN,N-Quadratic-Programming
	SDP gap for DR on Gaussian space: the Davie--Reeds lower bound on Grothendieck's constant
	Long Code test with DR on the discrete cube
	A smoothed version of DR
	UGC-hardness of KN,N-Quadratic-Programming

	References

