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Abstract

In the kernel clustering problem we are given a (lamgg)n symmetric positive semidefinite matrix
A= (aj)with 31, ?:1 aj = 0 and a (smallkx k symmetric positive semidefinite mati= (l;;). The
goal is to find a partitiodSy, . .., S} of {1,...n} which maximizesyX , Z'j‘:l (Z(p,q)esixsj apq) bij. We
design a polynomial time approximation algorithm that aghs an approximation ratio (%‘%, where
R(B) andC(B) are geometric parameters that depend only on the mBjrifefined as follows: ibj; =
(vi, v;) is the Gram matrix representation®for somevs, ..., v € RX thenR(B) is the minimum radius
of a Euclidean ball containing the points, . . ., i}. The parameteZ(B) is defined as the maximum over
all measurable partition@\, . . ., Ay} of R“"! of the quantityzle 2'j<=1 bij(z, z;), where fori € {1,...,k}

the vectorz € R¥! is the Gaussian moment &f, i.e.,z = W fA xeX3/2dx. We also show that

for everye > 0, achieving an approximation guarantee OJF(&)%BB))Z is Unique Games hard.

1 Introduction

Kernel Clustering[]13] is a combinatorial optimization plem which originates in the theory of machine
learning. It is a general framework for clustering masstegistical data so as to uncover a certain hypothe-
sized structure. The problem is defined as followsAlet (a;;) be ann x n symmetric positive semidefinite
matrix which is usually normalized to be centered, %L, >'i_; &; = 0. The matrixAis often thought of
as the correlation matrix of random variableg (. .., X,) that measure attributes of certain empirical data,
ie.,aj=E [Xi Xj]. We are also given another symmetric positive semideflnit& matrix B = (by;) which
functions as a hypothesis, or test matrix. Thinknads huge and as small. The goal is to clustér so

as to obtain a smaller matrix which most resemiBed~ormally, we wish to find a partitiofS;, . .., Sk}

of {1,...,n} so that if we writecjj := 2 (pg)esixs; pas i.e., we form &k x k matrix C = (c;) by clustering

A according to the given patrtition, then the resulting cliesdeversion ofA has the maximum correlation
Yi, 2%, cijbij with the hypothesis matriB. Equivalently, the goal is to evaluate the number:

k
Clust(AB) = max > > a&ibei(): (1)

k
i=1 j=1

The strength of this generic clustering framework is basegadrt on the flexibility of adapting the
matrix B to the problem at hand. Various particular choice8 t¢ad to well studied optimization problems,
while other specialized choices Bfare based on statistical hypotheses which have been apgtiedome
empirical success. We refer {0 ]13, 7] for additional baokgd and a discussion of specific examples.

In [IZ] we investigated the computational complexity of threrrel clustering problem. Answering a
question posed in_[13], we showed that this problem has aaan&ctor polynomial time approximation



algorithm. We refer to[][7] for more information on the besbim approximation guarantees. We also
obtained hardness results for kernel clustering undeowarcomplexity assumptions. For example, we
showed in[[V] that wheB = 13 is the 3x3 identity matrix then é-z%” approximation guarantee f@ust(All3)
is achievable, while any approximation guarantee smaim%r is Uniqgue Games hard. We will discuss
the Unique Games Conjecture (UGC) presently. At this paistffices to say that the above statement is
evidence that the hardness threshold of the problem of ajppating Clust(A|l3) is %, or more modestly
that obtaining a polynomial time algorithm which approxtesClust(All3) up to a factor smaller tha?%
would require a major breakthrough.

Another result proved irL]7] is that whdn> 3 andB is either thek x k identity matrix or is spherical
(ie.,bi = 1foralli € {1,...,k}) and centered (i.eL’; £, by = 0) then there is a polynomial time

approximation algorithm which, giveA, approximatelust(A|B) to within a factor ofs—g (1— %) We
also presented i [7] a conjecture (called the Propellerjébture) which we proved would imply that
B—g (1 - %) is the UGC hardness threshold wHai: 1. We refer tol[] for more information on the Propeller
Conjecture, which at present remains open.

The above quoted result froml [7] settles the problem of eatadg the UGC hardness threshold of the
following type of algorithmic task: givel and an hypothesis matr& which is guaranteed to belong to a
certain class of matrices (in our case centered and sphegparoximate ficiently the numbeClust(A|B).
Naturally this can be refined to a family of optimization peaas which depend on a fixdgt for eachB,
what is the UGC hardness threshold of the problem of, gikemapproximatingClust(A|B)? In [4] we
answered this question only whé&= I3, and forB = Iy assuming the Propeller Conjecture, and asked
about the case of genealwe did give somé-dependent bounds inl[7], but they were not sharfBfer Ik
for reasons that will become clear presently). This is amahfyuestion since it makes sense to use the best
possible polynomial time algorithm if we kno®in advance.

Here we answer the above question in full generality. Toarpbur results we need to define two
geometric parameters which are associatdsl t8inceB is symmetric and positive semidefinite we can find
vectorsvy, . . ., Vi € R¥ such thaB is their Gram matrix, l.ebij =«(vi,vj foralli, j e {1,...,k}. LetR(B) be
the smallest possible radius of a Euclidean bakfrwhich containgvi, ..., v} and letw(B) be the center
of this ball. LetC(B) be the maximum over all partitiorig\, .. ., A} of Rk into measurable sets of the
quantityZ!‘:1 Z‘le bij<z, zj), where fori € {1,...,k} the vectorz ¢ RK-1 s the Gaussian moment 4f, i.e.,

z = W fA xe IX2/2d  (this maximum exists, as shown in Sectidn 2). Our main réstite following
theorent:

Theorem 1.1. For every symmetric positive semidefinitekmatrix B there exists a randomized polynomial

time algorithm which given an r n symmetric positive semidefinite centered matrix A, ostputumber

Alg(A) such that

R(B)?

C(B)
On the other hand, assuming the Unique Games Conjecturglgogmial time algorithm approximates

Clust(A|B) to within a factor strictly smaller tha@%z.

Clust(A/B) < E[Alg(A)] <

Clust(A|B).

As an example of Theore1.1 for a particular hypothesisimeatnsider the following perturbation of

1We refer to the discussion in Question 1 in Seciiah 1.1 beltwchvaddresses the issue of computifiiceently good approx-
imate clusterings rather than approximating only the v&ilest(A|B).



the previously studied cage= I3:

1 00
B;:=|0 1 0f,
0 0 c

wherec > 0 is a parameter. The problem of approximatirtficeently Clust(A|B;) corresponds to parti-
tioning the rows ofA into 3 setsS;, S,, S3 C {1,...,n} and maximizing the sum of the total masseshof
on S x S1,S3 X Sy, S3 X S3, where the parametercan be used to tune the weight of the Sgt This
problem is not particularly important—we chose it just aaaete example for the sake of illustration.
In Sectior 6 we compute the parametB(8;), C(B;) and deduce that the UGC hardness threshold of the

problem of computingClust(A|Bc) equals"’”lcilzgza)2 if c> % and equalé’(zi%fg if c< 1 . The change a = 3
corresponds in a qualitative change in the best algorithmadmputingClust(A| BC)—we refer to Sectlol6
for an explanation.

In the remainder of this introduction we will explain the iears ingredients of Theorel 1.1 (in particular
the Unique Games Conjecture), and the new ideas used iroib$. pr

The main tool in the design of the algorithm in Theorend 1.1 maaural generalization of the positive
semidefinite Grothendieck inequality. Inl [4] Grothendigmoved that there exists a universal constant

K > 0 such that for everm x n symmetric positive semidefinite matrkk= (a;) we haveé:

’’’’’ e 1225"1()" Xj) < K max anzn:aijgié‘j. o)

=1 j=0 7 i=1 j=1

The best constar in @) was shown in[[T1] to be equal & A natural variant of[(R) is to replace the
numbers-1, 1 by generals, ..., Vi € R, namely one might ask for the smallest constént 0 such that
for every symmetric positive sem|def|nme< n matrix A we have:

LT D K, pe 51 e ©

i=1 j=0 T Ilj

In Sectior[B we prove thal(3) holds with = ﬁ, whereB = ((vi,vj>) is the Gram matrix of/y, . . ., i,

and that this constant is sharp. This inequality is provexh@lthe following lines. Fixn unit vectors
X1,...,% € S LetG = (gij) be a k- 1) x nrandom matrix whose entries are i.i.d. standard Gaussian
random variables. Leiy, ..., Ax € R¥! be a measurable partition BF-* at whichC(B) is attained. Define

a random choice afi € {v1,..., Vk} by settingy; = v, for the uniquef € {1,...,k} such thatGx € A,. The

fact that [B) holds witlK = C(B) is a consequence of the following fact, WhICh we prove in ibaf:

zC(B)_ZZajm,xj)- (4)

The crucial point in the proof of14) is the following identitproved in Lemma&-3]2 as a corollary of the
closed-form formula for the Poison kernel of the Hermiteypoimials: for every two measurable subsets

2This inequality is sometimes written as a1 2 S & (%, Vi) < Kmax, sei-1y Sieg 2 &j&id;, but it is easy (and
I’Q% i=1 Zij=1¢4j j P01 (=11} Lij=1 Zij=1 Aij ]
standard) to verify that sinc&is positive semidefinite this formulation coincides wi.(2



E,F c R<1and any two unit vectors, y € R", we have
Pr[Gxe E andGye F|

~nea®rcal) + 0 [[uea), [udnes@)+ 306 Y as@alP). ©)
. F =2 s (IU[0)) L
Si+-+S-1=C
for some real caicients{as(E)} scauuiop1s {as(F)}sequujope-2 € R. Hereyy-1 denotes the standard Gaussian
measure ok, The product structure of the decompositibh (5) hints atdteof the fact thaf\ is positive
semidefinite in the proof of14)—the complete details appe&ectiorB.

Once the generalized Grothendieck inequalifd (18) is akthiwithK = ﬁ it is simple to design the
algorithm whose existence is claimed in Theofem 1.1, whsdbaised on semidefinite programming—this
is done in Sectiohl4.

We shall now pass to an explanation of the hardness resulaorEnl_LIL. The Unique Games Con-
jecture, posed by Khot ir 6], is as follows. A Unique Gamernsoptimization problem with an instance
Z = Z(G(V,W, E),n, {mw}vwee). HereG(V, W, E) is a regular bipartite graph with vertex s&tsandW
and edge sdE. Each vertex is supposed to receive a label from thé¢lset. , n}. For every edge\w) € E
with v e V andw € W, there is a given permutationyy, : {1,...,n} — {1,...,n}. Alabeling of the Unique
Game instance is an assignmentV UW — {1,...,n}. An edge ¥, w) is satisfied by a labeling if and
only if p(v) = mw(o(wW)). The goal is to find a labeling that maximizes the fractibedges satisfied (call this
maximum OPT)). We think of the number of labelsas a constant and the size of the gr&iN, W, E)
as the size of the problem instance. The Unique Games Carge@iGC) asserts that for arbitrarily small
constantg, § > 0, there exists a constant= n(e, §) such that no polynomial time algorithm can distinguish
whether a Unique Games instangé = .Z(G(V, W, E), n, {myw}wew) Satisfies OPT¥) < ¢ (soundness)
or there exists a labeling such that for % fraction of the verticey € V all the edges incident with are
satisfied (completeness)This conjecture is (by now) a commonly used complexity ag#ion to prove
hardness of approximation results. Despite several retthpts to get better polynomial time approxima-
tion algorithms for the Unique Game problem (see the tab[8]ifior a description of known results), the
unique games conjecture still stands.

Our UGC hardness result follows the standard “dictatorsegt” approach which is prevalent in PCP
based hardness proofs, with a new twist which seems to balepeandent interest. Since the kernel clus-
tering problem is concerned with an assignment of on& laibels to each of the rows of the mati
the natural setting of our hardness proof is a dictatorsémp for functions or{l,. .., k}" taking values in
{1,...,K} (this was already the case Ir [7]). The general “philosoptfysuch hardness proofs is to associate
to every such function a certain numerical parameter calied'objective value” (which is adapted to the
optimization problem at hand). The general scheme is to shatffor some numbes b > 0, if f depends
on only one coordinate (i.e., it is a “dictatorship”) thee tbbjective value of is at leasta, while if f does
not have any coordinate which is too influential then the cbje value off is at mostb + o(1) (theo(1)
depends on the notion of having no influential coordinatesigrexact form is not important for the purpose
of this overview—we refer to Sectidi 5 for details). Oncetsacesult is proved, techniques from the theory
of Probabilistically Checkable Proofs can show that undsuitable complexity theoretic assumption (in
our case the UGC) no polynomial time algorithm can achievapgmoximation factor smaller theh

3This version of the UGC is not the standard version as stat{f],iwhich only requires OPT¥) > 1 - ¢ in the completeness.
However, it was shown ir[ 18] that this seemingly strongersi@r of the UGC actually follows from the original UGC—we il
require this stronger statement in our proofs.



Implicit to the above discussion is an underlying produstribution on{1, . . ., k}" with respect to which
we measure the influence of variables. [In [7] the casB ef I was solved using the uniform distribution
on{l,...,k}. Itturns out that in order to prove the sharp hardness rasdiheoreniLIlL we need to use
a non-uniform distribution which depends on the geometrBofNamely, writing B as a Gram matrix
bij = (vi,Vj), recall thatR(B) is the radius of the smallest Euclidean ball containivg. . ., vk} andw(B) is
the center of this ball. A simple separation argument shbasn(B) is in the convex hull of the vectors in
{v1,...,Vk} whose distance from(B) is exactlyR(B). Writing w(B) as a convex combination of these points
and considering the cfiicients of this convex combination results in a probabilistribution on{d, ..., k}.

In our hardness proof we use thdold product of (a small perturbation of) this probabildystribution as
the underlying distribution ofil, ..., k} for our dictatorship test—see Figure 1 for a schematic detmn

of the situation described above. The full details of thigrapch, including all the relevant definitions, are
presented in Sectidd 5.

Figure 1: The geometry of the test matrix B induces a dictatorship thst points above are the vectors
{V1,...,Vi} € RKsuch that B is their Gram matrix. The ball depicted above ésgmallest Euclidean ball
containing{vs, ..., v}, R(B) is its radius and \{B) is its center. Then (B) is in the convex hull of the
points in{vy,..., v} which are at distance exactly(R) from w(B). Writing w(B) as a convex combination
of these boundary points yields a distribution over the lalpg ..., k}. Our dictatorship test corresponds
to selecting a point from the n-fold power of this probakikpace and comparing the behavior of a certain
“objective value” (defined in equatio@1l) below), which depends only on the singleton Fourieyfecents,
for dictatorships and for functions with low influences.

1.1 Open problems
We end this introduction with a statement of some open proble

Question 1. TheorenTlL shows that the UGC hardness threshold of théepnatf computingClust(A|B)

for a fixed hypothesis matrii equals%. It is natural to ask if there is also a polynomial time altfom

which outputs a clustering @& whose value is within a factor (%BT); of the optimal clustering. The issue

is that our rounding algorithm uses the partiti@y, . . ., A} of RK1 at whichC(B) is attained. In Sectiof 2
we study this optimal partition, and show that it has a reddy§i simple structure rather than being composed
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of general measurable sets: it corresponds to cones whicindnced by the faces of a simplex. This
information allows us to computefieiently a partition which comes as close as we wish to thendti
partition whenk is fixed, or grows slowly withn (to be safe lets just say for the sake of argument that
k ~ loglogn works). We refer to Remalk=3.3 for details. We currently dokmow if there is polynomial
time rounding algorithm when, salg,~ +/n. Givene > 0, is there an algorithm which, giveh and B,
computeClust(A|B) to within a factor of (1+ 3)%, and runs in time which is polynomial in bothand

k (and maybe even/t)?

Question 2. We remind the reader that the Propeller Conjecture remaies.orhis conjecture is about the
value ofC(lx) whenk > 4. It states that the partition at whi€(ly) is attained is actually much simpler than
what one might initially expect: only 3 of the sets have pesitneasure and they form a cylinder over a
planar 120 “propeller”. We refer tol[7] for a precise formulation andse evidence for the validity of the
Propeller Conjecture.

Question 3. The kernel clustering problem was stated[inl [13] for magiéewhich are centered. This
makes sense from the perspective of machine learning, Beeins meaningful to also ask for the UGC
hardness threshold of the same problem wheés not assumed to be centered. In the present paper we did
not investigate this case at all, and it seems that the ex@€& hlardness threshold wheris not necessarily
centered is not known for any interesting hypothesis mariNote that in[[7] we showed that there is a
constant factor polynomial time approximation algorithrhem A is not necessarily centered: we obtained
in [Z] an approximation guarantee of+13—2” in this case, but this is probably suboptimal.

2 Preliminaries on the parameterC(B)

LetB = (bij)i‘szl € Mk(R) be ak x k symmetric positive semidefinite matrix. In what follows we Ki> 2
and the matrixB. We also fix vectors, . . ., vk € RK for which bij = (v,vj) foralli, je{1,...,k}.

Lety, denote the standard Gaussian measufRone., the density of;, is 273”/2 e2/2 We denote by
Hy the Hilbert spacd.s(yn) @ La(yn) @ - - - ® Lo(yn) (K times) and we consider the convex subsgty,) € Hg
give by:

k
Aelyn) = {(fl,...,fk)er: Viell.. .k fj20A > f =1}. (6)
=1

Define:
kK k

cnB = sup > Dby < | x| xf,-(x)dyn(x)>. )
(fr... feAkim) 21 =1 Rn Rn
The following lemma is a variant of Lemma 3.1 In [7] (but seenRek[Z] for an explanation of a subtle
difference). It simply states that the supremuntln (7) is atth@riek-tuple of functions which correspond
to a partition ofR".

Lemma 2.1. There exist disjoint measurable setg A.,Ax C R"suchthat AUA U --- U A = R" and

k
3o < /. 0. /. | xdyn<x)> - c(n.B).

i

2,

k
1



Proof. Define¥ : Ax(yn) — R by

k k

Y(f1,..., fx) = Z bij -<[Rn xfi (X)dyn(X), Ln xfj(x)dyn(x)>. (8)
1

i=1 j=

We first observe tha¥ is a convex function. Indeed, fix € [0,1] and (fy,..., fk), (01, ...,0k) € Ak(yn).
Denotez := [, xfi(x)dyn(X) andw; := [, xg(X)dyn(X) for everyi € {1,....k}. Then:

AP(f, .. B)+ (L= AP, ..., o) —P(AFf+ (1 - D)1, ..., ATk + (1= k)

k k
D0 v (K, ) + (L= Dwn, wy) = Az + (1= Dwi, Az + (1 - w;))
i=1 j=1

k k
A(L-2) Z D (W, ViXE - W, Z) - W)

Il
&
~
=

|
)
~

> 0.

2

SinceAx(yn) is a weakly compact subset bl and¥ is weakly continuous and conve¥, attains its

maximum (which equal€(n, B)) on Ax(yn) at an extreme point ofx(yn), say at ;... ., f) € Ak(yn). It
follows that there exist measurable sats. .., Ax € R" which form a partition oR" such that (1*, e flj) =
(1. - - .»1a) @lmost everywhefe as required. O

Remark 2.1. In [[/] a stronger result was proved whBn= I (thek x k identity matrix). Namely, using the
notation of the proof of Lemma3.1 it was shown that the maximud ¥ on the larger convex set

k
Alyn) = {(fl,...,fk)er: Vie{l,... .kl fj=0 A Zf,-sl}
j=1

is also attained atf(, ..., f;) = (1a,,...,1a) for some measurable sefs,...,Ax € R" which form a
partition of R". It turns out that this stronger fact helps to slightly siifypthe proof of the corresponding
UGC hardness result. However, we do not know how to provedinenger statement for genemdj so
we formulated the weaker statement in Lenima 2.1, at the ¢ostemling to modify our proof of the UGC
hardness result for geneflin Sectior{b.

The same extreme point argument as in the proof of Lefnnja 2&sskhat the maximum o¥ on
Am) is attained at (1*,..., f;) = (1a,,-- ., 1a) for some disjoint measurable séis, ..., A« € R", but
now it does not follow that they necessarily cover allRdf WhenB = Iy it can be shown as in]7] that
these sets do cov@®". The same statement is true whBris diagonal, as we now show by arguing as in
the proof in [7], but we do not know if it is true for generdl So, assume tha is diagonal with positive
diagonal entriesty, ..., by). LetA = R"\ X, A. Denotez; := fAj xdyn(X) andw = [, xdyn(X). Note that

4To see this standard fact observe that otherwise there vimmukbmeA C R" of positive measures € (0,1/2), and distinct
i,jefd,..., ki such thatfi1a, fila € (6,1 - ¢). But (f],..., f) would then not be an extreme point since it is the average of
(9, .-, ), (he,. .., ho € A(yn) \ (T4, ..., f)) whereg, = h, = f) for € € {1,..., Ki\{i,j} andg = (f" + &)1a + T lan\a,
hi = (fl* — 8)1A + fi*lR"\A' gj = (fJ* — 8)1A + fj*an\A, hj = (fJ* + 8)1A + fj*lR“\A-



W+2+---+ 2% = 0. If w= 0 then¥ attains its maximum on the partitidih U Aq, Ay, ..., A}, SO assume
for the sake of contradiction that = 0. For evenyi € {1,...,k} we have:

n
D bilzlE = P(lay - 1a) = YA -5 1a s Tavas Lo -5 1a)
=1

= ) bjlizli3 + billz +wi = Z bjlizi113 + 2b1(z, W) + by w3,
1<j<k j=
j#i
Thus 2z, w) + |wi|2 < 0, and if we sum this inequality ovék {1, ..., k} while recalling thatv = — Z| 17
we see thatl — 2)||W||§ < 0, which is a contradiction. Note that for geneBathe same argument shows
that for alli € {1,...,k} we have 2:‘1-(:1 bij <Zj,W> + biillwllg < 0. These inequalities do not seem to lend
themselves to the same type of easy contradiction as in #eeafaliagonal matrices. <

The proof of the following lemma is an obvious midificationtbé proof of Lemma 3.2 iri.]7].
Lemma 2.2.1fn > k- 1then Qn, B) = C(k - 1, B).
Proof. The inequalityC(n, B) > C(k — 1, B) is easy since for everyf{,..., fx) € Ax(yk-1) we can define
(f1.... fi) € Acm) by Fj(xy) = j(¥) (thinking here ofR" asR*" x R™+1). Then for allj € {1,....k} we

have [,y xfj()dyk-1(x) = [, xFj(x)dyn(x), implying that® (1, ... fi) = ¥ (f1..... ).

In the reverse direction, by LemnilaR.1 there is a measurabliipn A4, ..., Ax of R" such that if
we definezj = [, xdyn(x) € R" then we haveSit; 3 ; b (z.z) = C(n,B). Note thaty¥_, z = 0.
Hence the dimension of the subspate= spanfz,...,z} isd < k- 1. Definegs,..., 0 : V — [0, 1] by
9i(®) = v+ ((Aj = x) N V*). Then @u.....gd) € Alyv), so that

Ck-1,B) > C(d,B)
> ZZb,J< xg(x)dyv(x),fVng(X)dYV(X)>
kK k
= bj 1a (X + y)xcyy (X)dyy-(y), 1a;(x + y)xdyy(x)d i()>
S S ([ oo [ [ seopencrn
kK k
= ZZb,,< Proj, (w)dyn(w), f Projv(W)dYn(W)>
i=1 j=1 A
kK k
- ZZbIJ (Proj,(z). Proj,(z)))
i=1 j=1
k Jk
= ZZ bij <Zi,Zj> = C(n, B),
i=1 j=1
as required. m|

In light of LemmalZR we defin€(B) := C(k — 1, B). We shall now prove an analogue of Lemma 3.3
in [[7] which gives structural information on the partitiofy, . . ., A} of R"1 at whichC(B) is attained. We
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first recall some notation and terminology fram [7]. Givestilictzs, ...,z € R¥1andj € {1, ..., k} define
asetPj(z,...,z) S R¥ by

.....

Thus{Pj(zl, .. .,zk)}j:l is a partition ofR¥"1 which we call the simplicial partition induced by, .. ., z
(strictly speaking the elements of this partition are nejaiit, but they intersect at sets of measure 0).

Lemma2.3. Let A, ..., Ax € R be a partition into measurable sets such that if we setz[, xdyi_1(X)
|

then o
c® =), > bi(a.z). (©)

i=1 j=1
Assume also that this partition is minimal in the sense thatrtumber of elements of positive measure in
this partition is minimum among all the possible partitis®tisfying(@). Define

J:={jefLl....k: na(A) >0}

and setJ| = ¢. Then up to an orthogonal transformati¢z}jc; € R~! and the vector$zj}jc; are non-zero
and distinct. Moreover, if we defirf@;}jcy € R by

sed

then the vectoréwi}je; are distinct and for each ¢ J we have
Aj = Pj((Wi)ieg) x R¥ (11)
up to sets of measure zero.

Proof. Since}jc; 1, = 1 almost everywhere we hayg; z; = 0. Thus the dimension of the span{af} jc;
isat mos{J| - 1= ¢-1, and by applying an orthogonal transformation we may asshait{z;}c; C R,
Also, for every distinct, j € J replaceA; by A; U Aj andA;j by the empty set and obtain a partitionRIf1
which contains exactly — 1 elements of positive measure and for which we have (by timémality of ¢):

CB) > > ba@z+2 ) bs(zz+z)+biz+ zill>

sted\{i,j} sed\{i, j}
= Z bst(Zs, z) + ZZ (bis - bjs) <Zs, Zj> + (bii +bjj - 2bij) lizill3
sted sed

C(B) + 2(wi — W} Z)) + M = VI3 - 1113,
where we used the fact thi; = (v, vt). Thus

2(w - wj.z) + I - vilI3 - 1Izjli3 < O, (12)
and by symmetry we also have the inequality:

2(wj —wiz) + Ivi = vjl3 - [1zl13 < O. (13)
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It follows in particular from [IP) and{13) tha andz; are non-zero and that, # w;. Moreover if we
sum [I2) and{1I3) we get that

2(wi - wj,zj -z ) + v = vjli3 (112113 + liZjl13) < O

which implies thatg # z;.

The above reasoning implies in particular tha((w)ics) x Rk‘f}jej is a partition ofRk-1 (up to pair-
wise intersections at sets of measure 0). Assume for thecfad@ntradiction that these existe J such
that

Y1 (A (Pi((We)sea) x R<)) > 0.
Arguing as in the proof of Lemma 3.3 ihl[7] we see that therstexi > 0 andj € J \ {i} such that if we
denoteE = {xe A 1 (X)) 2 (X, 2) + &} theny, 1 (E) > 0.
Define a partitionAy, . . . A, of R by

(A reli)
Ar=¢ A\E r=i
AjUE r=j.

Then forw := [_ xdyk-1(X) we have

c® = Y bst< [ xneso. [ xdyk_l(x)>

sted As A

= ) bazsm+2 ) bs@z-w+2 > bjs(z7+w)
SV ) SN} s3I}
+2bij <Zi -W,zZj + W> + bii llz — W||% + bjj ||Zj + W||%

= C(B)- ZZ bis (Zs, W) + ZZ bijs (Zs, W) + (bii +bjj - 2bij) Iwil3

sed sed

D @) +2(w; - wi.w) + v - I3 - i3

> 0B)+2 [ (@0 - (@) drea(®

> C(B) + 2eyx-1(E) > C(B),

a contradiction. o

Remark 2.2. Note that we have the following non-trivial identity as aa@tary of LemmdaZB (and using

the same notation): For eack J,
7= [ e, 14)
Pi((W)ies)

where we recall that they; are defined in[[10). This system of equalities seems to comtan-trivial
information on the structure of the partition at whi€i(B) is attained. In future research it would be of
interest to exploit this information, though we have no nfedt for our present purposes. <

Remark 2.3. GivenB ande > 0 we can estimat€(B) up to an error of at most in constant time (which
depends only o, k, ). Moreover, we can compute in constant time a conical siigblpartition ofRK-1
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at which the value o¥ is at leastC(B) — . These statements are a simple corollary of Leriimda 2.3. thdee
all we have to do is to run over all choices 6& (1,...,k} and for each suck construct an appropriate
net ofz, ...,z € R of bounded size, and then check each of the induced simpbarétions ofRk-1 as

in (I1) for the one which maximize®. To this end we need some a priori bound on the length: ahe
crude bound

||a||2=H fA xdye1(0)|| < fR IXlatye1 () < VE
. 2 -1

will suffice. Fixé > 0 which will be determined momentarily. L& be ad-net in the Euclidean ball of
14
radius V¢ in R-1. Then|N| < (37‘/?) .
LetA;,...,Acbe asin LemmBRZ23, i.e., the true (minimal) partition at wWwhi{B) is attained. Let], ¢,
z andw; be as in LemmB2 3. For eack JfindZ € N for which ||z — Z|l2 < 6. Definew = ¥ ; bjsZ.
Then we have the crude boupidi — w2 < 62'_2;1 2{;1 Ibsi| == 4||Bll2. We also have the a priori bounds

[IWill2, W [l2 < V{||BJl1. By compactness there exists= 6(¢, £, B) such that these estimates imply that for
all j e J,
<

E
5 | oy [ PRCACE [ P2

(It is actually easy to give a concrete bound on the requirédo desired, but this is not important for our
purposes.) It follows fronT{15) that:

CCEDY bst< fp PP L xdw_l(x)>

sted

(15)

2

E
> Y ba(zs,z)— Y |bsl - ——— -2Vl =C(B) -&.
;@ ;] 2VeIBlly

Note that the above integrals can be estimafédiently (polynomial time irk) with arbitrarily good pre-
cision due to the fact that the simplicial conBg((w/)ic;) have an #icient membership oracle and the
Gaussian measure is log-concave. These are very crude $thatdstfice for our algorithmic purposes
whenk is fixed, but deteriorate exponentially wikh It would be of interest to understand whether we can
estimateC(B) (and more importantly the associated partitions, as theysed in our rounding procedure)
in time which is polynomial irk. Perhaps the identitieS{14) can play a role in the designaf an éicient
algorithm, but we did not investigate this issue. <

We end this section with a simple analytic interpretationthef paramete€(B). Given a square inte-
grable functionf : R" — R¥ its Rademacher projectidRad(f) : R" — RX (see [10] for an explanation of
this terminology) is defined fox = (xg, ..., X,) € R" as:

Rad()0) = ). [ 10 .
i=1

Assume thaff takes values iffvy, ..., vk} € R€ and define®, = f~1(v;) fori € {1,...,k}. Then{As, ..., A}
is a measurable partition &". We also have the identity:

n k
Rad(f)(x) = Z[;Vj fA | Yid)’n(Y)]Xi-

i=1

11



Thus

2
n

IRAI = [ IRGDRIE ) = 3

2

k
Vidyn
D i 80
n k k k k
=ZZZ(VJ-,W)( [ yidyn(y))( IREZUE ZZW{ f yayn(y), f vdn)). (19
i j=1 ¢=1 j =1

i=1 |= j=1
The identity [I6) implies the following lemma:

Lemma 2.4. For every n> k — 1 we have:

C(B) = (X IRad(f)[1Z oK)

......

Recall thatR(B) is defined as the radius of the smallest balklrwhich contains the sétn, . .., w} and
thatw(B) is the center of this ball. Lemnia2.4 implies the followirgalary:

Corollary 2.5. C(B) < R(B)2

Proof. Let{Ay, ..., A} be a partition oR*"? into measurable sets such that if we defipe fAj xahyr_1(X)
then

2

x

k

%

=1

Kk Kk
D (- wWB), v - WB))(3,2) +2 )" (4, w(B)) a,Zz,-> + (Bl - (17)

i=1 j=1 i=1 < =1

2
SinceZ'j‘:1 zj = 0t follows from (I8) and[(I7) that fof : RK"* — {v — w(B)}X; defined byf|x = v —w(B)
we have:

C(B) = |IRad(f)|I? max v - w(B)I5 = R(B)?,

.....

2
2(), Rk) == ”f”L (), Rk) — ||f|||_ (), Rk)

where in &) we used the fact th&ad is an orthogonal projection on the Hilbert spacéy,, RY). m]

3 Generalized positive semidefinite Grothendieck inequdies

The purpose of this section is to prove the following thegraiich as explained in the introduction, is an
extension of Grothendieck’s inequality for positive seefidite matrices.

Theorem 3.1. Let A= (&) € My(R) be an nx n symmetric positive semidefinite matrix. Lgtv.,w € RK
be k> 2 vectors and let B= (bj; = (v, V;)) be the corresponding Gram matrix. Then

n n
max X § Vo) Vor 18
..... XneSM-1 Z Z aj (X%, X)) < C(B) (,{1,_._’ _){1 K le Z; (i) Vor(j))- (18)

i=1 j=20 T/ TrmTmemE e

12



We shall prove in Section 3.1 that the fac@% in (I8) cannot be improved, even when [ol(¥8)s
restricted to be centered, i.€;; 3, aj = 0.
The key tool in the proof of Theorem 1 is the following lemma

Lemma 3.2. Let{gij ciefl,....,m}, je{l,. ..,n}} be i.i.d. standard Gaussian random variables and let

G = (gij) be the corresponding m n random Gaussian matrix. Fix two unit vectorsyx S™1 and two
measurable subsets E ¢ R™. Then:

Pr[Gxe E A Gye F]

=m®mm+mw“}wmyﬁwmwy§xﬁyﬂ > as(B)as(F), (19)

(=2 se(Nu{oy)™
Si+-+Sm=C

for some real cogicients{as(E)}scquuioym, {@s(F)}se@iugopm € R.
Proof. Denoter = (x,y). Let g,h € R be independent standard Gaussian random variables and let
J1,...,0mn € R" be i.i.d. standard Gaussian random vectorR'lti.e., they are independent and distributed

according toy,). Then for each € {1,..., m} the planar random vectotd;, X), (gi,y)) € R? has the same
distribution as(g, rg+ vi- r2h) € R?, and hence its density is given far, {) € R? by:

2 _ 2
fr(U,V) = ( W)

1
27 V1-12 2(1-r?)
The Hermite polynomial$H},” , are defined as:

2 8 ey R DKo
Hi(®) = (1) dtk( )= ; a(k—291 )

The formula for the Poison kernel for Hermite polynomialegg$or example equation 6.1.13 [d [1] or the
discussion in[[14]) says that

e—(u2+v2)/2 S u Vv
fr(u,v) = ” Hk(—) Hk(—).
2r é 2¥k! \?2 \?2

Since the vectorGx, Gy) € R?™ has the same distribution as the vedidg;, x), <gi,y>))i“:1, whose (planar)
entries are i.i.d. with densitf, we see that:

Pr[Gxe E A Gye F] f U—[ fr (Ui, vi) ]dudv
ExF

~(llull3+IMI3)/2 © k :
[ (I EEE I
fExF [ Z 251+ :; ;,Im (l_[ )] [1_[ Hs )] dym(U)dym(v)

se(NU{0})™ 1

Ym(E)ym(F) + (X, y) <j|; Ud}’m(u)ajl;Ud)’m(U)> + Z X®£ y®€ Z as(E)as(F),

{= se(Nufop)™
S+ +Sm=C

13



where we used the fact thatp(t) = 1 andH(t) = 2t, and for every measurable subs&t c R™ and
se (N U {0}))™ the notation

1 m Ui
as(W) = P CETS Y . NG j\/‘v{D Hs ($)) dym(u).

The proof of the identity[(1l4) is complete. i

Proof of TheorerdL3I1Fix n unit vectorsxy, ..., X, € S™1. Let{Aq,..., A be a partition ofR¥? into
measurable subsets. L@the a random Gaussian matrix as in Lenima 3.2 with k — 1. Define a random
assignmentr : {1,...,n} — {1,...,k} by settingo(i) to be the uniquep € {1,...,k} for whichGx € Ap.
Then for every, j € {1, ...,Nfwe have

k

k k Kk
[ v(,(.),v(,(J) Z Z vp,vq Pr Gx| €Ap A Gxj € Aq ZZ bpq Pr[G)q €eAp A Gxj e Aq].
p=1g=1 p=1g=1

We may therefore apply LemriaB.2 to deduce that:

n n n n k k
B2, 2,81 (Vi Vo) ZZaJ]ZZka H(Avica(Ag
i1 j=1

10=1

>3 (s x,)Jiibpq< S nan. [ e 19

=1 g=1

o (n .
+2 [ PP *)] > prqasmp)as(Aq)

se(NU{0})™ p=1g=1
S1++++Sm=~{

n n k k
[IZJZE‘” {x. %)) ]Zzb < fA X qu xdyk_l(x)>,

10=1

1
/_\

vV

where we used the fact that bothand B are positive semidefinite. It thus follows that there exats
assignmentr: {1,...,n} — {1,...,k} for which

n n n n k kK
;;a” Vir()» Ver() [;;a” (% %) J;;bpq<ﬁp XWk—l(X),LXWk—l(X)>,

and since this is true for all measurable partitipAs . . ., A} of R we deduce that there exists an assign-
mento: {1,...,n} — {1,..., Kk} for which:

n n n n
Z Z aij {Virt): Vo)) )Z Z i (%. %)),

i=1 j=1 i=1 j=1

as required. m|
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3.1 Optimality
The purpose of this section is to show that Theorerh 3.1 igpshar

Theorem 3.3. Let v, ..., v € RKbe k> 2 vectors and let B= (bij = (vi,V;)) be the corresponding Gram
matrix. Assume that k- 0 is a constant such that for everyenN and every centered symmetric positive
semidefinite matrix A (a;j) € Mp(R) we have:

max ) Z a6 x) <K max Z Z 8} (Vo). Vi) (20)

i=1 j=1 —1]

Then K> C(B)

Proof. The proof consists of a discretization of a continuous examphe discretization step is somewhat
tedious, but straightforward. We will start with a preséiotaof the continuous example. Fme N and let

g, h € R™be independent standard gaussian random vectors. Qaieel[fil2) is independent o(f”g% ﬁ)
we have:

X g h \?
meme<X’y> <||X||2 IIYII2> Hm{tymy) = E gl ”h”2<||g|| ||h||2>l
sl VL [9_] 21'“[9_?]_1 2
= Eligll - Inlz] E[<ugn2’||h||z> ~Ellgll" & |1 | = 2 i) mZ;E | = mE el @D

where we used the rotation invariance of the distributioh. of
The distribution oﬂ|g||§ is the y2 distribution withm degrees of freedom, and therefore its density at

u>0 eQUalsmuz Le7u/2, |t follows that

Ellgl] = gy [, VE-UE e ¥2du= V3. - Zx/ﬁ(l—O(%)), (22)

(5)

where the last step is an application of Stirling’s formutdugging [ZR) into[[21) we see that:

1
fR oy <”X”2 L > By dym() > 1 — 0( ) (23)

Now, assuming than > k — 1, for everyf : R™ — {vq,..., %} we have
2
[ o <09, 160 eyt = | [ x@ FO9trny
RMxRM RM 2

- Zl s ( fR X f(x)dym(x))

where we used Lemnia2.4 (and hete. .., ey, is the standard basis &™).
We shall now perform a simple discretization argument tactiate the proof of Theoref3.3. Féx> 0
andM € N. Let.Z be the set of all axis parallel cubes irgM, eM]™ which are a product ai intervals

2
_ 2
= ”Rad(f)”Lz(ym,Rk) <C(B), (24)

2
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whose endpoints are consecutive integer multiples iof[-M, M]. Thus|.Z| = (2M)™ and eachQ € .%
has volumes™. ForQ € .# let zg be the center of. For everyP, Q € .# define

lizpli3+iz 113
2m T2 N2
apQ =€ Mg~ 2 (zp, ZQ> .

By our assumptiori{20) there is an assignment# — {1,...,k} such that

»  Z
’ =K o(P): Ve (Q) - 25
2 apQ<||zP||z ||zQ||z>< 2 80 {Ve(P: Vo(@) (25)

P.Qe.7 P.Qes

We shall now use the following straightforward (and crudsjneates:

] » 7
meme< ’y><||x||z B > dym(dym(s) = ) aPQ<||2p||z’||zQ||2>

PQe7
lizpli3+lizqli3 < Zq > HxH2+||y||2 < y >
< e 2 , dxd
Psz fpxq @2\ ol ol SN\ oz /| Y
X
: ol ko
f(Rmem)\([_gM.gM]mx[_.gM.gM]m) Y\ iyl | Y m I rm)
II><|I +iylig
< O(1) Vme(Vm Ms >y f 5 dxdy+ O(L)mPe 7
P,Qe.7# PxQ
M2
< O(1) Vi (VmMe)® + O(L)nPe 4.
We shall require in what follows thatVl = 2m. Hence, usind{23) we deduce that:
Z < 2 > —O(ms+ 1) (26)
POcF lizpll2” 1Zqll2 m
On the other hand, define: R™ — {vy,...,w} by
Vo(Q) X€ Qe Z,
o) = { X ¢ [-eM, eM]™.
Observe that by symmetry
| 06y - (£, T5)) dym(Xbym(y) = O,
(RMXRM)\([—eM,eM]Mx[-eM,eM]™)
and therefore a similar crude estimate yields:
f O Y) - (F(0), FO)) dym()dym(y) = D apq (Vo(e), Vor@)
RMxRM P’Qey
XIZ-+1yi13 lzpliZ+lizgli3
< Z f e a (XYy)—e" L2 <ZP’ZQ> |(v(,(p),v(,(Q)>|dxdy
PQez ¥ PxQ
< O(nPs). max Ivill2. (27)

.....
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Choosinge = m® (and thusM = 2m’), and combining[{27) with[{24) and{26), yields in combipati
with (28) the bound:

.....

Lettingm — oo concludes the proof of TheordmB.3. o

4 A sharp approximation algorithm for kernel clustering

Let A = (&) € My(R) be a centered symmetric positive semidefinite matrix anhdle: (bjj) € My(R)
be a symmetric positive semidefinite matrix. Our goal is teigle a polynomial time algorithm which
approximates the value:

n n
Clust(A|B) = . max Z Z aj U(|)O-(J)
""" |:1 j=1
We proceed as follows. We first find vectass.. . ., ik € R¥ such thato;; = (vi,v;) foralli,j € {1,...,k}.
This can be done in polynomial time (Cholesky decomposjtidret R(B) be the minimum radius of the
Euclidean ball inRX that containgvs, . .., v} and letw(B) be the center of this ball. BotR(B) andw(B)
can be éiciently computed by solving an appropriate semidefiniteymm.
We now use semidefinite programming to compute the value:

n n
SDP@|B) := max ZZa” <Xi,Xj>: X1, ..., % €RT A ||Xi||2§lVie{1,...,n}}

i-1 j=1
n n
axi >0 > & (X X))t X X € ST (28)

i=1 j=1

where the last equality ifi{P8) holds since the functian (.., X,) — Xi; X" & (x, ;) is convex (by
virtue of the fact tha# is positive semidefinite). We claim that

Clust(A|B) < SDP@B) < Clust(A|B)

R(B)Z c@B) (29)

which implies that if we output the numba(B)ZCIust(A|B) we will obtain a polynomial time algorithm
which approximate€lust(A|B) up to a factor 0%
To verify (Z9) letx;, ..., x; € S ando* : {1,...,n} — {1,...,k} be such that

SDP@(B) =

M=
M:

&j <X"XJ>

1l
i
Il
s

i=1j

n n
Clust(AB) = Z Z o (i)o* (j) -
:1 =1

Write (a.J)” = ((u;, J>)I i-1 for someuy, . .. € R". The assumption tha is centered means that
nu=0. The rlght hand S|de of inequality |ﬂ29) is simply a réstaent of Theorefa-3.1. The left-hand

and
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side inequality [29) follows from the fact th&& 2" has norm at most 1 for alle {1,...,n}. Indeed,

R(B)
these norm bounds imply that:

ii <Vo-*(i)_W(B) Va'*(j)_W(B)>
\TRrRB® T~ RO

SDPAB) >
i=1 j=1
) SR o O\ MBI &S
= R(B)2 ; ; Vor(i)> Vo (J) R(B)2 Z (W(B), Vo= (i)) <Ul, ; UJ> + R(B)? ; ; ajj
_ Clust(AB)
~ RB?

This completes the proof that our algorithm approximat@&siently the numbefClust(A|B), but does
not address the issue of how tfiieiently compute an assignmeant: {1,...,n} — {1,...,k} for which
the induced clustering ok has the required value. An inspection of the proof of ThedBlhshows that
the issue here is to findficiently a conical simplicial partitiod\s, ..., A« of R1 at whichC(B) is almost

attained, say
k k
D> b [ xtrat. [ xtnato) > - @)

p=109=1
Once this partition is computed, using the notation in theopiof Theoren 3]l we have a randomized
algorithm which outputs an assignment {1,...,n} — {1,...,k} such that
Shy — £)C(B)
Eo o (i)o Clust(A|B).
;;a o)) R(B)z (AIB)

Note that there is no fliculty to computer efficiently once the partitiofA, ..., Ac} is given, since these
sets are simplicial cones. The issue wifficiency here is how to compute this partition in polynomiadei
As we discussed in Remdk™®.3, this can be done wkhsrfixed (or grows very slowly with), but we do
not know how to do this when, say= +/n.

5 Matching Unique Games hardness

In this section we show that for a fixed positive semi-definitgtrix B, approximatingClust(A|B) within

a ratio strictly smaller tha@%2 is Unigue Games hard. We will study functiofs {1,...,k}" - R and
their Fourier spectrum at the first level. A novel feature of proof is that our Fourier analysis will be
carried out with respect to a distribution ¢h ..., k} that is not necessarily uniform. In fact, the choice of
the distribution itself is dictated by the matifikas described in Sectién®.1.

5.1 Choosing a special probability distribution on{1,...,k}

Fact5.1. Let B= (byj;) be a k<k symmetric positive semi-definite matrix and=b(v;, v;) be its Gram repre-
sentation, whereyy. . ., v are vectors (w.l.0.g.) ilR¥. Let RB) be the minimum radius of a Euclidean ball
containing all these vectors, andB) be the center of this ball. Then(RB) is a convex combination of the
v;'s that are on the boundary of the ball. In other words, thexsenon-negative cggcients 1), ..., p(k)
such that: ¥ , p(i) = 1, w(B) = XX, p(i)vi and (i) # 0 only if[[v — w(B)|l2 = R(B).

18



Fact[51 is well known (see for example the proof of Propositl.13 in [2]). Its proof is a simple
separation argument. Indeed, defihe= {j € {1,...,k} : |lvj — w(B)l2 = R(B)} and letK be the convex
hull of {vj}jes. Assume for the sake of contradiction theB) ¢ K. Then there would be a hyperplahie
separatingv(B) from K. Moving w(B) a little in the direction ofH would turn the equalities o4 to strict
inequalities, while preserving the strict inequalitigs & This contradicts the minimality dR(B).

We intend to use the probability distributiop((), ..., p(k)) from fact[51. However, for technical
reasons, we need the probability mass for each atom to beeronand therefore, we will use a very small
perturbation of this distribution. Towards this end we defifi) = (1 — 8)p(i) + § for everyi € {1,...,k}.
The value of3 > 0 is chosen to be skiciently small as in the following lemma.

Lemma 5.2. Fix anye > 0 and the matrix B. Then for a giciently small3 = B(¢, B) > 0,

Zﬂ(l) vi - Zu(J)VJ

j=1
Proof. Note that if8 = 0, thenu(i) = p(i) for all i € {1,...,k}, and

Zu(l) vi - Zuu)v,

sincep(i) # 0 only if |lv; — w(B)|]2 = R(B). Thus by continuity for sfiiciently smalls the inequality [3D)
holds For concreteness we also give a direct argument vgivels a reasonable bound BnAssume that
B < . Then, using the fact that> (1 — 8)p (point-wise), we see that:

2

2]

oo

2
> R(B)? - &. (30)

2

= Z p()IIvi —W(B)Ii3 = R(BY?,

1/2 1/2

k

vi - Zu(J)VJ Zx/l—ﬂ[zp(i)

i=1

kK 8 kK
@-plvi-, p(j)v,-J +3 2 M- v)

Kk 1/2 Kk K 2\12
= M[Zpa)nu—ﬂ)m—w(B»ngJ - VIR D p0)[F Y - w) ]
i=1 i=1 j=1

1/2 J ?
> (1-p)¥?R(B)-BI- {Z p() Z||v. v,||2]
> (1-pY*RB)-BV1-B max IV - vl
> \1-B(1-35)R(B)
> 1-78-R(B),

.....

can takeB = =2 to ensure the validity of{30). m|

7R(B)

Henceforth we fix the probability spac (= {1,...,k},u). LetU = (u;) be ak x k orthogonal ma-
trix such thatuyj = +/u(j) for all j € {1,...,k} (such an orthogonal matrix exists since this ensures that
P U2, = 1). Now define random variable§, ..., X« : {L,....k} = R by Xi(j) = \/“% (here is one place
i

where we need the atoms pfto have positive mass. We will also use this fact to allow feg &pplication
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of the result of[[9] in the proof of Theorem .4 below). Thend®signX; is the constant 1 function, and
foralli, j € {1,...,k} we have:

k Kk
D THEOXOX(0) = > ueuje = (UUY; = 6,
=1 =1

wheredjj is the Kronecker delta. Similarly:
Z UtU)” ﬂ
Vud )ﬂ( () #0)

By relabeling these random variables (for the sake for sanyplof later notation) we thus obtain the fol-
lowing lemma:

Kk
D XeXe(i) =
=1

Lemma 5.3. There exist random variablessXXy, . . ., Xk1 on Q such that:
e Xg=1

e Fori,je{0,...,k—1} we have
0 ifi#j,
@w“ﬂz{liﬂ:y
e Foreveryw, w’ € Q we have

k1 0 ifw#dw,

Xi(w)xi(w’) = { 1 fou=o.

=0 u(w)

5.2 Dictatorships vs. functions with small influences

In this section we will associate to every function fr¢in. .., k}" to

Akzz{xeRk X >0Vie{l le—l}

a numerical parameter, or “objective value”. We will showattthe value of this parameter for functions
which depend only on a single coordinate (i.e. dictatorshiiters markedly from its value on functions
which do not depend significantly on any particular coortéin@e. functions with small influences). This
step is an analog of the “dictatorship test” which is prenille PCP based hardness proofs.

We begin with some notation and preliminaries on Fouripetgxpansions. For any functidn: R" —
Ax we write f = (fy, fp,. .., f) wheref; : R" — [0, 1] andZ!‘:1 fi = 1. With this notation we have

k

C(B)= sup ZZb., < f  XhE9dyca(x). fR klej(x)dyk_ﬂx)}

RIS A 2 =1 j=1

whereC(B) is as in Sectiohl2. We have already seen that the supremura abactually attained. AlsG(B)
remains the same if the supremum is taken over functionsi®veith n > k — 1, i.e. for everyn > k - 1,

CB)= sup ZZb.J ([, xt0aan0. [ xtiaent).

FRVSACTT 42
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Let (Q = {1,...,Kk},u) be the probability space as chosen in Sedfioh 5.1. @&(") be the associated
product space. We will be analyzing functiohs Q" — Ay (and more generally intBX). As in Lemma
B3, fix a basis of orthonormal random variablest®where one of them is the constant 1 function, that is
{Xo =1, Xq,..., X_1}. Then any functiorf : Q — R can be written as a linear combination of tKés.

In order to analyze function$ : Q" — R, we letX = (X1, Xo,...,X,) be an “ensemble” of random
variables where fore {1, ..., n} we write X; = {X; 0, Xi 1, ..., Xi k-1}, and for every, {Xi’j}lj(;é are indepen-
dent copies of thexj}‘jtg. Any o = (01,02,...,0n) €{0,1,2,..., k- 1" will be called a multi-index. We
shall denote byor| the number on non-zero entriesan Each multi-index defines a monomial

on a set ofn(k — 1) indeterminatesgx;j | i € {1,...,n},j € {1,2,...,k - 1}}, and also a random variable
X, Q"> Ras

Xo(@) = | | X (@),
i=1

The random variablegX,,},- form an orthonormal basis for the space of functidnsQ" — R. Thus, every
suchf can be written uniquely as (the “Fourier expansion”)
f=> fo)X, flo)er.
We denote the corresponding multi-linear polynomiaQas= ., f\(O')XU. One can think of as the polyno-
mial Q¢ applied to the ensembl§, i.e. f = Q¢(X). Of course, one can also apfdy to any other ensemble,
and specifically to the Gaussian ensenble (G1,Go., . .., Gn) WhereGi = {Gipo = 1,Gj1,...,Gik-1} and
Gij,ie{l,...,n},je{l,...,k=1}areii.d. standard Gaussians. Define the influence ofttheariable
onf as
Inf;(f) = Z f(o)2.
oi#0
Roughly speaking, the results 6f 12, 9] say thaf if Q" — [0, 1] is a function all of whose influences
are small, thenf = Q;(X) and Q;(G&) are almost identically distributed, and in particulare tralues of
Q¢ (G) are essentially contained in,[0]. Note thatQ:(G) is a random variable on the probability space
(R, yngey).
Consider functiond : Q" — Ay. We write f = (1, fo, ..., fx) wherefi : Q" — [0, 1] with Z}‘Zl fi = 1.
Eachf; has a unique representation (along with the corresponding-limear polynomial)
fi = Z fi(o) X, Qi =Qf = Z fi(o) %o
We shall define an objective function OBJthat is a positive semidefinite quadratic form on the table
of values of f which corresponds to a centered symmetric positive semitiefbilinear form. Then we
analyze the value of this objective function whers a “dictatorship” versus whehf has all low influences.

The objective value

For a functionf : Q" — A (or more generallyf : Q" — R¥) define
k

k
OBJ(f) := Z Z bij [ Z ’ﬁ(a)’ﬂ-(a)]. (31)

i=1 j=1 o lo]=1
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Note that there ara(k — 1) multi-indiceso such thato| =

The objective value for dictatorships

For¢ € {1,...,n} we define a dictatorship functioffit’ : Q" — A as follows. The range of the function
is limited to onlyk points inAx, namely the pointger, e, . .., &} Whereg is a vector withi!" coordinate 1
and all other coordinates zero.

factl(w) =g if we=1. (32)
In other words, when one writef§lict! = (1, f,, ..., fi), fori e {1,...,k}, fi is {0, 1}-valued andfj(w) = 1
if and only if w, = i. The Fourier expansion df is
i@ =u) D Ko li) Xo(w). (33)
o oj=0 Vj£l

Indeed, the right hand side ¢f{33) equals

. . 1 ifw,=1,
u(i) Z SAURSACY) :{ 0 othérwise. (see Lemria®.3)

O<or<k-1

Thus,

k k
oBJ(fdeH) = Zzbij[ > f(a)ﬂ(a)J
g
= > by [Z u(i)xra)u(j)xr(j))
i=1 j=1 r=1
k Jk k=1
= ZZb., ﬂ(l)ﬂ(])[zxro)xr(l)_ ]

N . 1
= <vi,vj>‘u(u)u(n<—1)+;wi,vw(u)z(m—1)

K K 2
= > a0 =D utiy
i=1 =1 2

R(B)? - &, (34)

v

using Lemm&xkl2.

The objective value for functions with low influences

Forf:Q"—> R, je{l,...,nfandme N denote (the “degresrinfluence” of f):

Infsm(f) = Z f(o)2.
lor|l<m
oj#0
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For every O< p < 1 we will use the smoothing operator:

T,f = Zp'“' RG)Xg.

Equivalently,
Tof(w1,...,wn) = E[f(w], ..., w0l

where independently for eachw; is chosen to bey; with probability o and a random (with respect to the
underlying distributioru) element inQ with probability 1— p.

The following theorem is the key analytic fact used in our Udness result:

Theorem 5.4. For everye > 0, there exists > 0 so that the following holds: for any function: Q" — Ay
which satisfies

Vie{l... kL Vje(l. .o, InfY() <7

we have,
OBJ(f) < C(B) + &.

Proof. Let 6,7 > O be stficiently small constants to be chosen later. (gt= Q¢ be the multi-linear
polynomial associated witi. Recall thatQ; is a multi-linear polynomial in theé(k — 1) indeterminates
{xjp lje{d,....,n,pefl,....k—- 1}}. Moreoverf; = Q;(X) has range [(1] andzik:1 fi = 1.

LetR = (T1-sQi)(X) andS; = (T1-5Q;)(G) (the smoothening operatdn_s helps us meet some tech-
nical pre-conditions before applying the invariance gpheof [9]). Note thatR, has range [0l] and S;
has rangeR. It will follow however from [9] thatS; is essentiallyin [0, 1]. First we relate OBJX() to the
functionsS; which will, up to truncation, induce a partition 8“1, which in turn will give the bound in
terms ofC(B).

k
Db D) Ti@) o)

(=1 oilol=1

Mx

(1-6)%-0OBJ(f) = (1- 5)2

Il
s

k Kk -1
CEDDIPN-DY

( f Xjp Qi(X)an(k—l)(X)) . ( f Xjp Qz(X)dyn(k_l)(X))
io1 (=1 j=1 p=1 WR Ri(k-1)

b|¢’< [R o X Q (X)dynk-1)(X), j}; o X Qg(X)d’yn(k_l)(X)>

=

U

I
—
H
&
N

M=~ L

Mx

X (T1-sQi) (X dynik-1)(X), Jl; n X (Tl—(iQf)(X)dYn(k—l)(X)>

M- EM-
L E?’“

. < jl; . X Si(X)dynk-1)(X), Jl; e ng(x)dyn(k_l)(x)>. (35)

We shall now bound the last term above®¢B) + o(1). For any real-valued functiomon R"&-1), et

0 ifh(x) <O,
chopf)(X) :={ h(x) if h(x) € [0, 1],
1 ifh(x > 1.
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Applying Theorem 3.20 ir]9] to the polynomi&l;, it follows that (providedr is suficiently small compared
to 6 andn),

llsi - Chop@i)”iz(mk_n) = jl; o |Si(x) - choIDSi)(x)|2 ynk-1y(¥) < 7. (36)

The functions chofg;) are almost what we want except that they might not sum up t8d further

define
chopSi)(X)
Y&, chop&)(x)

CIearIy,{Si*}:(: , have range [0l] and ¥, S; = 1. Observe that the following holds point-wise:

k k
> chopS) - 'S,
ji=1 j=1

where we used th@‘j‘:1 Sj=Tis Z'j‘:l Qj = T1_s1 = 1. It follows that for alli € {1,...,k} we have:

S/(X) =

k k
2., lchop§)) - Sj| = | > chop)) - 1) =
=1 j=1

K
< > |8j - chop§;)|.
=1

|chop&i) -

Kk k
Z; HChOp@ )- Lz(yn(k )~ Z; HSj a Choij)”'—z(%w-n) < k.
1= 1=

where we used(36). Finally,

|si-s — chop6i )||L2(y et + ||lchop@i) - S (37)

Now write
a= [ xS0men®. W= [ xS0ty (39)
RNk-1) RN(k-1)

The norm ofu; — w; is bounded byK + 1) /77 using [3¥) and Lemmia$.5 below. Sin&| < 1, the norm
of w; is bounded by 1. Returning to the estimation in Equafich &) applying LemmBa®H.6 below, we see
that:

k kK k k k k
(1-6)*-0BI(f) = > > bieCi,up) < > > big(wi, wp) + O (k) [Z > |big|].

i=1 ¢=1 i=1 ¢=1 i=1 ¢=1

Sinceyk ; S = 1 we have

k k k Kk
333 oo - ZZW{ [ xS, [ xSidmey0s)

i=1 ¢=1
K
Z bi[< Jl; ™ £ (X)dyni-1)(X), fR e ff(x)dYn(k—l)(X)>) = C(B).

Mx

< sup[

f:RAUK-1) A

1l
=

i =1

It follows that OBJf) < C(B) + ¢, provided that; and¢ are small enough. m|
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Lemma5.5. Let ge Lo(R", ypn). Then

| [, o9y,

Proof. Note that the square of the left hand side equals

n 2 n
[ x| = > x.07
i=1

i=1
Sincex; € Lo(R",yn) are an orthonormal set of functions, the sum of squaresapégiions ofg onto them
is at most the squared norm @f m]

<9l @0 )

Lemma 5.6. Suppose{ui}ik=1 and {Wi}!‘=1 are vectors ink" such thatjju; — wi||> < d for every i€ {1,...,k}
and|will> < 1. Let B= (bjj) be a kx k matrix. Then

K K K K
Z Z BieCui, Ug) — Z Z Bic{wi, Wp)| <

i=1 ¢=1 i=1 ¢=1

< (2d+ ) Z Z 1oy

i=1 £=1
Proof. From the given conditions on the normsapt= u; —w; andw;, it follows that for anyi, € € {1,...,k},

Ui, Ugy = (Wi, We)l < (@, Wil + Kag, Wil + Kai, ag)l < 2d + d.

Hence,
k k k k k Kk k k
Z Z bie(Ui, Up) = > Z bie (Wi, W)| < Z Z Ibiel Ui, Ur) — (i, we)| < (20 + ) 37" b,
=1 ¢=1 i=1 (= i=1 (= i=1 ¢=1
as required. m]

The intended hardness factor

As we show next, the dictatorship test can be translated (moee or less standard way by now) into a
Unique Games hardness result. The hardness factor (a3 tisualout to be the ratio of the objective value
when the function is a dictatorship versus when the fundtasall low influences, i.e.

R(B)-¢ R(B)?
C(B)+& C(B)

- 0(2).

5.3 The reduction from unique games to kernel clustering

Given a Unique Games InstangG(V, W, E), n, {myw}vw)ce), We construct an instance of the clustering
problem.

Reformulation of the clustering problem

As in our earlier papef[7], we first reformulate the kernektéring problem for the ease of presentation. As
observed there, we can reformulate it as (the matiixthe problenClust(A|B) is captured by the quadratic
form Q below):

Kernel Clustering Problem: Given ak x k symmetric positive semidefinite matrix B, and a symmetric
positive semidefinite quadratic for@(-,-) onRN x RN, find F : {1,...,N} = Ay, F = (F1,Fo, ..., Fy), SO
as to maximizex; ¥, by Q(Fi, F)).
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The clustering problem instance

Given a Unique Games instancé (G(V, W, E), n, {myw}vw)ce), the clustering problem is to find a function
F: Wx Q” — Ag SO as to maximiz@!‘:1 _le(=1 bij Q(Fi,_Fi) whereQ is a suitably defined symmetric positive
semidefinite quadratic form. For notational conveniencewwite:

Fw:=F(Ww,"), Fw: Q" — A
Also, for everyv € V, we write:
Fv = Exwee [Fw o mw] 5 Fv:Q"— A

We used the following notation: for any functian: Q" — A andrx : {1,...,n} — {1,...,n} we write
gon : Q" — A for the function § o m)(w) = (Wr@) Wr(2), - -->Wa)). AS usual, we denot&,, =
(Fw,1, Fwz2. ..., Fwk) where eaclir,,; has range [Al] and}’; Fw; = 1. Similarly,F, = (Fy1, Fv2, ..., Fuk)
andZ!‘:1 Fvi = 1. Now we are ready to define the clustering problem instance.

Clustering instance: The goal is to find= : W x Q" — Ag so as to maximize:

k kK
cuMaX | Euey[OBIF)] = max ey H;bu U;thv,i(a)-Fv,j(a) . (39)

Completeness

We will show that if the Unique Games instance has an almdistfygag labeling, then the objective value
of the clustering problem is at leaR(B)? — o(1). So, letp : VUW — {1,...,n} be the labeling, such that
for at least 1- ¢ fraction of the vertices € V (call suchv good) we have

m(p(W)) = p(v) ¥ (v,w) € E.

DefineF : Wx Q" — Ay as follows: for everyw € W, F,, : Q" — Ay equals the dictatorship corresponding

top(w) € {1,...,n},i.e.,
Fw - fdict,p(w)'

Lemma 5.7([Z]]). For a good ve V we have | = fdicte(V),

Thus the contribution of in @3) is OBJfYc*M) > R(B)? - ¢ as observed in Equatioi{34). Since &
fraction ofv € V are good,[[39) is at least @e¢) - (R(B)? - ) = R(B)? — o(1).

Soundness

Suppose for the sake of contradiction that the valug-df @8} leasC(B) + 2¢. As in [/], it can be proved
that the Unique Games instance must have a labeling thatisatat least a constant fraction of its edges, the
constant depending on the parametesed in Theorei 3.4. This is a contradiction, provided thmdoess

of the Unique Games instance is chosen to be even lower ta béti. The proof is the same as [d [7], by
replacing theC(k) therein byC(B) ([I/] focused on the case whdéhis thek x k identity matrix. The constant
C(K) therein is same as our const&{(B) whenB is thek x k identity matrix).
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6 A concrete example

In this section we will use our results to evaluate the UGG hess threshold of the problem of computing

1 00
A{f0 1 O

0 0 c

Clust , (40)

whereA € Mu(R) is centered, symmetric and positive semidefinite @rd(0, =) is a parameter. The case
¢ = 1, corresponding t8 = I3 (the 3x 3 identity matrix) was evaluated inl[7], where it was showat tthe
UGC hardness threshold in this case eqé@s

For generalc > 0 the optimization problem if_{#0) corresponds to the follmyvquestion: givem
random variableXy, ..., X, the goal is to partition them into three s&g Sy, Sz C {1, ..., n} such that

DE[XXi|+ ) B[XX|+c > E[XX] (41)

i,jGS]_ i,jESz i,jGng

is maximized. Thus we wish to cluster the variables intodltlkeisters so as to maximize the intra-cluster
correlations, while the parameteallows us to tune the relative importance of one of the clastéd/e stress
that we do not claim that this optimization problem is of mafar intrinsic importance. We chose it as
a way to concretely demonstrate our results for the simplessible perturbation of the case Bf= Is.
We remark that it is also possible to explicitly solve theecabgeneral X 3 diagonal matrice8, i.e., the
case of a general weighting of the clusterd1d (41). The féarfar the UGC hardness threshold for general
3 x 3 diagonal matrices turns out to be quite complicated, solese to deal only witH{40) as a simple
example for the sake of illustration. Note that fox 3 matrices the characterization G6{B) in terms of
planar conical partitions is particularly simple, and atofor explicit computations of the UGC hardness

threshold in additional cases.
1 00

DenoteB = [O 1 0] = ((Vi, Vj ))szl, wherevy = (1,0,0),v» = (0,1,0),v3 = (0,0, 1) € R3. The side
0 0 c

lengths of the triangle whose vertices agevs, Vs are{fl =Vi+cly=Vi+cls= \/E} Note that this

is an acute triangle, so its smallest bounding circle cdeiwith its circumcircle, and therefore its radius

is given by [5]:

R(B)2 _ f%f%fg _ (1 + C)2

= = . 42
(51+€2+€3)(—€1+€2+€3)(€1—52+€3)(€1+€2—€3) 2+4c ( )

We shall now comput€(B). By LemmaZB the partitiofAs, Ao, Az} of R? at whichC(B) is attained
consists of disjoint cones of anglesg, az, a3 € [0, 21] wherea; + a2 + a3 = 2r. A direct computation
shows that foij € {1, 2, 3} we have:

fAj Xdy2(x) := %sinz(%).

-5 i?( )+ sif () + osi ()
C(B) = al,azr,gfe)[(o,zn] (S|n2( > )+ sm2( > ) +esir (). (43)
a1+az+[23:27r

Hence
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Assume for the moment that the maximuninl (43) is attainedwhea,, a3 € (0, 2r). Then using Lagrange
multipliers we see that sim = sina, = csinas. This implies in particular that either; = a, or (since
a1, a2, a3 € (0,2r) anday + a2 + a3 = 2n) a1 + @2 = «. In the latter cases = «, and it follows from the
Lagrange multiplier equations that sin = sina, = 0, which forces one ofay, a»} to vanish, contrary to
our assumption. Hence we know that = a» = @. Thenasz = 2r — 2a, and sincexs € (0, 2r) we also
know thata € (0, 7). The Lagrange multiplier equations imply that gis- csin(2r — 2a) = —2csina cosa.
Thus cosr = -, and in particular we see that necessatily 3. It follows that

Sin2(g)_1—003a_2c+1
2/ 2 4’

and

sinz(%):sinz(n—a):l—cosza: 1—4—;.

Hence in this case:

i) sG] ear(3)- G

It remains to deal with the boundary cagg, as, a3z} N {0,227} # 0, which as we have seen above is
where the maximum ir{43) is necessarily attainec <f % If one of {a1, ap, @3} equals 2 then the others

must vanish, in which case §i(1%) +sin? (%) +csin? (%) = 0. If one of{ay, a2, a3} vanishes then in order
to maximize sif (%) + sir? (%) + CSin? ("—23) the other two must equal, in which case the maximum value

of this quantity is maf2, 1 + c}. Since maf, 1 + c} never exceeds the quamti‘l%gcbl)2 from {3) it follows
that the maximum of sﬁ(%) +5sir? (“—22) +Csin? (%) over{ay +az+as = 21 A a1, az, az € [0, 27]} equals

% whenc > % and equals 2 when < % We therefore proved that

(2c+1)2 fo> 1L
C(B) = 8rc =2 45

s

By combining [42) with[[4b) we conclude that the UGC hardrthessshold for computind{40) is:

R(B)z_{ Gl g” it o>

— (1+2¢)3
CB) | fa o<

;

. (46)

2

Remark 6.1. An inspection of the above argument, in combination withagorithm that was presented in
Sectior#, shows that the phase transitioriin (4@):&% corresponds to a qualitative change in the optimal
algorithm: after shifting the vectofs;, ..., w} so thatw(B) = 0 and renormalizing b¥r(B), for ¢ > % the
algorithm projects the points obtained from the SDR%@nd classifies them according to a partitiorRSf
into three cones of positive measure, whiledot % the partitioning is into two half-planes and the third set
(the one weighted byg) is empty.
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