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Abstract

In the kernel clustering problem we are given a (large)n× n symmetric positive semidefinite matrix
A = (ai j ) with

∑n
i=1

∑n
j=1 ai j = 0 and a (small)k×k symmetric positive semidefinite matrixB = (bi j ). The

goal is to find a partition{S1, . . . ,Sk} of {1, . . .n} which maximizes
∑k

i=1
∑k

j=1

(∑
(p,q)∈Si×S j

apq

)
bi j . We

design a polynomial time approximation algorithm that achieves an approximation ratio ofR(B)2

C(B) , where
R(B) andC(B) are geometric parameters that depend only on the matrixB, defined as follows: ifbi j =

〈vi , v j〉 is the Gram matrix representation ofB for somev1, . . . , vk ∈ Rk thenR(B) is the minimum radius
of a Euclidean ball containing the points{v1, . . . , vk}. The parameterC(B) is defined as the maximum over
all measurable partitions{A1, . . . ,Ak} of Rk−1 of the quantity

∑k
i=1

∑k
j=1 bi j 〈zi , zj〉, where fori ∈ {1, . . . , k}

the vectorzi ∈ Rk−1 is the Gaussian moment ofAi , i.e.,zi =
1

(2π)(k−1)/2

∫
Ai

xe−‖x‖
2
2/2dx. We also show that

for everyε > 0, achieving an approximation guarantee of (1− ε) R(B)2

C(B) is Unique Games hard.

1 Introduction

Kernel Clustering [13] is a combinatorial optimization problem which originates in the theory of machine
learning. It is a general framework for clustering massive statistical data so as to uncover a certain hypothe-
sized structure. The problem is defined as follows: letA = (ai j ) be ann× n symmetric positive semidefinite
matrix which is usually normalized to be centered, i.e.,

∑n
i=1

∑n
j=1 ai j = 0. The matrixA is often thought of

as the correlation matrix of random variables (X1, . . . ,Xn) that measure attributes of certain empirical data,
i.e.,ai j = E

[
XiX j

]
. We are also given another symmetric positive semidefinitek× k matrix B = (bi j ) which

functions as a hypothesis, or test matrix. Think ofn as huge andk as small. The goal is to clusterA so
as to obtain a smaller matrix which most resemblesB. Formally, we wish to find a partition{S1, . . . ,Sk}
of {1, . . . , n} so that if we writeci j ≔

∑
(p,q)∈Si×S j

apq, i.e., we form ak × k matrix C = (ci j ) by clustering
A according to the given partition, then the resulting clustered version ofA has the maximum correlation∑k

i=1
∑k

j=1 ci j bi j with the hypothesis matrixB. Equivalently, the goal is to evaluate the number:

Clust(A|B) ≔ max
σ:{1,...,n}→{1,...,k}

k∑

i=1

k∑

j=1

ai j bσ(i)σ( j). (1)

The strength of this generic clustering framework is based in part on the flexibility of adapting the
matrix B to the problem at hand. Various particular choices ofB lead to well studied optimization problems,
while other specialized choices ofB are based on statistical hypotheses which have been appliedwith some
empirical success. We refer to [13, 7] for additional background and a discussion of specific examples.

In [7] we investigated the computational complexity of the kernel clustering problem. Answering a
question posed in [13], we showed that this problem has a constant factor polynomial time approximation
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algorithm. We refer to [7] for more information on the best known approximation guarantees. We also
obtained hardness results for kernel clustering under various complexity assumptions. For example, we
showed in [7] that whenB = I3 is the 3×3 identity matrix then a16π

27 approximation guarantee forClust(A|I3)
is achievable, while any approximation guarantee smaller than 16π

27 is Unique Games hard. We will discuss
the Unique Games Conjecture (UGC) presently. At this point it suffices to say that the above statement is
evidence that the hardness threshold of the problem of approximating Clust(A|I3) is 16π

27 , or more modestly
that obtaining a polynomial time algorithm which approximatesClust(A|I3) up to a factor smaller than16π

27
would require a major breakthrough.

Another result proved in [7] is that whenk ≥ 3 andB is either thek × k identity matrix or is spherical
(i.e., bii = 1 for all i ∈ {1, . . . , k}) and centered (i.e.,

∑k
i=1

∑k
j=1 bi j = 0) then there is a polynomial time

approximation algorithm which, givenA, approximatesClust(A|B) to within a factor of 8π
9

(
1− 1

k

)
. We

also presented in [7] a conjecture (called the Propeller Conjecture) which we proved would imply that
8π
9

(
1− 1

k

)
is the UGC hardness threshold whenB = Ik. We refer to [7] for more information on the Propeller

Conjecture, which at present remains open.
The above quoted result from [7] settles the problem of evaluating the UGC hardness threshold of the

following type of algorithmic task: givenA and an hypothesis matrixB which is guaranteed to belong to a
certain class of matrices (in our case centered and spherical), approximate efficiently the numberClust(A|B).
Naturally this can be refined to a family of optimization problems which depend on a fixedB: for eachB,
what is the UGC hardness threshold of the problem of, givenA, approximatingClust(A|B)? In [7] we
answered this question only whenB = I3, and forB = Ik assuming the Propeller Conjecture, and asked
about the case of generalB (we did give someB-dependent bounds in [7], but they were not sharp forB , Ik

for reasons that will become clear presently). This is a natural question since it makes sense to use the best
possible polynomial time algorithm if we knowB in advance.

Here we answer the above question in full generality. To explain our results we need to define two
geometric parameters which are associated toB. SinceB is symmetric and positive semidefinite we can find
vectorsv1, . . . , vk ∈ Rk such thatB is their Gram matrix, i.e.,bi j = 〈vi , v j〉 for all i, j ∈ {1, . . . , k}. LetR(B) be
the smallest possible radius of a Euclidean ball inRk which contains{v1, . . . , vk} and letw(B) be the center
of this ball. LetC(B) be the maximum over all partitions{A1, . . . ,Ak} of Rk−1 into measurable sets of the
quantity

∑k
i=1

∑k
j=1 bi j 〈zi , zj〉, where fori ∈ {1, . . . , k} the vectorzi ∈ Rk−1 is the Gaussian moment ofAi , i.e.,

zi =
1

(2π)(k−1)/2

∫
Ai

xe−‖x‖
2
2/2dx (this maximum exists, as shown in Section 2). Our main resultis the following

theorem1:

Theorem 1.1.For every symmetric positive semidefinite k×k matrix B there exists a randomized polynomial
time algorithm which given an n× n symmetric positive semidefinite centered matrix A, outputs a number
Alg(A) such that

Clust(A|B) ≤ E [
Alg(A)

] ≤ R(B)2

C(B)
Clust(A|B).

On the other hand, assuming the Unique Games Conjecture, no polynomial time algorithm approximates

Clust(A|B) to within a factor strictly smaller thanR(B)2

C(B) .

As an example of Theorem 1.1 for a particular hypothesis matrix consider the following perturbation of

1We refer to the discussion in Question 1 in Section 1.1 below which addresses the issue of computing efficiently good approx-
imate clusterings rather than approximating only the valueClust(A|B).
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the previously studied caseB = I3:

Bc ≔


1 0 0
0 1 0
0 0 c

 ,

wherec > 0 is a parameter. The problem of approximating efficiently Clust(A|Bc) corresponds to parti-
tioning the rows ofA into 3 setsS1,S2,S3 ⊆ {1, . . . , n} and maximizing the sum of the total masses ofA
on S1 × S1,S3 × S2,S3 × S3, where the parameterc can be used to tune the weight of the setS3. This
problem is not particularly important—we chose it just as a concrete example for the sake of illustration.
In Section 6 we compute the parametersR(Bc),C(Bc) and deduce that the UGC hardness threshold of the

problem of computingClust(A|Bc) equals4πc(1+c)2

(1+2c)3 if c ≥ 1
2 and equalsπ(1+c)2

2+4c if c ≤ 1
2. The change atc = 1

2
corresponds in a qualitative change in the best algorithm for computingClust(A|Bc)—we refer to Section 6
for an explanation.

In the remainder of this introduction we will explain the various ingredients of Theorem 1.1 (in particular
the Unique Games Conjecture), and the new ideas used in its proof.

The main tool in the design of the algorithm in Theorem 1.1 is anatural generalization of the positive
semidefinite Grothendieck inequality. In [4] Grothendieckproved that there exists a universal constant
K > 0 such that for everyn× n symmetric positive semidefinite matrixA = (ai j ) we have2:

max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

ai j 〈xi , x j〉 ≤ K max
ε1,...,εn∈{−1,1}

n∑

i=1

n∑

j=1

ai jεiε j . (2)

The best constantK in (2) was shown in [11] to be equal toπ2. A natural variant of (2) is to replace the
numbers−1, 1 by generalv1, . . . , vk ∈ Rk, namely one might ask for the smallest constantK > 0 such that
for every symmetric positive semidefiniten× n matrix A we have:

max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

ai j 〈xi , x j〉 ≤ K max
u1,...,un∈{v1,...,vk}

n∑

i=1

n∑

j=1

ai j 〈ui , u j〉. (3)

In Section 3 we prove that (3) holds withK = 1
C(B) , whereB =

(
〈vi , v j〉

)
is the Gram matrix ofv1, . . . , vk,

and that this constant is sharp. This inequality is proved along the following lines. Fixn unit vectors
x1, . . . , xn ∈ Sn−1. Let G = (gi j ) be a (k − 1) × n random matrix whose entries are i.i.d. standard Gaussian
random variables. LetA1, . . . ,Ak ⊆ Rk−1 be a measurable partition ofRk−1 at whichC(B) is attained. Define
a random choice ofui ∈ {v1, . . . , vk} by settingui = vℓ for the uniqueℓ ∈ {1, . . . , k} such thatGxi ∈ Aℓ. The
fact that (3) holds withK = 1

C(B) is a consequence of the following fact, which we prove in Section 3:

E


n∑

i=1

n∑

j=1

ai j 〈ui , u j〉

 ≥ C(B)
n∑

i=1

n∑

j=1

ai j 〈xi , x j〉. (4)

The crucial point in the proof of (4) is the following identity, proved in Lemma 3.2 as a corollary of the
closed-form formula for the Poison kernel of the Hermite polynomials: for every two measurable subsets

2This inequality is sometimes written as maxxi ,yi∈Sn−1
∑n

i=1

∑n
j=1 ai j 〈xi , yj〉 ≤ K maxεi ,δi∈{−1,1}

∑n
i=1

∑n
j=1 ai jεiδ j , but it is easy (and

standard) to verify that sinceA is positive semidefinite this formulation coincides with (2).
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E, F ⊆ Rk−1 and any two unit vectorsx, y ∈ Rn, we have

Pr
[
Gx∈ E andGy∈ F

]

= γk−1(E)γk−1(F) + 〈x, y〉
〈∫

E
udγk−1(u),

∫

F
udγk−1(u)

〉
+

∞∑

ℓ=2

〈
x⊗ℓ, y⊗ℓ

〉 ∑

s∈(N∪{0})k−1

s1+···+sk−1=ℓ

αs(E)αs(F), (5)

for some real coefficients{αs(E)}s∈(N∪{0})k−1, {αs(F)}s∈(N∪{0})k−1 ⊆ R. Hereγk−1 denotes the standard Gaussian
measure onRk−1. The product structure of the decomposition (5) hints at therole of the fact thatA is positive
semidefinite in the proof of (4)—the complete details appearin Section 3.

Once the generalized Grothendieck inequality (18) is obtained withK = 1
C(B) it is simple to design the

algorithm whose existence is claimed in Theorem 1.1, which is based on semidefinite programming—this
is done in Section 4.

We shall now pass to an explanation of the hardness result in Theorem 1.1. The Unique Games Con-
jecture, posed by Khot in [6], is as follows. A Unique Game is an optimization problem with an instance
L = L (G(V,W,E), n, {πvw}(v,w)∈E). HereG(V,W,E) is a regular bipartite graph with vertex setsV andW
and edge setE. Each vertex is supposed to receive a label from the set{1, . . . , n}. For every edge (v,w) ∈ E
with v ∈ V andw ∈ W, there is a given permutationπvw : {1, . . . , n} → {1, . . . , n}. A labeling of the Unique
Game instance is an assignmentρ : V ∪W → {1, . . . , n}. An edge (v,w) is satisfied by a labelingρ if and
only if ρ(v) = πvw(ρ(w)). The goal is to find a labeling that maximizes the fraction of edges satisfied (call this
maximum OPT(L )). We think of the number of labelsn as a constant and the size of the graphG(V,W,E)
as the size of the problem instance. The Unique Games Conjecture (UGC) asserts that for arbitrarily small
constantsε, δ > 0, there exists a constantn = n(ε, δ) such that no polynomial time algorithm can distinguish
whether a Unique Games instanceL = L (G(V,W,E), n, {πvw}(v,w)∈W) satisfies OPT(L ) ≤ δ (soundness)
or there exists a labeling such that for 1− ε fraction of the verticesv ∈ V all the edges incident withv are
satisfied (completeness)3. This conjecture is (by now) a commonly used complexity assumption to prove
hardness of approximation results. Despite several recentattempts to get better polynomial time approxima-
tion algorithms for the Unique Game problem (see the table in[3] for a description of known results), the
unique games conjecture still stands.

Our UGC hardness result follows the standard “dictatorshiptest” approach which is prevalent in PCP
based hardness proofs, with a new twist which seems to be of independent interest. Since the kernel clus-
tering problem is concerned with an assignment of one ofk labels to each of the rows of the matrixA,
the natural setting of our hardness proof is a dictatorship test for functions on{1, . . . , k}n taking values in
{1, . . . , k} (this was already the case in [7]). The general “philosophy”of such hardness proofs is to associate
to every such function a certain numerical parameter calledthe “objective value” (which is adapted to the
optimization problem at hand). The general scheme is to showthat for some numbersa, b > 0, if f depends
on only one coordinate (i.e., it is a “dictatorship”) then the objective value off is at leasta, while if f does
not have any coordinate which is too influential then the objective value of f is at mostb + o(1) (theo(1)
depends on the notion of having no influential coordinates and its exact form is not important for the purpose
of this overview—we refer to Section 5 for details). Once such a result is proved, techniques from the theory
of Probabilistically Checkable Proofs can show that under asuitable complexity theoretic assumption (in
our case the UGC) no polynomial time algorithm can achieve anapproximation factor smaller thanab.

3This version of the UGC is not the standard version as stated in [6], which only requires OPT(L ) ≥ 1− ε in the completeness.
However, it was shown in [8] that this seemingly stronger version of the UGC actually follows from the original UGC—we will
require this stronger statement in our proofs.
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Implicit to the above discussion is an underlying product distribution on{1, . . . , k}n with respect to which
we measure the influence of variables. In [7] the case ofB = Ik was solved using the uniform distribution
on {1, . . . , k}. It turns out that in order to prove the sharp hardness resultin Theorem 1.1 we need to use
a non-uniform distribution which depends on the geometry ofB. Namely, writing B as a Gram matrix
bi j = 〈vi , v j〉, recall thatR(B) is the radius of the smallest Euclidean ball containing{v1, . . . , vk} andw(B) is
the center of this ball. A simple separation argument shows thatw(B) is in the convex hull of the vectors in
{v1, . . . , vk}whose distance fromw(B) is exactlyR(B). Writing w(B) as a convex combination of these points
and considering the coefficients of this convex combination results in a probability distribution on{1, . . . , k}.
In our hardness proof we use then-fold product of (a small perturbation of) this probabilitydistribution as
the underlying distribution on{1, . . . , k} for our dictatorship test—see Figure 1 for a schematic description
of the situation described above. The full details of this approach, including all the relevant definitions, are
presented in Section 5.

R(B)

w(B)

Figure 1: The geometry of the test matrix B induces a dictatorship test: the points above are the vectors
{v1, . . . , vk} ⊆ Rk such that B is their Gram matrix. The ball depicted above is the smallest Euclidean ball
containing {v1, . . . , vk}, R(B) is its radius and w(B) is its center. Then w(B) is in the convex hull of the
points in{v1, . . . , vk} which are at distance exactly R(B) from w(B). Writing w(B) as a convex combination
of these boundary points yields a distribution over the labels {1, . . . , k}. Our dictatorship test corresponds
to selecting a point from the n-fold power of this probability space and comparing the behavior of a certain
“objective value” (defined in equation(31)below), which depends only on the singleton Fourier coefficients,
for dictatorships and for functions with low influences.

1.1 Open problems

We end this introduction with a statement of some open problems.

Question 1. Theorem 1.1 shows that the UGC hardness threshold of the problem of computingClust(A|B)

for a fixed hypothesis matrixB equalsR(B)2

C(B) . It is natural to ask if there is also a polynomial time algorithm

which outputs a clustering ofA whose value is within a factor ofR(B)2

C(B) of the optimal clustering. The issue

is that our rounding algorithm uses the partition{A1, . . . ,Ak} of Rk−1 at whichC(B) is attained. In Section 2
we study this optimal partition, and show that it has a relatively simple structure rather than being composed
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of general measurable sets: it corresponds to cones which are induced by the faces of a simplex. This
information allows us to compute efficiently a partition which comes as close as we wish to the optimal
partition whenk is fixed, or grows slowly withn (to be safe lets just say for the sake of argument that
k ≈ log logn works). We refer to Remark 2.3 for details. We currently do not know if there is polynomial
time rounding algorithm when, say,k ≈

√
n. Givenε > 0, is there an algorithm which, givenA and B,

computesClust(A|B) to within a factor of (1+ ε)R(B)2

C(B) , and runs in time which is polynomial in bothn and
k (and maybe even 1/ε)?

Question 2. We remind the reader that the Propeller Conjecture remains open. This conjecture is about the
value ofC(Ik) whenk ≥ 4. It states that the partition at whichC(Ik) is attained is actually much simpler than
what one might initially expect: only 3 of the sets have positive measure and they form a cylinder over a
planar 120◦ “propeller”. We refer to [7] for a precise formulation and some evidence for the validity of the
Propeller Conjecture.

Question 3. The kernel clustering problem was stated in [13] for matrices A which are centered. This
makes sense from the perspective of machine learning, but itseems meaningful to also ask for the UGC
hardness threshold of the same problem whenA is not assumed to be centered. In the present paper we did
not investigate this case at all, and it seems that the exact UGC hardness threshold whenA is not necessarily
centered is not known for any interesting hypothesis matrixB. Note that in [7] we showed that there is a
constant factor polynomial time approximation algorithm whenA is not necessarily centered: we obtained
in [7] an approximation guarantee of 1+ 3π

2 in this case, but this is probably suboptimal.

2 Preliminaries on the parameterC(B)

Let B = (bi j )k
i, j=1 ∈ Mk(R) be ak × k symmetric positive semidefinite matrix. In what follows we fix k ≥ 2

and the matrixB. We also fix vectorsv1, . . . , vk ∈ Rk for which bi j = 〈vi , v j〉 for all i, j ∈ {1, . . . , k}.
Let γn denote the standard Gaussian measure onR

n, i.e., the density ofγn is 1
(2π)n/2 e−‖x‖

2
2/2. We denote by

Hk the Hilbert spaceL2(γn)⊕ L2(γn)⊕ · · · ⊕ L2(γn) (k times) and we consider the convex subset∆k(γn) ⊆ Hk

give by:

∆k(γn) ≔


( f1, . . . , fk) ∈ Hk : ∀ j ∈ {1, . . . , k} f j ≥ 0 ∧

k∑

j=1

f j = 1


. (6)

Define:

C(n, B) ≔ sup
( f1,..., fk)∈∆k(γn)

k∑

i=1

k∑

j=1

bi j ·
〈∫

Rn
x fi(x)dγn(x),

∫

Rn
x f j(x)dγn(x)

〉
. (7)

The following lemma is a variant of Lemma 3.1 in [7] (but see Remark 2.1 for an explanation of a subtle
difference). It simply states that the supremum in (7) is attained at ak-tuple of functions which correspond
to a partition ofRn.

Lemma 2.1. There exist disjoint measurable sets A1, . . . ,Ak ⊆ Rn such that A1 ∪ A2 ∪ · · · ∪ Ak = R
n and

k∑

i=1

k∑

j=1

bi j ·
〈∫

A j

xdγn(x),
∫

A j

xdγn(x)

〉
= C(n, B).
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Proof. DefineΨ : ∆k(γn)→ R by

Ψ( f1, . . . , fk) ≔
k∑

i=1

k∑

j=1

bi j ·
〈∫

Rn
x fi(x)dγn(x),

∫

Rn
x f j(x)dγn(x)

〉
. (8)

We first observe thatΨ is a convex function. Indeed, fixλ ∈ [0, 1] and (f1, . . . , fk), (g1, . . . , gk) ∈ ∆k(γn).
Denotezi ≔

∫
Rn x fi(x)dγn(x) andwi ≔

∫
Rn xgi(x)dγn(x) for everyi ∈ {1, . . . , k}. Then:

λΨ( f1, . . . , fk) + (1− λ)Ψ(g1, . . . , gk) − Ψ(λ f1 + (1− λ)g1, . . . , λ fk + (1− λ)gk)

=

k∑

i=1

k∑

j=1

〈vi , v j〉
(
λ〈zi , zj〉 + (1− λ)〈wi ,w j〉 − 〈λzi + (1− λ)wi , λzj + (1− λ)w j〉

)

= λ(1− λ)
k∑

i=1

k∑

j=1

〈vi , v j〉〈zi − wi , zj − w j〉

= λ(1− λ)

∥∥∥∥∥∥∥

n∑

i=1

vi ⊗ (zi − wi)

∥∥∥∥∥∥∥

2

2

≥ 0.

Since∆k(γn) is a weakly compact subset ofHk andΨ is weakly continuous and convex,Ψ attains its
maximum (which equalsC(n, B)) on∆k(γn) at an extreme point of∆k(γn), say at (f ∗1 , . . . , f

∗
k ) ∈ ∆k(γn). It

follows that there exist measurable setsA1, . . . ,Ak ⊆ Rn which form a partition ofRn such that (f ∗1 , . . . , f
∗
k ) =

(1A1, . . . , 1Ak) almost everywhere4, as required. �

Remark 2.1. In [7] a stronger result was proved whenB = Ik (thek× k identity matrix). Namely, using the
notation of the proof of Lemma 2.1 it was shown that the maximum ofΨ on the larger convex set

∆̃k(γn) ≔


( f1, . . . , fk) ∈ Hk : ∀ j ∈ {1, . . . , k} f j ≥ 0 ∧

k∑

j=1

f j ≤ 1



is also attained at (f ∗1 , . . . , f
∗
k ) = (1A1, . . . , 1Ak) for some measurable setsA1, . . . ,Ak ⊆ Rn which form a

partition ofRn. It turns out that this stronger fact helps to slightly simplify the proof of the corresponding
UGC hardness result. However, we do not know how to prove thisstronger statement for generalB, so
we formulated the weaker statement in Lemma 2.1, at the cost of needing to modify our proof of the UGC
hardness result for generalB in Section 5.

The same extreme point argument as in the proof of Lemma 2.1 shows that the maximum ofΨ on
∆̃k(γn) is attained at (f ∗1 , . . . , f

∗
k ) = (1A1, . . . , 1Ak) for some disjoint measurable setsA1, . . . ,Ak ⊆ Rn, but

now it does not follow that they necessarily cover all ofRn. WhenB = Ik it can be shown as in [7] that
these sets do coverRn. The same statement is true whenB is diagonal, as we now show by arguing as in
the proof in [7], but we do not know if it is true for generalB. So, assume thatB is diagonal with positive
diagonal entries (b1, . . . , bk). Let A = Rn \

⋃k
i=1 Ak. Denotezj ≔

∫
A j

xdγn(x) andw =
∫

A
xdγn(x). Note that

4To see this standard fact observe that otherwise there wouldbe someA ⊆ Rn of positive measure,ε ∈ (0,1/2), and distinct
i, j ∈ {1, . . . , k} such thatfi1A, f j1A ∈ (ε,1 − ε). But (f ∗1 , . . . , f

∗
k ) would then not be an extreme point since it is the average of

(g1, . . . ,gk), (h1, . . . ,hk) ∈ ∆k(γn) \ {( f ∗1 , . . . , f
∗
k )}, wheregℓ = hℓ = f ∗

ℓ
for ℓ ∈ {1, . . . , k} \ {i, j} andgi = ( f ∗i + ε)1A + f ∗i 1Rn\A,

hi = ( f ∗i − ε)1A + f ∗i 1Rn\A, gj = ( f ∗j − ε)1A + f ∗j 1Rn\A, hj = ( f ∗j + ε)1A + f ∗j 1Rn\A.

7



w+ z1 + · · · + zk = 0. If w = 0 thenΨ attains its maximum on the partition{A∪ A1,A2, . . . ,Ak}, so assume
for the sake of contradiction thatw , 0. For everyi ∈ {1, . . . , k} we have:

n∑

j=1

b j‖zj‖22 = Ψ(1A1, . . . , 1Ak) ≥ Ψ(1A1, . . . , 1Ai−1, 1A∪Ai , 1Ai+1, . . . , 1Ak)

=

∑

1≤ j≤k
j,i

b j‖zj‖22 + bi‖zi + w‖22 =
n∑

j=1

b j‖zj‖22 + 2bi〈zi ,w〉 + bi‖w‖22.

Thus 2〈zi ,w〉 + ‖w‖22 ≤ 0, and if we sum this inequality overi ∈ {1, . . . , k} while recalling thatw = −∑k
i=1 zi

we see that (k − 2)‖w‖22 ≤ 0, which is a contradiction. Note that for generalB the same argument shows

that for all i ∈ {1, . . . , k} we have 2
∑k

j=1 bi j

〈
zj ,w

〉
+ bii ‖w‖22 ≤ 0. These inequalities do not seem to lend

themselves to the same type of easy contradiction as in the case of diagonal matrices. ⊳

The proof of the following lemma is an obvious midification ofthe proof of Lemma 3.2 in [7].

Lemma 2.2. If n ≥ k− 1 then C(n, B) = C(k− 1, B).

Proof. The inequalityC(n, B) ≥ C(k − 1, B) is easy since for every (f1, . . . , fk) ∈ ∆k(γk−1) we can define(
f̃1, . . . f̃k

)
∈ ∆k(γn) by f̃ j(x, y) = f j(x) (thinking here ofRn asRk−1 ×Rn−k+1). Then for all j ∈ {1, . . . , k} we

have
∫
Rk−1 x f j(x)dγk−1(x) =

∫
Rn xf̃ j(x)dγn(x), implying thatΨ

(
f̃1, . . . f̃k

)
= Ψ ( f1, . . . , fk).

In the reverse direction, by Lemma 2.1 there is a measurable partition A1, . . . ,Ak of Rn such that if
we definezj ≔

∫
A j

xdγn(x) ∈ Rn then we have
∑k

i=1
∑k

j=1 bi j

〈
zi , zj

〉
= C(n, B). Note that

∑k
j=1 zj = 0.

Hence the dimension of the subspaceV ≔ span{z1, . . . , zk} is d ≤ k − 1. Defineg1, . . . , gk : V → [0, 1] by
g j(x) = γV⊥

(
(A j − x) ∩ V⊥

)
. Then (g1, . . . , gk) ∈ ∆k(γV), so that

C(k− 1, B) ≥ C(d, B)

≥
k∑

i=1

k∑

j=1

bi j

〈∫

V
xgi(x)dγV(x),

∫

V
xgj(x)dγV(x)

〉

=

k∑

i=1

k∑

j=1

bi j

〈∫

V

∫

V⊥
1Ai (x+ y)xdγV(x)dγV⊥ (y),

∫

V

∫

V⊥
1A j (x+ y)xdγV(x)dγV⊥ (y)

〉

=

k∑

i=1

k∑

j=1

bi j

〈∫

Ai

ProjV(w)dγn(w),
∫

A j

ProjV(w)dγn(w)

〉

=

k∑

i=1

k∑

j=1

bi j

〈
ProjV(zi),ProjV(zj )

〉

=

k∑

i=1

k∑

j=1

bi j

〈
zi , zj

〉
= C(n, B),

as required. �

In light of Lemma 2.2 we defineC(B) ≔ C(k − 1, B). We shall now prove an analogue of Lemma 3.3
in [7] which gives structural information on the partition{A1, . . . ,Ak} of Rk−1 at whichC(B) is attained. We
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first recall some notation and terminology from [7]. Given distinctz1, . . . , zk ∈ Rk−1 and j ∈ {1, . . . , k} define
a setP j(z1, . . . , zk) ⊆ Rk by

P j(z1, . . . , zk) ≔

{
x ∈ Rk : 〈x, zj〉 = max

i∈{1,...,k}
〈x, zi〉

}
.

Thus
{
P j(z1, . . . , zk)

}k
j=1

is a partition ofRk−1 which we call the simplicial partition induced byz1, . . . , zk

(strictly speaking the elements of this partition are not disjoint, but they intersect at sets of measure 0).

Lemma 2.3. Let A1, . . . ,Ak ⊆ Rk−1 be a partition into measurable sets such that if we set zj ≔
∫

A j
xdγk−1(x)

then

C(B) =
k∑

i=1

k∑

j=1

bi j

〈
zi , zj

〉
. (9)

Assume also that this partition is minimal in the sense that the number of elements of positive measure in
this partition is minimum among all the possible partitionssatisfying(9). Define

J ≔
{
j ∈ {1, . . . , k} : γk−1(A j) > 0

}

and set|J| = ℓ. Then up to an orthogonal transformation{zj} j∈J ⊆ Rℓ−1 and the vectors{zj} j∈J are non-zero
and distinct. Moreover, if we define{w j} j∈J ⊆ Rℓ−1 by

w j ≔

∑

s∈J
b jszs, (10)

then the vectors{w j} j∈J are distinct and for each j∈ J we have

A j = P j
(
(wi)i∈J

) × Rk−ℓ (11)

up to sets of measure zero.

Proof. Since
∑

j∈J 1A j = 1 almost everywhere we have
∑

j∈J zj = 0. Thus the dimension of the span of{zj} j∈J
is at most|J| − 1 = ℓ − 1, and by applying an orthogonal transformation we may assume that{zj} j∈J ⊆ Rℓ−1.
Also, for every distincti, j ∈ J replaceAi by Ai ∪ A j andA j by the empty set and obtain a partition ofRk−1

which contains exactlyℓ − 1 elements of positive measure and for which we have (by the minimality of ℓ):

C(B) >
∑

s,t∈J\{i, j}
bst 〈zs, zt〉 + 2

∑

s∈J\{i, j}
bis

〈
zs, zi + zj

〉
+ bii

∥∥∥zi + zj

∥∥∥2
2

=

∑

s,t∈J
bst 〈zs, zt〉 + 2

∑

s∈J

(
bis − b js

) 〈
zs, zj

〉
+

(
bii + b j j − 2bi j

)
‖zj‖22

= C(B) + 2
〈
wi − w j , zj

〉
+ ‖vi − v j‖22 · ‖zj‖22,

where we used the fact thatbst = 〈vs, vt〉. Thus

2
〈
wi − w j , zj

〉
+ ‖vi − v j‖22 · ‖zj‖22 < 0, (12)

and by symmetry we also have the inequality:

2
〈
w j − wi , zi

〉
+ ‖vi − v j‖22 · ‖zi‖22 < 0. (13)
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It follows in particular from (12) and (13) thatzi andzj are non-zero and thatwi , w j . Moreover if we
sum (12) and (13) we get that

2
〈
wi − w j , zj − zi

〉
+ ‖vi − v j‖22

(
‖zi‖22 + ‖zj‖22

)
< 0

which implies thatzi , zj .
The above reasoning implies in particular that

{
P j

(
(wi)i∈J

) × Rk−ℓ
}

j∈J is a partition ofRk−1 (up to pair-

wise intersections at sets of measure 0). Assume for the sakeof contradiction that these existi ∈ J such
that

γk−1

(
Ai \

(
Pi

(
(ws)s∈J

) × Rk−ℓ
))
> 0.

Arguing as in the proof of Lemma 3.3 in [7] we see that there existsε > 0 and j ∈ J \ {i} such that if we
denoteE ≔

{
x ∈ Ai : 〈x, zj〉 ≥ 〈x, zi〉 + ε

}
thenγk−1(E) > 0.

Define a partitioñA1, . . . Ãk of Rk−1 by

Ãr ≔



Ar r < {i, j}
Ai \ E r = i
A j ∪ E r = j.

Then forw≔
∫

E
xdγk−1(x) we have

C(B) ≥
∑

s,t∈J
bst

〈∫

Ãs

xdγk−1(x),
∫

Ãt

xdγk−1(x)

〉

=

∑

s,t∈J\{i, j}
bst 〈zs, zt〉 + 2

∑

s∈J\{i, j}
bis 〈zs, zi − w〉 + 2

∑

s∈J\{i, j}
b js

〈
zs, zj + w

〉

+2bi j

〈
zi − w, zj + w

〉
+ bii ‖zi − w‖22 + b j j ‖zj + w‖22

= C(B) − 2
∑

s∈J
bis 〈zs,w〉 + 2

∑

s∈J
b js 〈zs,w〉 +

(
bii + b j j − 2bi j

)
‖w‖22

(10)
= C(B) + 2

〈
w j − wi ,w

〉
+ ‖vi − v j‖22 · ‖w‖

2
2

≥ C(B) + 2
∫

E

(
〈zj , x〉 − 〈zi , x〉

)
dγk−1(x)

≥ C(B) + 2εγk−1(E) > C(B),

a contradiction. �

Remark 2.2. Note that we have the following non-trivial identity as a corollary of Lemma 2.3 (and using
the same notation): For eachi ∈ J,

zj =

∫

P j

(
(wi )i∈J

) xdγℓ−1(x), (14)

where we recall that thewi are defined in (10). This system of equalities seems to contain non-trivial
information on the structure of the partition at whichC(B) is attained. In future research it would be of
interest to exploit this information, though we have no needfor it for our present purposes. ⊳

Remark 2.3. Given B andε > 0 we can estimateC(B) up to an error of at mostε in constant time (which
depends only onB, k, ε). Moreover, we can compute in constant time a conical simplicial partition ofRk−1
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at which the value ofΨ is at leastC(B) − ε. These statements are a simple corollary of Lemma 2.3. Indeed,
all we have to do is to run over all choices ofℓ ∈ {1, . . . , k} and for each suchℓ construct an appropriate
net ofz1, . . . , zℓ ∈ Rℓ−1 of bounded size, and then check each of the induced simplicial partitions ofRk−1 as
in (11) for the one which maximizesΨ. To this end we need some a priori bound on the length ofzi : the
crude bound

‖zi‖2 =
∥∥∥∥∥∥

∫

Ai

xdγℓ−1(x)

∥∥∥∥∥∥
2

≤
∫

Rℓ−1
‖x‖2dγℓ−1(x) ≤

√
ℓ

will suffice. Fixδ > 0 which will be determined momentarily. LetN be aδ-net in the Euclidean ball of

radius
√
ℓ in Rℓ−1. Then|N| ≤

(
3
√
ℓ
δ

)ℓ
.

Let A1, . . . ,Ak be as in Lemma 2.3, i.e., the true (minimal) partition at which C(B) is attained. LetJ, ℓ,
zi andwi be as in Lemma 2.3. For eachi ∈ J find z′i ∈ N for which ‖zi − z′i ‖2 ≤ δ. Definew′i =

∑
s∈J b jsz′s.

Then we have the crude bound‖wi − w′i ‖2 ≤ δ
∑k

s=1
∑k

t=1 |bst| ≔ δ‖B‖1. We also have the a priori bounds
‖wi‖2, ‖w′i ‖2 ≤

√
ℓ‖B‖1. By compactness there existsδ = δ(ε, ℓ, B) such that these estimates imply that for

all j ∈ J,
∥∥∥∥∥∥∥
zj −

∫

P j

(
(w′i )i∈J

) xdγℓ−1(x)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥

∫

P j

(
(wi )i∈J

) xdγℓ−1(x) −
∫

P j

(
(w′i )i∈J

) xdγℓ−1(x)

∥∥∥∥∥∥∥
2

≤ ε

2
√
ℓ‖B‖1

. (15)

(It is actually easy to give a concrete bound on the requiredδ if so desired, but this is not important for our
purposes.) It follows from (15) that:

C(B) ≥
∑

s,t∈J
bst

〈∫

Ps

(
(w′i )i∈J

) xdγℓ−1(x),
∫

Pt

(
(w′i )i∈J

) xdγℓ−1(x)

〉

≥
∑

s,t∈J
bst 〈zs, zt〉 −

∑

s,t∈J
|bst| ·

ε

2
√
ℓ‖B‖1

· 2
√
ℓ = C(B) − ε.

Note that the above integrals can be estimated efficiently (polynomial time ink) with arbitrarily good pre-
cision due to the fact that the simplicial conesP j

(
(w′i )i∈J

)
have an efficient membership oracle and the

Gaussian measure is log-concave. These are very crude bounds that suffice for our algorithmic purposes
whenk is fixed, but deteriorate exponentially withk. It would be of interest to understand whether we can
estimateC(B) (and more importantly the associated partitions, as they are used in our rounding procedure)
in time which is polynomial ink. Perhaps the identities (14) can play a role in the design of such an efficient
algorithm, but we did not investigate this issue. ⊳

We end this section with a simple analytic interpretation ofthe parameterC(B). Given a square inte-
grable functionf : Rn → Rk its Rademacher projectionRad( f ) : Rn → Rk (see [10] for an explanation of
this terminology) is defined forx = (x1, . . . , xn) ∈ Rn as:

Rad( f )(x) =
n∑

i=1

(∫

Rn
yi f (y)dγn(y)

)
xi .

Assume thatf takes values in{v1, . . . , vk} ⊆ Rk and defineAi = f −1(vi ) for i ∈ {1, . . . , k}. Then{A1, . . . ,Ak}
is a measurable partition ofRn. We also have the identity:

Rad( f )(x) =
n∑

i=1


k∑

j=1

v j

∫

A j

yidγn(y)

 xi .
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Thus

‖Rad( f )‖2L2(γn,Rk) =

∫

Rn
‖Rad( f )(x)‖22 dγn(x) =

n∑

i=1

∥∥∥∥∥∥∥∥

k∑

j=1

v j

∫

A j

yidγn(y)

∥∥∥∥∥∥∥∥

2

2

=

n∑

i=1

k∑

j=1

k∑

ℓ=1

〈
v j , vℓ

〉 
∫

A j

yidγn(y)


(∫

Aℓ
yidγn(y)

)
=

k∑

j=1

k∑

ℓ=1

b jℓ

〈∫

A j

ydγn(y),
∫

A j

ydγn(y)

〉
. (16)

The identity (16) implies the following lemma:

Lemma 2.4. For every n≥ k− 1 we have:

C(B) = max
f :Rn→{v1,...,vk}

‖Rad( f )‖2L2(γn,Rk) .

Recall thatR(B) is defined as the radius of the smallest ball inRk which contains the set{v1, . . . , vk} and
thatw(B) is the center of this ball. Lemma 2.4 implies the following corollary:

Corollary 2.5. C(B) ≤ R(B)2.

Proof. Let {A1, . . . ,Ak} be a partition ofRk−1 into measurable sets such that if we definezj =
∫

A j
xdγk−1(x)

then

C(B) =
k∑

i=1

k∑

j=1

〈
vi , v j

〉 〈
zi , zj

〉

=

k∑

i=1

k∑

j=1

〈
vi − w(B), v j − w(B)

〉 〈
zi , zj

〉
+ 2

k∑

i=1

〈vi ,w(B)〉
〈
zi ,

k∑

j=1

zj

〉
+ ‖w(B)‖22 ·

∥∥∥∥∥∥∥∥

k∑

j=1

zj

∥∥∥∥∥∥∥∥

2

2

. (17)

Since
∑k

j=1 zj = 0 it follows from (16) and (17) that forf : Rk−1→ {vi − w(B)}ki=1 defined byf |Ai = vi−w(B)
we have:

C(B) = ‖Rad( f )‖2L2(γn,Rk)

(⋆)
≤ ‖ f ‖2L2(γn,Rk) ≤ ‖ f ‖

2
L∞(γn,Rk) = max

i∈{1,...,k}
‖vi − w(B)‖22 = R(B)2,

where in (⋆) we used the fact thatRad is an orthogonal projection on the Hilbert spaceL2(γn,R
k). �

3 Generalized positive semidefinite Grothendieck inequalities

The purpose of this section is to prove the following theorem, which as explained in the introduction, is an
extension of Grothendieck’s inequality for positive semidefinite matrices.

Theorem 3.1. Let A= (ai j ) ∈ Mn(R) be an n×n symmetric positive semidefinite matrix. Let v1, . . . , vk ∈ Rk

be k≥ 2 vectors and let B= (bi j = 〈vi , v j〉) be the corresponding Gram matrix. Then

max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

ai j 〈xi , x j〉 ≤
1

C(B)
max

σ:{1,...,n}→{1,...,k}

n∑

i=1

n∑

j=1

ai j 〈vσ(i), vσ( j)〉. (18)

12



We shall prove in Section 3.1 that the factor1C(B) in (18) cannot be improved, even when in (18)A is
restricted to be centered, i.e.,

∑n
i=1

∑n
j=1 ai j = 0.

The key tool in the proof of Theorem 3.1 is the following lemma:

Lemma 3.2. Let
{
gi j : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

}
be i.i.d. standard Gaussian random variables and let

G = (gi j ) be the corresponding m× n random Gaussian matrix. Fix two unit vectors x, y ∈ Sn−1 and two
measurable subsets E, F ⊆ Rm. Then:

Pr
[
Gx∈ E ∧ Gy∈ F

]

= γm(E)γm(F) + 〈x, y〉
〈∫

E
udγm(u),

∫

F
udγm(u)

〉
+

∞∑

ℓ=2

〈
x⊗ℓ, y⊗ℓ

〉 ∑

s∈(N∪{0})m

s1+···+sm=ℓ

αs(E)αs(F), (19)

for some real coefficients{αs(E)}s∈(N∪{0})m, {αs(F)}s∈(N∪{0})m ⊆ R.

Proof. Denote r = 〈x, y〉. Let g, h ∈ R be independent standard Gaussian random variables and let
g1, . . . , gm ∈ Rn be i.i.d. standard Gaussian random vectors inRn (i.e., they are independent and distributed
according toγn). Then for eachi ∈ {1, . . . ,m} the planar random vector (〈gi , x〉, 〈gi , y〉) ∈ R2 has the same
distribution as

(
g, rg +

√
1− r2h

)
∈ R2, and hence its density is given for (u, v) ∈ R2 by:

fr (u, v) ≔
1

2π
√

1− r2
· exp

(
−u2 − 2ruv+ v2

2(1− r2)

)
.

The Hermite polynomials{Hk}∞k=0 are defined as:

Hk(t) ≔ (−1)ket2 dk

dtk
(
e−t2

)
=

⌊k/2⌋∑

s=0

(−1)sk!
s!(k − 2s)!

(2t)k−2s.

The formula for the Poison kernel for Hermite polynomials (see for example equation 6.1.13 in [1] or the
discussion in [14]) says that

fr(u, v) =
e−(u2

+v2)/2

2π

∞∑

k=0

rk

2kk!
Hk

(
u
√

2

)
Hk

(
v
√

2

)
.

Since the vector (Gx,Gy) ∈ R2m has the same distribution as the vector
(
(〈gi , x〉, 〈gi , y〉)

)m
i=1, whose (planar)

entries are i.i.d. with densityfr , we see that:

Pr
[
Gx∈ E ∧ Gy∈ F

]
=

∫

E×F


m∏

i=1

fr(ui , vi)

 dudv

=

∫

E×F

e−(‖u‖22+‖v‖
2
2)/2

(2π)m


m∏

i=1


∞∑

k=0

rk

2kk!
Hk

(
ui√

2

)
Hk

(
vi√
2

)

dudv

=

∫

E×F


∑

s∈(N∪{0})m

rs1+···+sm

2s1+···+sm
∏m

i=1 si !


m∏

i=1

Hsi

(
ui√

2

)


m∏

i=1

Hsi

(
vi√
2

)

 dγm(u)dγm(v)

= γm(E)γm(F) + 〈x, y〉
〈∫

E
udγm(u),

∫

F
udγm(u)

〉
+

∞∑

ℓ=2

〈
x⊗ℓ, y⊗ℓ

〉 ∑

s∈(N∪{0})m

s1+···+sm=ℓ

αs(E)αs(F),
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where we used the fact thatH0(t) = 1 andH1(t) = 2t, and for every measurable subsetW ⊆ Rm and
s∈ (N ∪ {0})m the notation

αs(W) ≔
1

2(s1+···+sm)/2 ∏m
i=1

√
si!

∫

W


m∏

i=1

Hsi

(
ui√

2

) dγm(u).

The proof of the identity (14) is complete. �

Proof of Theorem 3.1.Fix n unit vectorsx1, . . . , xn ∈ Sn−1. Let {A1, . . . ,Ak} be a partition ofRk−1 into
measurable subsets. LetG be a random Gaussian matrix as in Lemma 3.2 withm= k− 1. Define a random
assignmentσ : {1, . . . , n} → {1, . . . , k} by settingσ(i) to be the uniquep ∈ {1, . . . , k} for which Gxi ∈ Ap.
Then for everyi, j ∈ {1, . . . , n} we have

E

[〈
vσ(i), vσ( j)

〉]
=

k∑

p=1

k∑

q=1

〈
vp, vq

〉
Pr

[
Gxi ∈ Ap ∧ Gxj ∈ Aq

]
=

k∑

p=1

k∑

q=1

bpq Pr
[
Gxi ∈ Ap ∧ Gxj ∈ Aq

]
.

We may therefore apply Lemma 3.2 to deduce that:

E


n∑

i=1

n∑

j=1

ai j

〈
vσ(i), vσ( j)

〉
 =


n∑

i=1

n∑

j=1

ai j


k∑

p=1

k∑

q=1

bpqγk−1(Ap)γk−1(Aq)

+


n∑

i=1

n∑

j=1

ai j

〈
xi , x j

〉


k∑

p=1

k∑

q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉

+

∞∑

ℓ=2


n∑

i=1

n∑

j=1

ai j

〈
x⊗ℓi , x

⊗ℓ
j

〉


∑

s∈(N∪{0})m

s1+···+sm=ℓ

k∑

p=1

k∑

q=1

bpqαs(Ap)αs(Aq)

≥


n∑

i=1

n∑

j=1

ai j

〈
xi , x j

〉


k∑

p=1

k∑

q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉
,

where we used the fact that bothA and B are positive semidefinite. It thus follows that there existsan
assignmentσ : {1, . . . , n} → {1, . . . , k} for which

n∑

i=1

n∑

j=1

ai j

〈
vσ(i), vσ( j)

〉
≥


n∑

i=1

n∑

j=1

ai j

〈
xi , x j

〉


k∑

p=1

k∑

q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉
,

and since this is true for all measurable partitions{A1, . . . ,Ak} of Rk−1 we deduce that there exists an assign-
mentσ : {1, . . . , n} → {1, . . . , k} for which:

n∑

i=1

n∑

j=1

ai j

〈
vσ(i), vσ( j)

〉
≥ C(B)

n∑

i=1

n∑

j=1

ai j

〈
xi , x j

〉
,

as required. �
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3.1 Optimality

The purpose of this section is to show that Theorem 3.1 is sharp:

Theorem 3.3. Let v1, . . . , vk ∈ Rk be k≥ 2 vectors and let B= (bi j = 〈vi , v j〉) be the corresponding Gram
matrix. Assume that K> 0 is a constant such that for every n∈ N and every centered symmetric positive
semidefinite matrix A= (ai j ) ∈ Mn(R) we have:

max
x1,...,xn∈Sn−1

n∑

i=1

n∑

j=1

ai j 〈xi , x j〉 ≤ K max
σ:{1,...,n}→{1,...,k}

n∑

i=1

n∑

j=1

ai j 〈vσ(i), vσ( j)〉. (20)

Then K≥ 1
C(B) .

Proof. The proof consists of a discretization of a continuous example. The discretization step is somewhat
tedious, but straightforward. We will start with a presentation of the continuous example. Fixm ∈ N and let
g, h ∈ Rm be independent standard gaussian random vectors. Since (‖g‖2, ‖h‖2) is independent of

(
g
‖g‖2 ,

h
‖h‖2

)

we have:

∫

Rm×Rm
〈x, y〉 ·

〈
x
‖x‖2
,

y
‖y‖2

〉
dγm(x)dγm(y) = E

‖g‖2 · ‖h‖2
〈

g
‖g‖2
,

h
‖h‖2

〉2

= E
[‖g‖2 · ‖h‖2

] · E

〈

g
‖g‖2
,

h
‖h‖2

〉2 = E
[‖g‖2

]2
E


g2

1

‖g‖22

 = E
[‖g‖2

]2 1
m

m∑

i=1

E


g2

i

‖g‖22

 =
1
m
E

[‖g‖2
]2
, (21)

where we used the rotation invariance of the distribution ofh.
The distribution of‖g‖22 is theχ2 distribution withm degrees of freedom, and therefore its density at

u > 0 equals 1
2m/2Γ(m/2)u

m
2−1e−u/2. It follows that

E
[‖g‖2

]
=

1

2m/2Γ(m/2)

∫ ∞

0

√
u · u

m
2−1e−u/2du=

√
2 ·
Γ

(
m+1

2

)

Γ

(
m
2

) ≥
√

m

(
1−O

(
1
m

))
, (22)

where the last step is an application of Stirling’s formula.Plugging (22) into (21) we see that:

∫

Rm×Rm
〈x, y〉 ·

〈
x
‖x‖2
,

y
‖y‖2

〉
dγm(x)dγm(y) ≥ 1−O

(
1
m

)
. (23)

Now, assuming thatm≥ k− 1, for every f : Rm→ {v1, . . . , vk} we have

∫

Rm×Rm
〈x, y〉 · 〈 f (x), f (y)〉 dγm(x)dγm(y) =

∥∥∥∥∥
∫

Rm
x⊗ f (x)dγm(x)

∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥

m∑

i=1

ei ⊗
(∫

Rm
xi f (x)dγm(x)

)∥∥∥∥∥∥∥

2

2

= ‖Rad( f )‖2L2(γm,Rk) ≤ C(B), (24)

where we used Lemma 2.4 (and heree1, . . . , em is the standard basis orRm).
We shall now perform a simple discretization argument to conclude the proof of Theorem 3.3. Fixε > 0

andM ∈ N. Let F be the set of all axis parallel cubes in [−εM, εM]m which are a product ofm intervals
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whose endpoints are consecutive integer multiples ofε in [−M,M]. Thus |F | = (2M)m and eachQ ∈ F

has volumeεm. ForQ ∈ F let zQ be the center ofQ. For everyP,Q ∈ F define

aPQ≔ ε
2me−

‖zP‖22+‖zQ‖
2
2

2
〈
zP, zQ

〉
.

By our assumption (20) there is an assignmentσ : F → {1, . . . , k} such that

∑

P,Q∈F
aPQ

〈
zP

‖zP‖2
,

zQ

‖zQ‖2

〉
≤ K

∑

P,Q∈F
aPQ

〈
vσ(P), vσ(Q)

〉
. (25)

We shall now use the following straightforward (and crude) estimates:
∣∣∣∣∣∣∣∣

∫

Rm×Rm
〈x, y〉

〈
x
‖x‖2
,

y
‖y‖2

〉
dγm(x)dγm(y) −

∑

P,Q∈F
aPQ

〈
zP

‖zP‖2
,

zQ

‖zQ‖2

〉∣∣∣∣∣∣∣∣

≤
∑

P,Q∈F

∫

P×Q

∣∣∣∣∣∣e
−
‖zP‖22+‖zQ‖

2
2

2
〈
zP, zQ

〉 〈 zP

‖zP‖2
,

zQ

‖zQ‖2

〉
− e−

‖x‖22+‖y‖
2
2

2 〈x, y〉
〈

x
‖x‖2
,

y
‖y‖2

〉∣∣∣∣∣∣dxdy

+

∣∣∣∣∣∣

∫

(Rm×Rm)\([−εM,εM]m×[−εM,εM]m)
〈x, y〉

〈
x
‖x‖2
,

y
‖y‖2

〉
dγm(x)dγm(y)

∣∣∣∣∣∣

≤ O(1)
√

mε
(√

mMε
)3 ∑

P,Q∈F

∫

P×Q
e−
‖x‖22+‖y‖

2
2

2 dxdy+O(1)m2e−
(εM)2

4

≤ O(1)
√

mε
(√

mMε
)3
+O(1)m2e−

(εM)2

4 .

We shall require in what follows thatεM = 2m. Hence, using (23) we deduce that:

∑

P,Q∈F
aPQ

〈
zP

‖zP‖2
,

zQ

‖zQ‖2

〉
≥ 1−O

(
m5ε +

1
m

)
. (26)

On the other hand, definef : Rm→ {v1, . . . , vk} by

f (x) =

{
vσ(Q) x ∈ Q ∈ F ,

v1 x < [−εM, εM]m.

Observe that by symmetry
∫

(Rm×Rm)\([−εM,εM]m×[−εM,εM]m)
〈x, y〉 · 〈 f (x), f (y)〉 dγm(x)dγm(y) = 0,

and therefore a similar crude estimate yields:
∣∣∣∣∣∣∣∣

∫

Rm×Rm
〈x, y〉 · 〈 f (x), f (y)〉 dγm(x)dγm(y) −

∑

P,Q∈F
aPQ

〈
vσ(P), vσ(Q)

〉
∣∣∣∣∣∣∣∣

≤
∑

P,Q∈F

∫

P×Q

∣∣∣∣∣∣e
−
‖x‖22+‖y‖

2
2

2 〈x, y〉 − e−
‖zP‖22+‖zQ‖

2
2

2
〈
zP, zQ

〉
∣∣∣∣∣∣
∣∣∣〈vσ(P), vσ(Q)

〉∣∣∣dxdy

≤ O
(
m5ε

)
max

i∈{1,...,k}
‖vi‖22. (27)
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Choosingε = m−6 (and thusM = 2m7), and combining (27) with (24) and (26), yields in combination
with (25) the bound:

1−O

(
1
m

)
≤ K

(
C(B) +O

(
1
m

)
max

i∈{1,...,k}
‖vi‖22

)
.

Letting m→ ∞ concludes the proof of Theorem 3.3. �

4 A sharp approximation algorithm for kernel clustering

Let A = (ai j ) ∈ Mn(R) be a centered symmetric positive semidefinite matrix and let B = (bi j ) ∈ Mk(R)
be a symmetric positive semidefinite matrix. Our goal is to design a polynomial time algorithm which
approximates the value:

Clust(A|B) = max
σ:{1,...,n}→{1,...,k}

n∑

i=1

n∑

j=1

ai j bσ(i)σ( j).

We proceed as follows. We first find vectorsv1, . . . , vk ∈ Rk such thatbi j = 〈vi , v j〉 for all i, j ∈ {1, . . . , k}.
This can be done in polynomial time (Cholesky decomposition). Let R(B) be the minimum radius of the
Euclidean ball inRk that contains{v1, . . . , vk} and letw(B) be the center of this ball. BothR(B) andw(B)
can be efficiently computed by solving an appropriate semidefinite program.

We now use semidefinite programming to compute the value:

SDP(A|B) ≔ max



n∑

i=1

n∑

j=1

ai j

〈
xi , x j

〉
: x1, . . . , xn ∈ Rn ∧ ‖xi‖2 ≤ 1 ∀i ∈ {1, . . . , n}



= max



n∑

i=1

n∑

j=1

ai j

〈
xi , x j

〉
: x1, . . . , xn ∈ Sn−1


, (28)

where the last equality in (28) holds since the function (x1, . . . , xn) 7→ ∑n
i=1

∑n
j=1 ai j

〈
xi , x j

〉
is convex (by

virtue of the fact thatA is positive semidefinite). We claim that

Clust(A|B)

R(B)2
≤ SDP(A|B) ≤ Clust(A|B)

C(B)
, (29)

which implies that if we output the numberR(B)2Clust(A|B) we will obtain a polynomial time algorithm

which approximatesClust(A|B) up to a factor ofR(B)2

C(B) .

To verify (29) letx∗1, . . . , x
∗
n ∈ Sn−1 andσ∗ : {1, . . . , n} → {1, . . . , k} be such that

SDP(A|B) =
n∑

i=1

n∑

j=1

ai j

〈
x∗i , x

∗
j

〉
,

and

Clust(A|B) =
n∑

i=1

n∑

j=1

ai j bσ∗(i)σ∗( j).

Write (ai j )n
i, j=1 = (〈ui , u j〉)n

i, j=1 for someu1, . . . , un ∈ Rn. The assumption thatA is centered means that∑n
i=1 ui = 0. The right-hand side of inequality in (29) is simply a restatement of Theorem 3.1. The left-hand
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side inequality (29) follows from the fact that
vσ∗(i)−w(B)

R(B) has norm at most 1 for alli ∈ {1, . . . , n}. Indeed,
these norm bounds imply that:

SDP(A|B) ≥
n∑

i=1

n∑

j=1

ai j

〈
vσ∗(i) − w(B)

R(B)
,
vσ∗( j) − w(B)

R(B)

〉

=
1

R(B)2

n∑

i=1

n∑

j=1

ai j

〈
vσ∗(i), vσ∗( j)

〉
− 2

R(B)2

n∑

i=1

〈
w(B), vσ∗(i)

〉 〈
ui ,

n∑

j=1

u j

〉
+
‖w(B)‖22
R(B)2

n∑

i=1

n∑

j=1

ai j

=
Clust(A|B)

R(B)2
.

This completes the proof that our algorithm approximates efficiently the numberClust(A|B), but does
not address the issue of how to efficiently compute an assignmentσ : {1, . . . , n} → {1, . . . , k} for which
the induced clustering ofA has the required value. An inspection of the proof of Theorem3.1 shows that
the issue here is to find efficiently a conical simplicial partitionA1, . . . ,Ak of Rk−1 at whichC(B) is almost
attained, say

k∑

p=1

k∑

q=1

bpq

〈∫

Ap

xdγk−1(x),
∫

Aq

xdγk−1(x)

〉
≥ (1− ε)C(B).

Once this partition is computed, using the notation in the proof of Theorem 3.1 we have a randomized
algorithm which outputs an assignmentσ : {1, . . . , n} → {1, . . . , k} such that

Eσ


n∑

i=1

n∑

j=1

ai j bσ(i)σ( j)

 ≥
(1− ε)C(B)

R(B)2
Clust(A|B).

Note that there is no difficulty to computeσ efficiently once the partition{A1, . . . ,Ak} is given, since these
sets are simplicial cones. The issue with efficiency here is how to compute this partition in polynomial time.
As we discussed in Remark 2.3, this can be done whenk is fixed (or grows very slowly withn), but we do
not know how to do this when, say,k =

√
n.

5 Matching Unique Games hardness

In this section we show that for a fixed positive semi-definitematrix B, approximatingClust(A|B) within

a ratio strictly smaller thanR(B)2

C(B) is Unique Games hard. We will study functionsf : {1, . . . , k}n → R and
their Fourier spectrum at the first level. A novel feature of our proof is that our Fourier analysis will be
carried out with respect to a distribution on{1, . . . , k} that is not necessarily uniform. In fact, the choice of
the distribution itself is dictated by the matrixB as described in Section 5.1.

5.1 Choosing a special probability distribution on{1, . . . , k}

Fact 5.1. Let B= (bi j ) be a k×k symmetric positive semi-definite matrix and bi j = 〈vi , v j〉 be its Gram repre-
sentation, where v1, . . . , vk are vectors (w.l.o.g.) inRk. Let R(B) be the minimum radius of a Euclidean ball
containing all these vectors, and w(B) be the center of this ball. Then w(B) is a convex combination of the
vi ’s that are on the boundary of the ball. In other words, there exist non-negative coefficients p(1), . . . , p(k)
such that

∑k
i=1 p(i) = 1, w(B) =

∑k
i=1 p(i)vi and p(i) , 0 only if ‖vi − w(B)‖2 = R(B).
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Fact 5.1 is well known (see for example the proof of Proposition 1.13 in [2]). Its proof is a simple
separation argument. Indeed, defineJ ≔ { j ∈ {1, . . . , k} : ‖v j − w(B)‖2 = R(B)} and letK be the convex
hull of {v j} j∈J. Assume for the sake of contradiction thatw(B) < K. Then there would be a hyperplaneH
separatingw(B) from K. Moving w(B) a little in the direction ofH would turn the equalities onJ to strict
inequalities, while preserving the strict inequalities off J. This contradicts the minimality ofR(B).

We intend to use the probability distribution (p(1), . . . , p(k)) from fact 5.1. However, for technical
reasons, we need the probability mass for each atom to be non-zero, and therefore, we will use a very small
perturbation of this distribution. Towards this end we define µ(i) = (1 − β)p(i) + βk for everyi ∈ {1, . . . , k}.
The value ofβ > 0 is chosen to be sufficiently small as in the following lemma.

Lemma 5.2. Fix anyε > 0 and the matrix B. Then for a sufficiently smallβ = β(ε, B) > 0,

k∑

i=1

µ(i)

∥∥∥∥∥∥∥∥
vi −

k∑

j=1

µ( j)v j

∥∥∥∥∥∥∥∥

2

2

≥ R(B)2 − ε. (30)

Proof. Note that ifβ = 0, thenµ(i) = p(i) for all i ∈ {1, . . . , k}, and

k∑

i=1

µ(i)

∥∥∥∥∥∥∥∥
vi −

k∑

j=1

µ( j)v j

∥∥∥∥∥∥∥∥

2

2

=

k∑

i=1

p(i)‖vi − w(B)‖22 = R(B)2,

sincep(i) , 0 only if ‖vi − w(B)‖2 = R(B). Thus by continuity for sufficiently smallβ the inequality (30)
holds. For concreteness we also give a direct argument whichgives a reasonable bound onβ. Assume that
β < 1

7. Then, using the fact thatµ ≥ (1− β)p (point-wise), we see that:


k∑

i=1

µ(i)

∥∥∥∥∥∥∥∥
vi −

k∑

j=1

µ( j)v j

∥∥∥∥∥∥∥∥

2

2



1/2

≥
√

1− β


k∑

i=1

p(i)

∥∥∥∥∥∥∥∥
(1− β)

vi −
k∑

j=1

p( j)v j

 +
β

k

k∑

j=1

(vi − v j)

∥∥∥∥∥∥∥∥

2

2



1/2

≥
√

1− β


k∑

i=1

p(i) ‖(1− β)(vi − w(B))‖22



1/2

−
√

1− β


k∑

i=1

p(i)

∥∥∥∥∥∥∥∥
β

k

k∑

j=1

(vi − v j)

∥∥∥∥∥∥∥∥

2

2



1/2

≥ (1− β)3/2R(B) − β
√

1− β


k∑

i=1

p(i)
1
k

k∑

j=1

∥∥∥vi − v j

∥∥∥2
2



1/2

≥ (1− β)3/2R(B) − β
√

1− β max
i, j∈{1,...,k}

‖vi − v j‖2

≥
√

1− β (1− 3β) R(B)

≥
√

1− 7β · R(B),

where in the penultimate inequality we used the trivial factthat maxi, j∈{1,...,k} ‖vi − v j‖2 ≤ 2R(B). Thus we
can takeβ = ε

7R(B)2 to ensure the validity of (30). �

Henceforth we fix the probability space (Ω = {1, . . . , k}, µ). Let U = (ui j ) be ak × k orthogonal ma-
trix such thatu1 j =

√
µ( j) for all j ∈ {1, . . . , k} (such an orthogonal matrix exists since this ensures that∑k

j=1 u2
1 j = 1). Now define random variablesX1, . . . ,Xk : {1, . . . , k} → R by Xi( j) =

ui j√
µ( j)

(here is one place

where we need the atoms ofµ to have positive mass. We will also use this fact to allow for the application
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of the result of [9] in the proof of Theorem 5.4 below). Then bydesignX1 is the constant 1 function, and
for all i, j ∈ {1, . . . , k} we have:

k∑

ℓ=1

µ(ℓ)Xi(ℓ)X j(ℓ) =
k∑

ℓ=1

uiℓu jℓ = (UU t)i j = δi j ,

whereδi j is the Kronecker delta. Similarly:

k∑

ℓ=1

Xℓ(i)Xℓ( j) =
1√
µ(i)µ( j)

k∑

ℓ=1

uℓiuℓ j =
(U tU)i j√
µ(i)µ( j)

=
δi j

µ(i)
.

By relabeling these random variables (for the sake for simplicity of later notation) we thus obtain the fol-
lowing lemma:

Lemma 5.3. There exist random variables X0,X1, . . . ,Xk−1 onΩ such that:

• X0 ≡ 1.

• For i, j ∈ {0, . . . , k− 1} we have

Eµ[XiX j ] =

{
0 if i , j,
1 if i = j.

• For everyω,ω′ ∈ Ω we have

k−1∑

i=0

Xi(ω)Xi(ω
′) =

{
0 if ω , ω′,

1
µ(ω) if ω = ω′.

5.2 Dictatorships vs. functions with small influences

In this section we will associate to every function from{1, . . . , k}n to

∆k ≔

x ∈ Rk : xi ≥ 0 ∀ i ∈ {1, . . . , k},
k∑

i=1

xi = 1



a numerical parameter, or “objective value”. We will show that the value of this parameter for functions
which depend only on a single coordinate (i.e. dictatorships) differs markedly from its value on functions
which do not depend significantly on any particular coordinate (i.e. functions with small influences). This
step is an analog of the “dictatorship test” which is prevalent in PCP based hardness proofs.

We begin with some notation and preliminaries on Fourier-type expansions. For any functionf : Rn→
∆k we write f = ( f1, f2, . . . , fk) where fi : Rn→ [0, 1] and

∑k
i=1 fi = 1. With this notation we have

C(B) = sup
f :Rk−1→∆k

k∑

i=1

k∑

j=1

bi j

〈∫

Rk−1
x fi(x)dγk−1(x),

∫

Rk−1
x f j(x)dγk−1(x)

〉

whereC(B) is as in Section 2. We have already seen that the supremum above is actually attained. AlsoC(B)
remains the same if the supremum is taken over functions overR

n with n ≥ k− 1, i.e. for everyn ≥ k − 1,

C(B) = sup
f :Rn→∆k

k∑

i=1

k∑

j=1

bi j

〈∫

Rn
x fi(x)dγn(x),

∫

Rn
x f j(x)dγn(x)

〉
.
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Let (Ω = {1, . . . , k}, µ) be the probability space as chosen in Section 5.1. Let (Ω
n, µn) be the associated

product space. We will be analyzing functionsf : Ωn → ∆k (and more generally intoRk). As in Lemma
5.3, fix a basis of orthonormal random variables onΩ where one of them is the constant 1 function, that is
{X0 ≡ 1,X1, . . . ,Xk−1}. Then any functionf : Ω→ R can be written as a linear combination of theXi ’s.

In order to analyze functionsf : Ωn → R, we letX = (X1,X2, . . . ,Xn) be an “ensemble” of random
variables where fori ∈ {1, . . . , n} we writeXi = {Xi,0,Xi,1, . . . ,Xi,k−1}, and for everyi, {Xi, j}k−1

j=0 are indepen-

dent copies of the{X j}k−1
j=0. Any σ = (σ1, σ2, . . . , σn) ∈ {0, 1, 2, . . . , k− 1}n will be called a multi-index. We

shall denote by|σ| the number on non-zero entries inσ. Each multi-index defines a monomial

xσ :=
∏

i∈{1,...,n}
σi,0

xi,σi

on a set ofn(k − 1) indeterminates{xi j | i ∈ {1, . . . , n}, j ∈ {1, 2, . . . , k − 1}}, and also a random variable
Xσ : Ωn→ R as

Xσ(ω) :=
n∏

i=1

Xi,σi (ωi).

The random variables{Xσ}σ form an orthonormal basis for the space of functionsf : Ωn→ R. Thus, every
such f can be written uniquely as (the “Fourier expansion”)

f =
∑

σ

f̂ (σ)Xσ, f̂ (σ) ∈ R.

We denote the corresponding multi-linear polynomial asQf =
∑
σ f̂ (σ)xσ. One can think off as the polyno-

mial Qf applied to the ensembleX, i.e. f = Qf (X). Of course, one can also applyQf to any other ensemble,
and specifically to the Gaussian ensembleG = (G1,G2, . . . ,Gn) whereGi = {Gi,0 ≡ 1,Gi,1, . . . ,Gi,k−1} and
Gi, j , i ∈ {1, . . . , n}, j ∈ {1, . . . , k − 1} are i.i.d. standard Gaussians. Define the influence of thei’th variable
on f as

Inf i( f ) ≔
∑

σi,0

f̂ (σ)2.

Roughly speaking, the results of [12, 9] say that iff : Ωn → [0, 1] is a function all of whose influences
are small, thenf = Qf (X) and Qf (G) are almost identically distributed, and in particular, the values of
Qf (G) are essentially contained in [0, 1]. Note thatQf (G) is a random variable on the probability space
(Rn(k−1), γn(k−1)).

Consider functionsf : Ωn → ∆k. We write f = ( f1, f2, . . . , fk) where fi : Ωn → [0, 1] with
∑k

i=1 fi = 1.
Each fi has a unique representation (along with the corresponding multi-linear polynomial)

fi =
∑

σ

f̂i(σ)Xσ, Qi := Qfi =

∑

σ

f̂i(σ)xσ.

We shall define an objective function OBJ(f ) that is a positive semidefinite quadratic form on the table
of values of f which corresponds to a centered symmetric positive semidefinite bilinear form. Then we
analyze the value of this objective function whenf is a “dictatorship” versus whenf has all low influences.

The objective value

For a functionf : Ωn→ ∆k (or more generally,f : Ωn→ Rk) define

OBJ(f ) :=
k∑

i=1

k∑

j=1

bi j


∑

σ: |σ|=1

f̂i(σ) f̂ j(σ)

 . (31)
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Note that there aren(k − 1) multi-indicesσ such that|σ| = 1.

The objective value for dictatorships

For ℓ ∈ {1, . . . , n} we define a dictatorship functionf dict,ℓ : Ωn → ∆k as follows. The range of the function
is limited to onlyk points in∆k, namely the points{e1, e2, . . . , ek} whereei is a vector withith coordinate 1
and all other coordinates zero.

f dict,ℓ(ω) := ei if ωℓ = i. (32)

In other words, when one writesf dict,ℓ
= ( f1, f2, . . . , fk), for i ∈ {1, . . . , k}, fi is {0, 1}-valued andfi(ω) = 1

if and only ifωℓ = i. The Fourier expansion offi is

fi(ω) = µ(i)
∑

σ: σ j=0 ∀ j,ℓ

Xσℓ (i) Xσ(ω). (33)

Indeed, the right hand side of (33) equals

µ(i)
∑

0≤σℓ≤k−1

Xσℓ(i) Xσℓ (ωℓ) =

{
1 if ωℓ = i,
0 otherwise. (see Lemma 5.3)

Thus,

OBJ
(
f dict,ℓ

)
=

k∑

i=1

k∑

j=1

bi j


∑

σ: |σ|=1

f̂i(σ) f̂ j(σ)



=

k∑

i=1

k∑

j=1

bi j


k−1∑

r=1

µ(i)Xr (i)µ( j)Xr ( j)



=

k∑

i=1

k∑

j=1

bi j · µ(i)µ( j)


k−1∑

r=0

Xr(i)Xr ( j) − 1



=

∑

i, j∈{1,...,k}
i, j

〈vi , v j〉 · µ(i)µ( j)(−1)+
k∑

i=1

〈vi , vi〉 · µ(i)2
(

1
µ(i)
− 1

)

=

k∑

i=1

µ(i)

∥∥∥∥∥∥∥∥
vi −

k∑

j=1

µ( j)v j

∥∥∥∥∥∥∥∥

2

2

≥ R(B)2 − ε, (34)

using Lemma 5.2.

The objective value for functions with low influences

For f : Ωn→ R, j ∈ {1, . . . , n} andm∈ N denote (the “degreem-influence” of f ):

Inf≤m
j ( f ) ≔

∑

|σ|≤m
σ j,0

f̂ (σ)2.
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For every 0≤ ρ ≤ 1 we will use the smoothing operator:

Tρ f =
∑

σ

ρ|σ| f̂ (σ)Xσ.

Equivalently,
Tρ f (ω1, . . . , ωn) = E[ f (ω′1, . . . , ω

′
n)],

where independently for eachi, ω′i is chosen to beωi with probabilityρ and a random (with respect to the
underlying distributionµ) element inΩ with probability 1− ρ.

The following theorem is the key analytic fact used in our UGChardness result:

Theorem 5.4. For everyε > 0, there existsτ > 0 so that the following holds: for any function f: Ωn→ ∆k

which satisfies
∀ i ∈ {1, . . . , k}, ∀ j ∈ {1, . . . , n}, Inf≤log(1/τ)

j ( fi) ≤ τ

we have,
OBJ(f ) ≤ C(B) + ε.

Proof. Let δ, η > 0 be sufficiently small constants to be chosen later. LetQi = Qfi be the multi-linear
polynomial associated withfi . Recall thatQi is a multi-linear polynomial in then(k − 1) indeterminates{
x jp | j ∈ {1, . . . , n}, p ∈ {1, . . . , k− 1}

}
. Moreover fi = Qi(X) has range [0, 1] and

∑k
i=1 fi = 1.

Let Ri = (T1−δQi)(X) andSi = (T1−δQi)(G) (the smoothening operatorT1−δ helps us meet some tech-
nical pre-conditions before applying the invariance principle of [9]). Note thatRi has range [0, 1] andSi

has rangeR. It will follow however from [9] thatSi is essentiallyin [0, 1]. First we relate OBJ(f ) to the
functionsSi which will, up to truncation, induce a partition ofRn(k−1), which in turn will give the bound in
terms ofC(B).

(1− δ)2 ·OBJ(f ) = (1− δ)2
k∑

i=1

k∑

ℓ=1

biℓ

∑

σ:|σ|=1

f̂i(σ) f̂ℓ(σ)

= (1− δ)2
k∑

i=1

k∑

ℓ=1

biℓ

n∑

j=1

k−1∑

p=1

(∫

Rn(k−1)
x jp Qi(x)dγn(k−1)(x)

)
·
(∫

Rn(k−1)
x jp Qℓ(x)dγn(k−1)(x)

)

= (1− δ)2
k∑

i=1

k∑

ℓ=1

biℓ

〈∫

Rn(k−1)
x Qi(x)dγn(k−1)(x),

∫

Rn(k−1)
x Qℓ(x)dγn(k−1)(x)

〉

=

k∑

i=1

k∑

ℓ=1

biℓ

〈∫

Rn(k−1)
x (T1−δQi)(x)dγn(k−1)(x),

∫

Rn(k−1)
x (T1−δQℓ)(x)dγn(k−1)(x)

〉

=

k∑

i=1

k∑

ℓ=1

biℓ

〈∫

Rn(k−1)
x Si(x)dγn(k−1)(x),

∫

Rn(k−1)
x Sℓ(x)dγn(k−1)(x)

〉
. (35)

We shall now bound the last term above byC(B) + o(1). For any real-valued functionh onRn(k−1), let

chop(h)(x) :=



0 if h(x) < 0,
h(x) if h(x) ∈ [0, 1],
1 if h(x) > 1.
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Applying Theorem 3.20 in [9] to the polynomialQi , it follows that (providedτ is sufficiently small compared
to δ andη),

∥∥∥Si − chop(Si)
∥∥∥2

L2(γn(k−1))
=

∫

Rn(k−1)

∣∣∣Si(x) − chop(Si)(x)
∣∣∣2 dγn(k−1)(x) ≤ η. (36)

The functions chop(Si) are almost what we want except that they might not sum up to 1.So further
define

S∗i (x) :=
chop(Si)(x)

∑k
i=1 chop(Si)(x)

.

Clearly,
{
S∗i

}k
i=1

have range [0, 1] and
∑k

i=1 S∗i ≡ 1. Observe that the following holds point-wise:

k∑

j=1

∣∣∣chop(S j) − S∗j
∣∣∣ =

∣∣∣∣∣∣∣∣

k∑

j=1

chop(S j) − 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

k∑

j=1

chop(S j) −
k∑

j=1

S j

∣∣∣∣∣∣∣∣
≤

k∑

j=1

∣∣∣S j − chop(S j)
∣∣∣ ,

where we used that
∑k

j=1 S j = T1−δ
∑k

j=1 Q j = T1−δ1 = 1. It follows that for alli ∈ {1, . . . , k} we have:

∥∥∥chop(Si) − S∗i
∥∥∥

L2(γn(k−1))
≤

k∑

j=1

∥∥∥chop(S j) − S∗j
∥∥∥

L2(γn(k−1))
≤

k∑

j=1

∥∥∥S j − chop(S j)
∥∥∥

L2(γn(k−1))
≤ k
√
η,

where we used (36). Finally,

∥∥∥Si − S∗i
∥∥∥

L2(γn(k−1))
≤

∥∥∥Si − chop(Si)
∥∥∥

L2(γn(k−1))
+

∥∥∥chop(Si) − S∗i
∥∥∥

L2(γn(k−1))
≤ (k+ 1)

√
η. (37)

Now write

ui =

∫

Rn(k−1)
x Si(x)dγn(k−1)(x), wi =

∫

Rn(k−1)
x S∗i (x)dγn(k−1)(x). (38)

The norm ofui − wi is bounded by (k + 1)
√
η using (37) and Lemma 5.5 below. Since|S∗i | ≤ 1, the norm

of wi is bounded by 1. Returning to the estimation in Equation (35)and applying Lemma 5.6 below, we see
that:

(1− δ)2 ·OBJ(f ) =
k∑

i=1

k∑

ℓ=1

biℓ〈ui , uℓ〉 ≤
k∑

i=1

k∑

ℓ=1

biℓ〈wi ,wℓ〉 +O
(
k
√
η
)


k∑

i=1

k∑

ℓ=1

|biℓ |
 .

Since
∑k

i=1 S∗i ≡ 1 we have

k∑

i=1

k∑

ℓ=1

biℓ〈wi ,wℓ〉 =
k∑

i=1

k∑

ℓ=1

biℓ

〈∫

Rn(k−1)
x S∗i (x)dγn(k−1)(x),

∫

Rn(k−1)
x S∗ℓ(x)dγn(k−1)(x)

〉

≤ sup
f :Rn(k−1)→∆k


k∑

i=1

k∑

ℓ=1

biℓ

〈∫

Rn(k−1)
x fi(x)dγn(k−1)(x),

∫

Rn(k−1)
x fℓ(x)dγn(k−1)(x)

〉 = C(B).

It follows that OBJ(f ) ≤ C(B) + ε, provided thatη andδ are small enough. �
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Lemma 5.5. Let g∈ L2(Rn, γn). Then
∥∥∥∥∥
∫

Rn
x g(x)dγn(x)

∥∥∥∥∥
2
≤ ‖g‖L2(Rn,γn).

Proof. Note that the square of the left hand side equals
n∑

i=1

∣∣∣∣∣
∫

Rn
xi g(x)dγn(x)

∣∣∣∣∣
2

=

n∑

i=1

〈xi , g〉2.

Sincexi ∈ L2(Rn, γn) are an orthonormal set of functions, the sum of squares of projections ofg onto them
is at most the squared norm ofg. �

Lemma 5.6. Suppose{ui}ki=1 and {wi}ki=1 are vectors inRn such that‖ui − wi‖2 ≤ d for every i∈ {1, . . . , k}
and‖wi‖2 ≤ 1. Let B= (bi j ) be a k× k matrix. Then

∣∣∣∣∣∣∣

k∑

i=1

k∑

ℓ=1

biℓ〈ui , uℓ〉 −
k∑

i=1

k∑

ℓ=1

biℓ〈wi ,wℓ〉

∣∣∣∣∣∣∣
≤

(
2d + d2

) k∑

i=1

k∑

ℓ=1

|biℓ |.

Proof. From the given conditions on the norms ofai = ui −wi andwi, it follows that for anyi, ℓ ∈ {1, . . . , k},

|〈ui , uℓ〉 − 〈wi ,wℓ〉| ≤ |〈ai ,wℓ〉| + |〈aℓ,wi〉| + |〈ai , aℓ〉| ≤ 2d + d2.

Hence,
∣∣∣∣∣∣∣

k∑

i=1

k∑

ℓ=1

biℓ〈ui , uℓ〉 −
k∑

i=1

k∑

ℓ=1

biℓ〈wi ,wℓ〉

∣∣∣∣∣∣∣
≤

k∑

i=1

k∑

ℓ=1

|biℓ | |〈ui , uℓ〉 − 〈wi ,wℓ〉| ≤
(
2d + d2

) k∑

i=1

k∑

ℓ=1

|biℓ |,

as required. �

The intended hardness factor

As we show next, the dictatorship test can be translated (in amore or less standard way by now) into a
Unique Games hardness result. The hardness factor (as usual) turns out to be the ratio of the objective value
when the function is a dictatorship versus when the functionhas all low influences, i.e.

R(B)2 − ε
C(B) + ε

=
R(B)2

C(B)
− o(1).

5.3 The reduction from unique games to kernel clustering

Given a Unique Games InstanceL(G(V,W,E), n, {πvw}(v,w)∈E), we construct an instance of the clustering
problem.

Reformulation of the clustering problem

As in our earlier paper [7], we first reformulate the kernel clustering problem for the ease of presentation. As
observed there, we can reformulate it as (the matrixA in the problemClust(A|B) is captured by the quadratic
form Q below):

Kernel Clustering Problem: Given ak × k symmetric positive semidefinite matrix B, and a symmetric
positive semidefinite quadratic formQ(·, ·) onRN × RN, find F : {1, . . . ,N} → ∆k, F = (F1, F2, . . . , Fk), so
as to maximize

∑k
i=1

∑k
j=1 bi j Q(Fi , F j).
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The clustering problem instance

Given a Unique Games instanceL
(
G(V,W,E), n, {πvw}(v,w)∈E

)
, the clustering problem is to find a function

F : W×Ωn→ ∆k so as to maximize
∑k

i=1
∑k

j=1 bi j Q(Fi , Fi) whereQ is a suitably defined symmetric positive
semidefinite quadratic form. For notational convenience, we write:

Fw := F(w, ·), Fw : Ωn→ ∆k.

Also, for everyv ∈ V, we write:

Fv ≔ E(v,w)∈E [Fw ◦ πvw] , Fv : Ωn→ ∆k.

We used the following notation: for any functiong : Ωn → ∆k andπ : {1, . . . , n} → {1, . . . , n} we write
g ◦ π : Ωn → ∆k for the function (g ◦ π)(ω) := g(ωπ(1), ωπ(2), . . . , ωπ(n)). As usual, we denoteFw =

(Fw,1, Fw,2, . . . , Fw,k) where eachFw,i has range [0, 1] and
∑k

i=1 Fw,i = 1. Similarly,Fv = (Fv,1, Fv,2, . . . , Fv,k)
and

∑k
i=1 Fv,i = 1. Now we are ready to define the clustering problem instance.

Clustering instance: The goal is to findF : W×Ωn→ ∆k so as to maximize:

max
F:W×Ωn→∆k

Ev∈V [OBJ(Fv)] = max
F:W×Ωn→∆k

Ev∈V


k∑

i=1

k∑

j=1

bi j

∑

σ:|σ|=1

F̂v,i(σ) · F̂v, j(σ)

 . (39)

Completeness

We will show that if the Unique Games instance has an almost satisfying labeling, then the objective value
of the clustering problem is at leastR(B)2 − o(1). So, letρ : V ∪W→ {1, . . . , n} be the labeling, such that
for at least 1− ε fraction of the verticesv ∈ V (call suchv good) we have

πvw(ρ(w)) = ρ(v) ∀ (v,w) ∈ E.

DefineF : W×Ωn→ ∆k as follows: for everyw ∈W, Fw : Ωn→ ∆k equals the dictatorship corresponding
to ρ(w) ∈ {1, . . . , n}, i.e.,

Fw := f dict,ρ(w).

Lemma 5.7([7]). For a good v∈ V we have Fv = f dict,ρ(v).

Thus the contribution ofv in (39) is OBJ(f dict,ρ(v)) ≥ R(B)2− ε as observed in Equation (34). Since 1− ε
fraction ofv ∈ V are good, (39) is at least (1− ε) · (R(B)2 − ε) = R(B)2 − o(1).

Soundness

Suppose for the sake of contradiction that the value of (39) is at leastC(B) + 2ε. As in [7], it can be proved
that the Unique Games instance must have a labeling that satisfies at least a constant fraction of its edges, the
constant depending on the parameterτ used in Theorem 5.4. This is a contradiction, provided the soundness
of the Unique Games instance is chosen to be even lower to begin with. The proof is the same as in [7], by
replacing theC(k) therein byC(B) ([7] focused on the case whenB is thek× k identity matrix. The constant
C(k) therein is same as our constantC(B) whenB is thek× k identity matrix).
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6 A concrete example

In this section we will use our results to evaluate the UGC hardness threshold of the problem of computing

Clust

A

∣∣∣∣∣∣∣∣∣


1 0 0
0 1 0
0 0 c



 , (40)

whereA ∈ Mn(R) is centered, symmetric and positive semidefinite andc ∈ (0,∞) is a parameter. The case
c = 1, corresponding toB = I3 (the 3× 3 identity matrix) was evaluated in [7], where it was shown that the
UGC hardness threshold in this case equals16π

27 .
For generalc > 0 the optimization problem in (40) corresponds to the following question: givenn

random variablesX1, . . . ,Xn the goal is to partition them into three setsS1,S2,S3 ⊆ {1, . . . , n} such that
∑

i, j∈S1

E

[
XiX j

]
+

∑

i, j∈S2

E

[
XiX j

]
+ c

∑

i, j∈S3

E

[
XiX j

]
(41)

is maximized. Thus we wish to cluster the variables into three clusters so as to maximize the intra-cluster
correlations, while the parameterc allows us to tune the relative importance of one of the clusters. We stress
that we do not claim that this optimization problem is of particular intrinsic importance. We chose it as
a way to concretely demonstrate our results for the simplestpossible perturbation of the case ofB = I3.
We remark that it is also possible to explicitly solve the case of general 3× 3 diagonal matricesB, i.e., the
case of a general weighting of the clusters in (41). The formula for the UGC hardness threshold for general
3 × 3 diagonal matrices turns out to be quite complicated, so we chose to deal only with (40) as a simple
example for the sake of illustration. Note that for 3× 3 matrices the characterization ofC(B) in terms of
planar conical partitions is particularly simple, and allows for explicit computations of the UGC hardness
threshold in additional cases.

DenoteB≔


1 0 0
0 1 0
0 0 c

 = (〈vi , v j〉)3
i, j=1, wherev1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0,

√
c) ∈ R3. The side

lengths of the triangle whose vertices arev1, v2, v3 are
{
ℓ1 =

√
1+ c, ℓ2 =

√
1+ c, ℓ3 =

√
2
}
. Note that this

is an acute triangle, so its smallest bounding circle coincides with its circumcircle, and therefore its radius
is given by [5]:

R(B)2
=

ℓ21ℓ
2
2ℓ

2
3

(ℓ1 + ℓ2 + ℓ3)(−ℓ1 + ℓ2 + ℓ3)(ℓ1 − ℓ2 + ℓ3)(ℓ1 + ℓ2 − ℓ3)
=

(1+ c)2

2+ 4c
. (42)

We shall now computeC(B). By Lemma 2.3 the partition{A1,A2,A3} of R2 at whichC(B) is attained
consists of disjoint cones of anglesα1, α2, α3 ∈ [0, 2π] whereα1 + α2 + α3 = 2π. A direct computation
shows that forj ∈ {1, 2, 3} we have:

∥∥∥∥∥∥

∫

A j

xdγ2(x)

∥∥∥∥∥∥
2

2

=
1
2π

sin2
(α j

2

)
.

Hence

C(B) =
1
2π

max
α1,α2,α3∈[0,2π]
α1+α2+α3=2π

(
sin2

(
α1

2

)
+ sin2

(
α2

2

)
+ csin2

(
α3

2

))
. (43)
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Assume for the moment that the maximum in (43) is attained whenα1, α2, α3 ∈ (0, 2π). Then using Lagrange
multipliers we see that sinα1 = sinα2 = csinα3. This implies in particular that eitherα1 = α2 or (since
α1, α2, α3 ∈ (0, 2π) andα1 + α2 + α3 = 2π) α1 + α2 = π. In the latter caseα3 = π, and it follows from the
Lagrange multiplier equations that sinα1 = sinα2 = 0, which forces one of{α1, α2} to vanish, contrary to
our assumption. Hence we know thatα1 = α2 ≔ α. Thenα3 = 2π − 2α, and sinceα3 ∈ (0, 2π) we also
know thatα ∈ (0, π). The Lagrange multiplier equations imply that sinα = csin(2π− 2α) = −2csinα cosα.
Thus cosα = − 1

2c, and in particular we see that necessarilyc ≥ 1
2. It follows that

sin2
(
α

2

)
=

1− cosα
2

=
2c+ 1

4c
,

and

sin2
(
α3

2

)
= sin2 (π − α) = 1− cos2α = 1− 1

4c2
.

Hence in this case:

sin2
(
α1

2

)
+ sin2

(
α2

2

)
+ csin2

(
α3

2

)
= 2

2c+ 1
4c

+ c
4c2 − 1

4c2
=

(2c+ 1)2

4c
. (44)

It remains to deal with the boundary case{α1, α2, α3} ∩ {0, 2π} , ∅, which as we have seen above is
where the maximum in (43) is necessarily attained ifc < 1

2. If one of {α1, α2, α3} equals 2π then the others

must vanish, in which case sin2
(
α1
2

)
+sin2

(
α2
2

)
+csin2

(
α3
2

)
= 0. If one of{α1, α2, α3} vanishes then in order

to maximize sin2
(
α1
2

)
+ sin2

(
α2
2

)
+ csin2

(
α3
2

)
the other two must equalπ, in which case the maximum value

of this quantity is max{2, 1+ c}. Since max{2, 1+ c} never exceeds the quantity(2c+1)2

4c from (44) it follows

that the maximum of sin2
(
α1
2

)
+sin2

(
α2
2

)
+csin2

(
α3
2

)
over{α1+α2+α3 = 2π ∧ α1, α2, α3 ∈ [0, 2π]} equals

(2c+1)2

4c whenc ≥ 1
2 and equals 2 whenc ≤ 1

2. We therefore proved that

C(B) =


(2c+1)2

8πc if c ≥ 1
2,

1
π

if c ≤ 1
2.

(45)

By combining (42) with (45) we conclude that the UGC hardnessthreshold for computing (40) is:

R(B)2

C(B)
=


4πc(1+c)2

(1+2c)3 if c ≥ 1
2,

π(1+c)2

2+4c if c ≤ 1
2.

(46)

Remark 6.1. An inspection of the above argument, in combination with ouralgorithm that was presented in
Section 4, shows that the phase transition in (46) atc = 1

2 corresponds to a qualitative change in the optimal
algorithm: after shifting the vectors{v1, . . . , vk} so thatw(B) = 0 and renormalizing byR(B), for c > 1

2 the
algorithm projects the points obtained from the SDP toR2 and classifies them according to a partition ofR2

into three cones of positive measure, while forc < 1
2 the partitioning is into two half-planes and the third set

(the one weighted byc) is empty.
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