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1. Introduction

The P 6= NP hypothesis says that a large class of computational problems known
as NP-complete problems do not have efficient algorithms. An algorithm is called
efficient if it runs in time polynomial in the size of the input, typically denoted as n.
A natural question is whether one can efficiently compute approximate solutions to
NP-complete problems and how good an approximation one can achieve. We are
interested in both upper and lower bounds: designing algorithms with a guarantee
on the quality of approximation (upper bounds) as well as results showing that
no efficient algorithm exists that achieves an approximation guarantee beyond
a certain threshold (lower bounds). It is the latter question, namely the lower
bounds, that is the focus of this article. Such results are known as inapproximability
or hardness of approximation results, proved under a standard complexity theoretic
hypothesis such as P 6= NP.

Let us consider two problems, the Traveling Salesperson (TSP) and the Clique,
as illustration. In the (2-dimensional Euclidean version of) TSP problem, we are
given a set of n cities in a plane and the pairwise distances between them and the
goal is to find a tour that visits all the cities and has minimum length. In the Clique
problem, we are given an n-vertex graph and the goal is find a clique of maximum
size where a clique is a subset of vertices such that all its vertices are pairwise
connected by edges. Both the problems are NP-complete1 and hence one does not
hope to efficiently find optimal solutions. Now consider the question of how well

∗This work is supported by NSF grants CCF-0832795, 1061938, 1422159, and Simons Collab-
oration on Algorithms and Geometry grant.

1There are some subtleties regarding the computational complexity of TSP that we omit here.
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one can approximate them. For the TSP problem, for every constant ε > 0, Arora
and Mitchell [1, 52] designed a polynomial time algorithm that computes a tour
with length at most 1 + ε times the length of the minimum tour. For the Clique
problem, H̊astad [35] showed that it cannot be approximated at all. Specifically, for
every constant ε > 0, assuming P 6= NP, no polynomial time algorithm, given an
n-vertex graph that has a clique of size at least n1−ε, can find a clique of size even
nε. Thus, we know the precise extent to which the TSP and the Clique problems
are approximable: the former is approximable as well as one might hope for and
the latter is not approximable at all. There are a few more problems for which
also we know the precise extent of approximability. In particular, for the 3SAT
and the Set Cover problems [36, 30], we know an approximation algorithm that
achieves a reasonable (but not too close as TSP) approximation guarantee and we
also know that achieving an approximation better than this threshold guarantee
is an NP-complete problem itself. To emphasize, the last statement implies that
an algorithm with approximation guarantee better than the threshold for these
problems can then be used to find optimal solutions!

However, for a vast majority of the NP-complete problems of interest, there is
(often a big) gap between the quality of the best known approximation algorithms
and the known hardness of approximation results. Filling up these gaps, as well as
understanding why different NP-complete problems seem to behave differently in
terms of their approximability, is largely open. The Unique Games Conjecture was
proposed towards making progress on this topic, and in particular towards showing
optimal hardness of approximation results, i.e. results that match the quality of
the best known approximation algorithms. As it turns out, showing hardness
results is closely related to Fourier analysis of boolean functions on a boolean
hypercube and to certain problems in geometry, especially related to isoperimetry.
This article gives a sketch of some of these connections and cites a couple of open
questions towards settling the Unique Games Conjecture. We anticipate that the
intended audience of this article is not necessarily familiar with the language and
techniques in computer science, so an attempt is made to keep the presentation as
self-contained as possible.

2. The Unique Games Conjecture

The Unique Games Conjecture [38] states that a certain computational problem
called the Unique Game is very hard to approximate. We do state the conjecture
here, but we will not really use the statement in the rest of the article.

An instance L of the Unique Game problem is a system of linear equations over
Zp of a specific form. There are n variables x1, . . . , xn and m equations, where ith

equation is of the form xi1 − xi2 = ci. The constants ci ∈ Zp may depend on the
equation. The goal is to find an assignment to the variables that satisfies a good
fraction of the equations. Let OPT(L) denote the maximum fraction of equations
satisfied by any assignment. The Unique Games Conjecture states:
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Conjecture 2.1. For every constant δ > 0, there is a large enough constant
p = p(δ), such that there is no polynomial time algorithm that given an instance
of Unique Game over Zp that has an assignment satisfying 1 − δ fraction of the
equations, finds an assignment that satisfies (even) δ fraction of the equations.2

A few comments are in order. The term game refers to the context of 2-prover-
1-round games where the problem was studied initially. Given an instance of the
Unique Game as above, consider the following game between two provers and a
verifier: the verifier picks an equation xi1 − xi2 = ci at random, sends the variable
xi1 to prover P1 and the variable xi2 to prover P2. Each prover is supposed to
answer with a value in Zp, and the verifier accepts if and only if a1−a2 = ci where a1
and a2 are the answers of the two provers respectively. The strategies of the provers
correspond to assignments σ1, σ2 : {x1, . . . , xn} 7→ Zp. The value of the game is
the maximum over all prover strategies, the probability that the verifier accepts. It
is not difficult to show that this value is between OPT(L) and max{1, 4OPT(L)}.
Such games were initially motivated by the study of cryptographic protocols. The
term unique refers to the property of the equations xi1 − xi2 = ci that for every
assignment to one variable, there is a unique assignment to the other variable so
that the equation is satisfied. Unique Games were studied before in literature, in
particular by Feige and Lovász [31] in the context of parallel repetition.

The important feature of the Unique Games is that the equations are linear.
If one allows equations of arbitrary degree, each equation still depending on two
variables, the problem may be referred to as a Non-Unique Game. The statement
analogous to Conjecture 2.1 is known to hold for Non-Unique Games (and is very
useful). It follows from a combination of the PCP Theorem stated in the next
section and the Parallel Repetition Theorem of Raz [61]. For Non-Unique Games,
the statement holds even on instances that have an assignment that satisfies all
equations, as opposed to only 1− δ fraction of the equations. Moreover, one only
needs p to be polynomially large in 1

δ . For the Unique Games however, if there
were an assignment that satisfies all equations, it can be efficiently found (an
easy observation). Hence, it is essential in Conjecture 2.1 to consider only 1 − δ
satisfiable instances. Moreover, if the conjecture were correct, it is known that p
would have to be at least exponentially large in 1

δ [17].

2The original conjecture is stated in terms of a more general problem and strictly speaking
the term Unique Game refers to the general problem. The problem presented here is referred
to as Linear Unique Game. It is shown in [41] that the original conjecture is equivalent to the
statement here. Also, the problem is conjectured to be NP-complete, rather than just that there
is no polynomial time algorithm for it. It is widely believed that NP-complete problems do not

have algorithms that run in time 2n
o(1)

, rather than just in polynomial time. For much of the
article, when we say “there is no polynomial time algorithm for a problem”, we really mean “the
problem is NP-complete”.
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3. The Max-Cut Problem, the PCP Theorem, the
GW-Algorithm and its Optimality

The Unique Games Conjecture states that the Unique Game problem is hard to
approximate. It has been shown that for several other optimization problems of
interest, denoting a typical such problem by Π, there is a reduction from the Unique
Game problem to the problem Π and as a consequence, the problem Π is hard to
approximate as well. We sketch one such reduction below and refer the reader to
[40] for a list of several reductions of this kind. We note that prior to formulation
of the Unique Games Conjecture, researchers had already developed a general
framework for similar reductions and techniques to analyze them [2, 61, 13, 35, 36,
27], with some remarkable successes such as H̊astad’s Clique result mentioned in
the introduction. However these prior reductions were from the Non-Unique Game
problem. For several problems Π of interest, we do not know how to reduce the
Non-Unique Game problem to Π, but we do know how to reduce the Unique Game
problem to Π. The Unique Game problem seems to strike a delicate balance: it
has a simple enough structure that it is a convenient problem to reduce from and
has a complex enough structure that it is plausibly a hard problem.

In this article, we focus on one specific optimization problem, namely the Max-
Cut problem, and use it as an illustrative example throughout the article. In this
problem, we are given a graph G(V,E) and the goal is to find a cut, i.e. partition
of the vertex set V into two disjoint sets V1 and V2, so as to maximize the number
of edges cut. An edge is said to be cut if its one endpoint is in V1 and the other
endpoint is in V2. The size of the cut is the fraction of edges cut. Let OPT(G)
denote the maximum size of any cut. We will focus on a particular special case
of the problem when the graph G is almost bipartite, i.e. it has a cut that cuts
almost all the edges. Let ε > 0 be a small enough positive constant. The following
problem will be the focus of the rest of the article.

Max-Cut Problem: Given a graph G(V,E) such that OPT(G) = 1 − ε. Find
(efficiently) a cut of as large size as possible.

We will be interested in the computational complexity of this problem. A couple
of observations are immediate. Firstly, the Max-Cut problem is NP-complete and
hence one cannot hope to efficiently find a cut of the maximum size, i.e. of size
1−ε.3 Secondly, one can easily find a cut of size 1

2 . Simply take a uniformly random
cut in the graph; it cuts a fraction 1

2 of the edges in expectation and this randomized
algorithm, if desired, can be turned into a deterministic algorithm as well. Till early
90’s, this was all that was known regarding what is computationally infeasible and
what is feasible. Two breakthrough results then led to a significant progress on
this question: one from the hardness side, known as the PCP Theorem, and the
other from the algorithmic side, namely the Goemans-Williamson’s algorithm.

From the hardness side, the PCP Theorem [29, 7, 5] implies that it is not only
hard to find a cut of the maximum size, but also hard to find a cut of near-maximum

3The standard NP-completeness reduction to the Max-Cut problem can be easily modified so
that it holds on graphs with maximum cut of size 1− ε.
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size. Specifically:4

The PCP Theorem: Assume P 6= NP. Then there is an absolute constant β > 1
such that no polynomial time algorithm, given a graph that has a cut of size 1− ε,
can find a cut of size 1− βε.

The PCP Theorem is stated above as a hardness of approximation result. The
acronym PCP stands for Probabilistically Checkable Proofs and indeed there is an
equivalent formulation of the theorem in terms of proof checking (and this is what
led to its discovery, as a culmination of much prior work on interactive proofs).
The theorem states that every NP statement has a polynomial size proof that can
be checked by a probabilistic polynomial time verifier by reading only a constant
number of bits in the proof! The verifier has the completeness and the soundness
property: every correct statement has a proof that is accepted with probability 1
and every proof of an incorrect statement is accepted with only a small probability,
say at most 1%. The equivalence between the two viewpoints, namely the hardness
viewpoint and the proof checking viewpoint, is simple but illuminating, and has
influenced much of the work in this area. In this article, we restrict ourselves to
the hardness viewpoint, i.e. the hardness result for the Max-Cut problem as stated
above.

From the algorithmic side, Goemans and Williamson [33] designed an efficient
algorithm that given a graph G(V,E) with a cut of size 1 − ε, finds a cut of size
1 − 1

π arccos(1 − 2ε). The latter quantity is approximated as 1 − 2
π

√
ε − O(ε3/2).

We provide a high-level sketch of the Goemans-Williamson’s algorithm.5 The
algorithm proceeds by computing an embedding φ : V 7→ Sm−1 of the set of vertices
onto a unit sphere in Rm. The dimension m is unrestricted, but w.l.o.g. can be
assumed to be at most |V |. The embedding is computed by solving a so-called
semi-definite programming (SDP) relaxation of the problem instance. We omit the
description of this step (see [34] for introduction to SDPs and their algorithmic
applications), but state the crucial property of the embedding: for most of the
edges (u, v) in the graph, the endpoints u, v are embedded as points φ(u), φ(v)
on the sphere that are nearly antipodal points. Once the embedding has been
computed, the algorithm selects a hyperplane H in Rm passing through the origin,
uniformly at random from the set of all such hyperplanes. The hyperplane H cuts
the sphere into two parts, which in turn induces a partition of the set V into two
parts, depending on which side of the hyperplane the point φ(v) lies, for a vertex
v ∈ V . This yields the desired cut in the graph. The analysis of the algorithm
then shows that the expected size of the cut is at least 1− 1

π arccos(1− 2ε). Using
the approximation cited before, this is at least 1−

√
ε for small enough ε.

In spite of the progress offered by the PCP Theorem and Goemans-Williamson’s
algorithm, there is still a gap between 1 − βε and 1 −

√
ε, regarding the size of

the cut that is infeasible to compute and feasible to compute. Bridging this gap

4The PCP Theorem actually proves that the stated computational task is NP-complete.
5Often we are interested in quality of approximation measured as a multiplicative factor. The

minimum value of the ratio, over all ε ∈ (0, 1), between 1− 1
π

arccos(1− 2ε) and 1− ε is ≈ 0.878
and the Goemans-Williamson’s algorithm is often cited as a 0.878-approximation to Max-Cut.
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turns out to be an interesting pursuit as we demonstrate in this article. In particu-
lar, one could ask whether the Goemans-Williamson algorithm is the best possible
algorithm in terms of its approximation guarantee. To the best of author’s infor-
mation, when the Goemans-Williamson algorithm was discovered, it was viewed
as somewhat unnatural and roundabout way of solving a combinatorial problem
via a geometric method, and it was believed that a better algorithm would fol-
low soon. However, rather surprisingly, assuming the Unique Games Conjecture,
Goemans-Williamson’s algorithm is indeed optimal [41]:

Theorem 3.1. Assume the Unique Games Conjecture. Fix any ε ∈ (0, 12 ) and
let η > 0 be an arbitrarily small constant. Then there is no polynomial time
algorithm that given a graph with a cut of size at least 1 − ε, finds a cut of size
1− 1

π arccos(1− 2ε) + η.

Approximating 1− 1
π arccos(1− 2ε) as before, it will be convenient to focus on

a (slightly weaker) statement: assuming the Unique Games Conjecture, there is no
polynomial time algorithm that given a graph with a cut of size at least 1−ε, finds
a cut of size 1 − 1

2

√
ε. Such a statement is proved by reducing the Unique Game

problem to the Max-Cut problem. A reduction is a polynomial time procedure
that starts with an instance L of the Unique Game problem (i.e. a system of linear
equations over Zp with two variables per equation) and builds an instance G of
the Max-Cut problem (i.e. a graph) such that finding a large cut in G amounts
to finding a good approximate solution to the system L. Since the Unique Games
Conjecture states that the latter task is computationally infeasible, so is the former.
Specifically, the correctness of such a reduction consists of two statements, referred
to as the completeness and the soundness statements: for given ε > 0, if δ > 0 is
small enough,

(Completeness) OPT(L) ≥ 1− δ =⇒ OPT(G) ≥ 1− ε.
(Soundness) OPT(L) ≤ δ =⇒ OPT(G) ≤ 1− 1

2

√
ε.

Now, the Unique Games Conjecture states that there is no polynomial time
algorithm that given a (1 − δ)-satisfiable system L, finds a δ-satisfying assign-
ment. If the conjecture is correct, it then follows6 that there is no polynomial time
algorithm that given a graph with a cut of size 1− ε, finds a cut of size 1− 1

2

√
ε.

We only provide a glimpse of the reduction here. Let L be the given linear
system over Zp. The reduction constructs, for every variable xi in the linear
system, a group of 2p vertices Ci labeled by boolean strings σ ∈ {−1, 1}p. For
every equation xi1 − xi2 = ci in the linear system, there are edges between the
group Ci1 and the group Ci2 . Roughly speaking, there is an edge between a vertex
σ in group Ci1 and a vertex τ in group Ci2 (here both σ, τ are boolean strings of
length p) if

| {` ∈ {1, . . . , p} | σ`+ci 6= τ`} | ≈ (1− ε)p.
6Strictly speaking, this implication is not immediate just from the completeness and the

soundness statements. Formally, one shows that a cut of size at least 1− 1
2

√
ε in G can be used,

in polynomial time, to find a δ-satisfying assignment to L. Most reductions are constructive in
this sense.



Hardness of Approximation 7

If one considers the special case when the equation is xi1 − xi2 = 0, then the last
condition is same as saying that σ and τ have Hamming distance ≈ (1− ε)p.

We omit the proofs of the completeness and the soundness properties. The
proof of the completeness property is actually immediate from the construction.
Proving the soundness property takes some work and though we omit its proof,
we describe a key ingredient known as the Majority Is Stablest Theorem. This
is a theorem about noise-stability of boolean functions on a boolean hypercube,
i.e. of functions f : {−1, 1}p 7→ {−1, 1}. Any such function can be viewed as
a cut in the set of vertices {−1, 1}p and this is how one relates the theorem to
the proof of the soundness of the reduction above. We present the Majority Is
Stablest Theorem as well as a sketch of its proof, illustrating the connections to
probability and Gaussian iso-perimetry.

4. Majority is Stablest and Gaussian Isoperimetry

Suppose f : {−1, 1}n 7→ {−1, 1} is a boolean function. Every such function can be
viewed as a pre-determined rule to decide outcome of an election, also referred to
as a voting scheme: consider an election with n voters and two candidates labeled
as {−1, 1}. The n voters vote for either of these candidates, uniformly and inde-
pendently at random. If x1, . . . , xn ∈ {−1, 1} denotes the sequence of their votes,
the winner of the election is declared to be f(x1, . . . , xn). We focus on a voting
scheme f that is balanced, i.e. both the candidates have equal chance of winning
the election, and democratic, i.e. no individual voter has significant influence on
the outcome of the election (formalized below). One example is the majority func-
tion MAJn = sign(x1 + . . . + xn) that corresponds to taking majority vote (say n
is odd). Another example is majority of majorities that roughly corresponds to
the electoral college system. We desire a voting scheme that is noise-stable, i.e. if
a small fraction of votes are corrupted at random, then the probability that the
outcome of the election changes is small. The Majority Is Stablest Theorem states
that among all balanced and democratic voting schemes, the majority function is
the most noise stable (up to a negligible additive error).

Formally, let f : {−1, 1}n 7→ {−1, 1} be a balanced boolean function, i.e.
Prx[f(x) = 1] = Prx[f(x) = −1] = 1

2 , where the choice of input x is uniformly
random over {−1, 1}n. For a co-ordinate i ∈ {1, 2, . . . , n}, let the influence of the
ith co-ordinate on the function f be defined as:

Infli(f) := Prx [f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . ,−xi, . . . , xn)] .

This is the probability that the function changes its value when the ith co-ordinate
is flipped, starting with a uniformly chosen input. A function is democratic if the
influence of every co-ordinate is small. Let ε ∈ (0, 12 ) be a noise parameter. The
ε-noise stability of the function f is defined as

Stabε(f) := Prx,y∼Nε(x) [f(x) = f(y)] , (1)



8 Subhash Khot

where x is a uniformly chosen input and y is chosen from the distribution Nε(x)
obtained by flipping every co-ordinate of x independently with probability ε (thus
y is a perturbed or noisy version of x). It is known that the noise stability of the
majority function MAJn tends to 1 − 1

π arccos(1 − 2ε) as n → ∞. The Majority
Is Stablest Theorem, proved by Mossel, O’Donnell, and Oleszkiewicz [54] (and
conjectured in [41]) states that the noise stability of any balanced, democratic
function is at most that of the majority function up to a negligible additive error.

Theorem 4.1. Let ε ∈ (0, 12 ) be a noise parameter and δ > 0 be an arbitrarily
small error parameter. Then for a sufficiently small constant η > 0, any balanced
function f : {−1, 1}n 7→ {−1, 1} such that ∀i ∈ {1, 2, . . . , n}, Infli(f) ≤ η, satisfies:

Stabε(f) ≤ 1− 1

π
arccos(1− 2ε) + δ.

We present a sketch of the proof as it demonstrates the connection to an isoperi-
metric problem in geometry and its solution by Borell [15]. The proof involves an
application of the invariance principle [62, 54, 19, 53]. Before we state the invari-
ance principle, we note a few well-known facts. Any function f : {−1, 1}n 7→ R
can be represented as a multi-linear polynomial (Fourier or Walsh representation):

f(x) =
∑

S⊆{1,...,n}

f̂(S)
∏
i∈S

xi,

where f̂(S) ∈ R are the Fourier coefficients. When f is a boolean function, by

Parseval’s identity,
∑
S f̂(S)2 = Ex[f(x)2] = 1. It is easily proved that

Infli(f) =
∑
i∈S

f̂(S)2 and Stabε(f) =
1

2
+

1

2

∑
S

f̂(S)2(1− 2ε)|S|. (2)

Using these formulas, the notion of influence and noise-stability can be extended
to all multi-linear polynomials (and not just those representing boolean functions).
Here is a rough statement of the invariance principle:

Invariance Principle: Suppose f is a low degree multi-linear polynomial in n
variables and all its variables have small enough influence. Then the distribution
of the values of f is nearly identical when the input is a uniform random point
from {−1, 1}n or a random point from Rn with the standard Gaussian measure.

To motivate the invariance principle, one considers the case when f =
∑n
i=1 aixi

is a linear polynomial. Assume w.l.o.g. that
∑n
i=1 a

2
i = 1. The condition that all

variables have small influence is equivalent to the condition that |ai| is small for all
i ∈ {1, . . . , n}. The invariance principle, in this case, states that the distribution of
values of f(x1, . . . , xn) where xi are i.i.d. {−1, 1} and the distribution of values of
f(x∗1, . . . , x

∗
n) where x∗i are i.i.d. standard Gaussian, are nearly identical. Indeed,

by the Berry-Esseen Theorem [14, 28], the former distribution is nearly identical to
a standard Gaussian and the latter distribution, being an appropriately weighted
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sum of independent standard Gaussians, is a standard Gaussian itself. The invari-
ance principle is now viewed as a generalization of this special case to low degree
multi-linear polynomials, with the definition of influences as in Equation (2).

The invariance principle allows us to translate the noise stability problem on
boolean hypercube to a similar problem in the Gaussian space and the latter prob-
lem has already been solved by Borell [15]! Towards this end, let f be a boolean
function on n-dimensional hypercube that is balanced and has all influences small
enough. We intend to upper bound its ε-noise stability. Consider the representa-
tion of f as a multi-linear polynomial:

f(x) =
∑
S

f̂(S)
∏
i∈S

xi ∀x ∈ {−1, 1}n.

Let f∗ : Rn 7→ R be a function that has the same representation as a multi-linear
polynomial as f (with underlying standard Gaussian measure on Rn):

f∗(x∗) =
∑
S

f̂(S)
∏
i∈S

x∗i ∀x∗ ∈ Rn. (3)

Assume for the moment that f has low degree. By the invariance principle, the
distributions of f(x) and f∗(x∗) are nearly identical, and let’s assume them to be
identical for the sake of convenience. This implies that E[f∗] = E[f ] = 0 and since
f is boolean, so is f∗. In other words, f∗ is a partition of Rn (with Gaussian
measure) into two sets of equal measure. The next observation is that the ε-noise
stability of f is same as the ε-“Gaussian noise stability” of f∗ : Rn 7→ {−1, 1},
defined as

Stabε(f
∗) := Prx∗,y∗∼Nε(x∗) [f∗(x∗) = f∗(y∗)] . (4)

In the definition above, x∗ is chosen from the standard n-dimensional Gaussian dis-
tribution and then y∗ is chosen from the distribution Nε(x

∗), namely the perturbed
or noisy version of x∗. Formally, y∗ = (1 − 2ε)x∗ +

√
1− (1− 2ε)2z∗ where z∗ is

a standard n-dimensional Gaussian independent of x∗. When f∗ is a multi-linear
polynomial as in Equation (3), it is easily proved that

Stabε(f
∗) =

1

2
+

1

2

∑
S

f̂(S)2(1− 2ε)|S|.

But this expression is same as the ε-noise stability of the boolean function f and
thus Stabε(f) = Stabε(f

∗). It is important here that the co-ordinate-wise corre-
lation between the boolean pair (x, y) is same as the co-ordinate-wise correlation
between the Gaussian pair (x∗, y∗) in Equations (1), (4) defining the boolean and
Gaussian noise stability respectively (both correlations equal 1−2ε). Theorem 4.1
now follows from Borell’s result that upper bounds Stabε(f

∗).

Theorem 4.2. If g∗ : Rn 7→ {−1, 1} is a measurable function with E[g∗] = 0, then

Stabε(g
∗) ≤ Stabε(HALF SPACE) = 1− 1

π
arccos(1− 2ε),

where HALF-SPACE is the partition of Rn by a hyperplane through origin.
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We note that the error parameter δ in the statement of Theorem 4.1 accounts
for additive errors involved at multiple places during the argument: firstly, the dis-
tributions f(x) and f∗(x∗) are only nearly identical. Secondly, f is not necessarily
of low degree, and the invariance principle is not directly applicable. One gets
around this issue by smoothening f that kills the high degree Fourier coefficients
(which are then discarded) and only slightly affects the noise stability. This trun-
cated version of f then has low degree and the invariance principle can be applied.
We also note that the statement of Borell’s Theorem holds for g∗ that takes values
in the interval [−1, 1] and the noise stability is defined as in Equation (2).

To summarize, an iso-perimetric (type) result in the Gaussian space (e.g. Borell’s
Theorem) implies a Fourier analytic result on the hypercube (e.g. Majority Is Sta-
blest), which in turn implies correctness of a reduction from the Unique Game
problem to an optimization problem Π of interest (e.g. Max-Cut), showing that
Π is hard to approximate. It turns out that this scheme applies to several opti-
mization problems Π and not just for Max-Cut. In fact, for a class of problems
known as constraint satisfaction problems, Max-Cut being one example, the three
components, namely an iso-perimetric type result, a Fourier analytic result and a
UGC-based hardness of approximation result, are formally equivalent [58]. The
scheme also leads to new iso-perimetric type and Fourier analytic theorems and
conjectures, motivated by applications to hardness of approximation (see [39] for
examples).

5. Counter-examples to Proposed Algorithms

An interesting aspect of the Unique Games Conjecture is that it predicts the ex-
istence of counter-examples to proposed algorithms and answering whether such
counter-examples indeed exist often turns out to be a challenging task with con-
nections to geometry. We briefly explain this scheme and cite one example that
leads to non-embeddability results for finite metrics.

Suppose there is a reduction from the Unique Game problem to a computa-
tional problem Π (similar to the reduction to the Max-Cut problem described
earlier). Thus assuming the Unique Games Conjecture, the problem Π is hard to
approximate. Nevertheless, one is free to propose an efficient algorithm A towards
approximating Π and even a family of efficient algorithms {Ai}i=1,2,... that are
increasingly more sophisticated. The Unique Games Conjecture predicts that Π
is hard to approximate, and hence each of these proposed algorithms must fail.
In particular, there must be a family of counter-examples (i.e. instances of the
problem) {Ci}i=1,2,... demonstrating the failure of the corresponding algorithms.
Moreover, the more sophisticated the proposed algorithms are, the more sophisti-
cated the counter-examples would need to be. To emphasize, the counter-examples
are concrete instances of the problem (e.g. graphs when the Max-Cut problem is
considered) with a specific combinatorial or geometric structure.

When this scheme is applied to a problem called Sparsest Cut that is closely
related to the Max-Cut problem, the Unique Games Conjecture predicts that there
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are n-point finite metrics with non-trivial structural properties. In the Sparsest
Cut problem, given a graph, the goal is to cut the graph into two roughly equal
sized parts so as to minimize the fraction of edges cut.7 There is a reduction from
the Unique Game problem to the Sparsest Cut problem [20, 43, 66], so one predicts
that the latter problem is hard to approximate.

Nevertheless, since mid-90s, researchers have proposed a family of increasingly
sophisticated algorithms based on linear and semi-definite programming relaxation
[49, 8, 51, 50, 6, 4]. These algorithms relax the Sparsest Cut problem to computing
a metric on the set of vertices of the given graph that is well-spread and minimizes
the average distance along the edges of the graph. It is possible to impose increas-
ingly stringent restrictions on the type of metric allowed, leading to increasingly
sophisticated algorithms. Cuts in an n-vertex graph are closely related to n-point
`1 metrics and the approximation quality of the algorithm depends on how close
the metric happens to be an `1 metric.

However, the Unique Games Conjecture predicts that all these algorithms must
fail and hence corresponding counter-examples exist.8 For some of these algo-
rithms, researchers have already been able to construct such counter-examples
(technically known as integrality gap examples), which amount to construction of
n-point metrics with increasingly stringent structural properties. Before we state
the known results, we introduce a notion of metric embedding.

A metric (X, dX) consists of a set of points X and a distance function dX(·, ·) on
pairs of points that is non-negative, symmetric and satisfies the triangle inequality.
An embedding of a metric space (X, dX) into another metric space (Y, dY ) is a map
φ : X 7→ Y . The embedding is said to have distortion D if distances do not shrink
and are not stretched by more than a factor D, i.e.

∀a, b ∈ X, dX(a, b) ≤ dY (φ(a), φ(b)) ≤ D · dX(a, b).

An embedding with distortion D = 1 is said to be an isometric embedding. It is
easily observed that if (X, dX) is a metric, then so is (X,

√
dX), i.e. when the new

distances are square root of the original distances. A metric (X, dX) is said to be
of negative type if the metric (X,

√
dX) embeds isometrically into `2. A sub-metric

of a metric (X, dX) is a subset S ⊆ X with the same distances between points in S.
We are now ready to state the result predicted by the Unique Games Conjecture
and verified by researchers with explicit constructions (some of which precede the
prediction).

Theorem 5.1. There are functions D(n), t(n) → ∞ as n → ∞ and a family of
n-point metrics (X, dX) such that

• There is no embedding of (X, dX) into `1 with distortion D(n) [16, 8, 51].

• The metric (X, dX) is of negative type [43, 45, 26, 48, 21, 22, 23, 24].

7There are some subtleties regarding the so-called uniform and non-uniform versions of the
problem that we omit here.

8Here we mean failure to approximate up to a constant multiplicative factor. If the approx-
imation factor is allowed to depend on the size of the graph, the papers cited do indeed give a
reasonable approximation.
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• Every sub-metric of (X, dX) on t(n) points embeds isometrically into `1 [59,
42].

To state the theorem succinctly, there are negative-type metrics that embed
isometrically into `1 locally, but do not embed well into `1 globally. The results
cited hold for various quantitative settings of the parameters D(n), t(n), but we
omit these here and refer to [39, 55]. From the algorithmic side, it is possible
to impose even more stringent restrictions on the metric (e.g. via the so-called
Lasserre SDP relaxation), but then the existence of metrics with these restrictions
(on top of those in Theorem 5.1) is open.

6. Open Problem: Power of Sum-of-Squares Refu-
tation System

In this section and the next, we present two open problems towards settling the
Unique Games Conjecture. The first one concerns the power of refutation systems.
Suppose we have a correct, efficient algorithm for a computational problem Π
(computing either exact or approximate solution). Suppose moreover that on some
instance I of the problem, the algorithm does not find a solution. Since the
algorithm is correct, the fact that it does not find a solution, is a proof that
no solution exists, and often, a formal proof of infeasibility of a solution can be
obtained by examining the execution of the algorithm on the instance I. A proof
of infeasibility of a solution is referred to as a refutation. More specifically, a
refutation starts with a false hypothesis that a solution exists and then reaches a
contradiction via a sequence of deductions. Naturally, for a refutation derived from
the execution of an algorithm, the complexity of the refutation is related to the
complexity of the algorithm. Turning this argument around, if on some instance I
of the problem, if there is no simple refutation, this may be considered as evidence
that the problem Π has no simple or efficient algorithm.

This motivates the study of refutation systems where a refutation conforms to
a given set of rules for deducing successive statements, starting with a hypothesis
to be refuted, e.g. a false hypothesis stating that a feasible solution exists when
one doesn’t. Depending on the kind of deduction rules allowed, one gets different
refutation systems and their study is the subject of proof complexity (see [12,
11] for surveys). Here we focus on the Lovász-Schrijver, Sherali-Adams and the
Lasserre systems. In these systems, each step of the refutation is an inequality
and the system specifies how to derive new inequalities from the previous ones.
There is a dual, algorithmic view of these systems and from that viewpoint, these
systems correspond to LP/SDP relaxations (known as LP/SDP hierarchies) that
we mentioned before. We refer to [65] for an introduction to and comparison
between these systems (hierarchies).

As we said, we wish to show lower bounds for refutation systems, i.e. construct
(infeasible) instances I such that there is no simple refutation within a given
system. Showing such lower bounds then corresponds to constructing counter-
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examples (i.e. integrality gaps) for the corresponding LP/SDP relaxation in the
dual viewpoint, as discussed in Section 5.

Regarding the Max-Cut problem, reasonable lower bounds are known for the
Lovász-Schrijver and Sherali-Adams systems (which are LP based) and also for
some basic SDP-based systems [37, 32, 43, 25, 18, 59, 42]. However, showing lower
bounds for the Lasserre system (which is SDP based) remains a major challenge
and this is our first open problem. The Lasserre system is also known as Sum-of-
Squares system and its variants have been studied independently by various authors
including Shor, Parrilo, Nesterov, and Lasserre [63, 57, 56, 46]. It is closely related
to the Hilbert’s 17th problem and we refer to [10, 47] for detailed expositions. Here
we present the open problem in a self-contained manner.

Let us fix a graph G(V = {1, 2, . . . , n}, E) such that the maximum sized cut
in the graph cuts exactly (1− ε)|E| edges. We can write down an infeasible set of
polynomial equalities and inequalities over reals, denoted S, as follows:

S : ∀i ∈ {1, . . . , n}, x2i − 1 = 0 (Pi(x) = 0).∑
(i,j)∈E

1−xixj

2 − (1− ε)|E| − 1 ≥ 0 (Q(x) ≥ 0).

The set of equations is written as Pi(x) = 0 and the inequality is written as
Q(x) ≥ 0 where Pi, Q are polynomials in R[x1, . . . , xn] as shown. Let’s first see
why this set of (in)equalities is infeasible. The equations x2i − 1 = 0 force the
variables xi to take values in {−1, 1}. Any {−1, 1}-assignment to the variables is
viewed as a cut in the graph and then the inequality Q ≥ 0 states that the cut cuts
at least (1−ε)|E|+1 edges, contradicting the assumption that the maximum sized

cut cuts only (1−ε)|E| edges. Indeed the expression
1−xixj

2 equals 1 or 0 depending

on whether the edge (i, j) is cut or not and hence the sum
∑

(i,j)∈E
1−xixj

2 equals
the number of edges cut.

How could one refute this infeasible set of (in)equalities? One possible way is
to come up with polynomials {Ri}ni=1, {Sj , Tj}`j=1 ∈ R[x1, . . . , xn] such that the
following polynomial identity holds:

n∑
i=1

RiPi + (S2
1 + . . .+ S2

` )Q+ (T 2
1 + . . .+ T 2

` ) = −1.

This would be a contradiction, hence providing a valid refutation. Indeed, since
Pi = 0 and Q ≥ 0 and the polynomials Sj , Tj appear only in squared form, the left
hand side of the identity is non-negative whereas the right hand side is −1. The
refutation is called a Sum-of-Squares refutation.

It turns out that a Sum-of-Squares refutation always exists and the question
is whether there is one that is simple. A natural measure of its complexity is the
maximum degree of the polynomials RiPi, S

2
jQ,T

2
j involved, called the degree of

the refutation. It is known that a degree d refutation, if one exists, can be found
in time nO(d), i.e. in polynomial time for constant d. Thus it is desirable to have
a refutation with constant degree (independent of the size of the graph). From a
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lower bound perspective, it is known that there are n-vertex graphs for which any
Sum-of-Square refutation requires degree Ω(n) (degree O(n) always suffices).

What if we insist on having a constant degree refutation? One possibility is to
start with a hypothesis that is even more false. In particular, one can consider the
set of (in)equalities:

S ′ : ∀i ∈ {1, . . . , n}, x2i − 1 = 0.∑
(i,j)∈E

1−xixj

2 − (1− ε2)|E| ≥ 0.

Note that the inequality hypothesizes that there is a cut that cuts at least (1−ε2)|E|
edges. This hypothesis is much more false than the earlier hypothesis stating that
there is a cut that cuts at least (1 − ε)|E| + 1 edges and thus is plausibly easier
to refute. Indeed, for any graph (with maximum cut of size (1− ε)|E|), the set of
(in)equalities S ′ has a Sum-of-Squares refutation of degree 2! Such a refutation can
be obtained by taking a dual view of the Goemans-Williamson’s SDP algorithm
for the Max-Cut problem.

These considerations lead to our first open problem: what happens when we
use a hypothesis stating that there is a cut that cuts a number of edges that is
intermediate between (1 − ε)|E| + 1 and (1 − ε2)|E|? Is there always a constant
degree refutation (noting that one needs degree Ω(n) for some graphs at first
extreme and degree 2 always suffices at the second extreme)? Specifically, Let ε̃
be any constant such that ε2 � ε̃ � ε. The Unique Games Conjecture predicts,
as discussed in Section 3, that no polynomial time algorithm, given a graph with
maximum cut of size 1 − ε, finds a cut of size 1 − 1

2

√
ε. This prediction, when

translated to a prediction regarding lower bounds for the Sum-of-Squares refutation
system, states:

Prediction: Let ε2 � ε̃� ε. There are graphs G(V = {1, 2, . . . , n}, E) with the
maximum cut of size exactly (1 − ε)|E| such that any Sum-of-Squares refutation
of the set of (in)equalities:

S̃ : ∀i ∈ {1, . . . , n}, x2i − 1 = 0.∑
(i,j)∈E

1−xixj

2 − (1− ε̃)|E| ≥ 0.

requires a super-constant degree (i.e. tending to ∞ as n→∞).

Clearly, constructing graphs that require a super-constant degree refutation for
some ε2 � ε̃ � ε would support the Unique Games Conjecture whereas showing
that there is always a constant degree refutation for some ε2 � ε̃ � ε would
disprove the Unique Games Conjecture.
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7. Open Problem: Small Set Expander Graphs with
Many Large Eigenvalues

The second open problem concerns the existence of small set expander graphs with
many large eigenvalues. The problem is motivated by the Small Set Expansion
Conjecture posed by Raghavendra and Steurer [60]. The conjecture concerns the
computational complexity of the small set expansion problem which, given a graph,
asks for a small (but still of linear size) subset of vertices that does not expand
well. The conjecture states that this problem is hard to approximate; a formal
statement appears below.

For a d-regular graph G(V,E) and a set S ⊆ V , define the expansion of the

set S as φ(S) := |E(S,V \S)|
d·|S| , i.e. the fraction of edges incident on S that leave S.

Raghavendra and Steurer pose:9

Conjecture 7.1. For every constant ε > 0, there exists a constant γ > 0 such
that no polynomial time algorithm, given a regular graph G(V,E), can distinguish
whether it is a YES Type graph or a NO Type graph as defined below:

• (YES Type:) There is a set S ⊆ V, |S| = γ|V | such that φ(S) ≤ ε.

• (NO Type:) For every set S ⊆ V, |S| ≈ γ|V |, φ(S) ≥ 1
10 .

As a clarification, we note that a distinguishing algorithm takes a graph as
input and in polynomial time outputs an answer that is YES if the graph is of YES
Type and is NO if the graph is of NO Type. For graphs that are of neither type,
the output of the algorithm can be arbitrary. Though the conjecture is phrased as
above (as is customary in computer science), the reader may find it more convenient
to consider the following version implied by it (computer scientists tend to view
the two versions as morally the same):

Conjecture: There is no polynomial time algorithm that, given a graph of the
YES Type, meaning one containing a small set (i.e. of relative size ≈ γ) that
is almost non-expanding (i.e. has expansion at most ε), finds a small set that is
somewhat non-expanding (i.e. has expansion less than 1

10 ).

Finding small non-expanding sets is a natural problem in itself and in addition,
Raghavendra and Steurer show that this conjecture implies the Unique Games
Conjecture. Therefore, it is worthwhile to explore this conjecture. As discussed in
Section 5, for a computational problem that is predicted to be hard to approximate,
the small set expansion problem in this case, one can propose an efficient algorithm
and then try to find counter-examples to the proposed algorithm.

It is indeed possible to propose a natural algorithm to find small non-expanding
sets [44, 3]. We briefly sketch the algorithm. Let A(G) be the normalized adjacency
matrix of a d-regular n-vertex graph G(V,E). This is a n×n matrix with diagonal
entries as 1 and an off-diagonal entry (i, j) is 1

d if (i, j) is an edge in the graph and
zero otherwise. It is well-known that the eigenvalues of this matrix are in [−1, 1]

9Here |S| ≈ γ|V | means that, say, |S| is between γ
2
|V | and 2γ|V |.
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and the largest eigenvalue equals 1. Let v1, . . . , vm ∈ Rn be the top eigenvectors,
i.e. those corresponding to eigenvalues that are at least 1−O(ε). For a subset of
vertices S ⊆ V , let 1S ∈ Rn denote the indicator vector of the subset S, i.e. its ith

co-ordinate equals 1 if the ith vertex is in S and zero otherwise. It is easily shown
(e.g. [3, Theorem 2.2]) that if the graph has a subset S ⊆ V, |S| = γn such that
φ(S) ≤ ε, then the indicator vector 1S is essentially contained in the linear span
of the top eigenvectors v1, . . . , vm. Thus the vector 1S and hence the set S (or
rather, an approximation to them) can be found by searching over all the vectors
in this m-dimensional linear span (up to a suitable discretization) and outputting
a vector that resembles an indicator vector of a set of size ≈ γn. Let’s refer to this
algorithm as a subspace search algorithm; it runs in time roughly 2O(m).

Now consider a proposed algorithm to distinguish between the YES Type and
NO Type graphs as in the statement of Conjecture 7.1. Compute the eigenvalues
and eigenvectors of the matrix A(G). If the number of large eigenvalues m is at
most no(1), proceed further and otherwise answer YES. If m is at most no(1), run
the subspace search algorithm and answer YES or NO depending on whether it
manages to find a set of size ≈ γn with expansion � 1

10 . Note that the proposed
algorithm always answers YES on a graph of the YES Type.

However, Conjecture 7.1 predicts that every polynomial time algorithm fails in
distinguishing between the YES Type and the NO Type graphs. In fact, Raghaven-
dra and Steurer state Conjecture 7.1 in a stronger form, predicting that the task
of distinguishing between the YES Type and the NO Type graphs is NP-complete,

and every algorithm that runs in time 2n
o(1)

time fails as well. Considering the
proposed algorithm as above, the only reason for it to fail is that it mistakenly
answers YES on some graph that is of the NO Type. Thus we are led to the
following prediction:

Prediction: For every constant ε > 0, there exist constants γ, δ > 0 and an
infinite family of n-vertex graphs G(V,E) of the NO Type, i.e. ∀S ⊆ V, |S| ≈ γn,
φ(S) ≥ 1

10 , such that the number of its eigenvalues ≥ 1− ε is at least nδ.

The open question is whether such graphs exist (see [9] for some progress). It
is possible that such graphs do not exist and the Small Set Expansion Conjecture
is false (and the Unique Games Conjecture might still be true).

8. Conclusion

We have sketched some connections between the Unique Games Conjecture, geom-
etry and analysis. Irrespective of whether the Unique Games Conjecture turns out
to be true or false, exploring these connections further, and in particular making
progress on the open questions cited, seems worthwhile.
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