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Abstract

In this paper we disprove the following conjecture due to Goemans [16] and Linial [24] (also
see [5, 26]): “Every negative type metric embeds into `1 with constant distortion.” We show
that for every δ > 0, and for large enough n, there is an n-point negative type metric which
requires distortion at-least (log log n)1/6−δ to embed into `1.

Surprisingly, our construction is inspired by the Unique Games Conjecture (UGC) of Khot
[19], establishing a previously unsuspected connection between PCPs and the theory of metric
embeddings. We first prove that the UGC implies super-constant hardness results for (non-
uniform) Sparsest Cut and Minimum Uncut problems. It is already known that the UGC
also implies an optimal hardness result for Maximum Cut [20]. Though these hardness results
rely on the UGC, we demonstrate, nevertheless, that the corresponding PCP reductions can be
used to construct “integrality gap instances” for the respective problems. Towards this, we
first construct an integrality gap instance for a natural SDP relaxation of Unique Games.
Then, we “simulate” the PCP reduction, and “translate” the integrality gap instance of Unique
Games to integrality gap instances for the respective cut problems! This enables us to prove
a (log log n)1/6−δ integrality gap for (non-uniform) Sparsest Cut and Minimum Uncut, and
an optimal integrality gap for Maximum Cut. All our SDP solutions satisfy the so-called
“triangle inequality” constraints. This also shows, for the first time, that the triangle inequality
constraints do not add any power to the Goemans-Williamson’s SDP relaxation of Maximum
Cut.

The integrality gap for Sparsest Cut immediately implies a lower bound for embedding
negative type metrics into `1. It also disproves the non-uniform version of Arora, Rao and
Vazirani’s Conjecture [5], asserting that the integrality gap of the Sparsest Cut SDP, with
triangle inequality constraints, is bounded from above by a constant.
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1 Introduction

In recent years, the theory of metric embeddings has played an increasing role in algorithm design.
Best approximation algorithms for several NP-hard problems rely on techniques (and theorems)
used to embed one metric space into another with low distortion.

Bourgain [7] showed that every n-point metric embeds into `1 (in fact into `2) with distortion
O(log n). Independently, Aumann and Rabani [6] and Linial, London and Rabinovich [25] gave a
striking application of Bourgain’s Theorem: An O(log n) approximation algorithm for Sparsest
Cut. The approximation ratio is exactly the distortion incurred in Bourgain’s Theorem. This gave
an alternate approach to the seminal work of Leighton and Rao [23], who obtained an O(log n)
approximation algorithm for Sparsest Cut via a LP-relaxation based on muticommodity flows.
It is well-known that an f(n) factor algorithm for Sparsest Cut can be used iteratively to design
an O(f(n)) factor algorithm for Balanced Separator: Given a graph that has a (1

2 ,
1
2)-partition

cutting an α fraction of the edges, the algorithm produces a (1
3 ,

2
3)-partition that cuts at-most

O(f(n)α) fraction of the edges. Such partitioning algorithms are very useful as sub-routines in
designing graph theoretic algorithms via the divide-and-conquer paradigm.

The results of [6, 25] are based on the metric LP relaxation of Sparsest Cut. Given an instance
G(V,E) of Sparsest Cut, let dG be the n-point metric obtained as a solution to this LP. The
metric dG is then embedded into `1 via Bourgain’s Theorem. Since `1 metrics are non-negative
linear combinations of cut metrics, an embedding into `1 essentially gives the desired sparse cut
(up to an O(log n) approximation factor). Subsequent to this result, it was realized that one could
write an SDP relaxation of Sparsest Cut, and enforce an additional condition, that the metric
dG belong to a special class of metrics, called the negative type metrics (denoted by `22). Clearly,
if `22 embeds into `1 with distortion g(n), then one would get a g(n) approximation to Sparsest
Cut.1

The results of [6, 25] led to the conjecture that `22 embeds into `1 with distortion Cneg, for some
absolute constant Cneg. This conjecture has been attributed to Goemans [16] and Linial [24], see
[5, 26]. This conjecture, which we will henceforth refer to as the (`22, `1, O(1))-Conjecture, if true,
would have had tremendous algorithmic applications (apart from being an important mathematical
result). Several problems, specifically cut problems (see [11]), can be formulated as optimization
problems over the class of `1 metrics, and optimization over `1 is an NP-hard problem in general.
However, one can optimize over `22 metrics in polynomial time via SDPs (and `1 ⊆ `22). Hence,
if `22 was embeddable into `1 with constant distortion, one would get a computationally efficient
approximation to `1 metrics.

However, no better embedding of `22 into `1, other than Bourgain’s O(log n) embedding (that
works for all metrics), was known until recently. A breakthrough result of Arora, Rao and Vazirani
(ARV) [5] gave an O(

√
log n) approximation to (uniform) Sparsest Cut by showing that the inte-

grality gap of the SDP relaxation is O(
√

log n) (see also [28] for an alternate perspective on ARV).
Subsequently, ARV techniques were used by Chawla, Gupta and Räcke [9] to give an O(log3/4 n)
distortion embedding of `22 metrics into `2, and hence, into `1. This result was further improved to
O(
√

log n log log n) by Arora, Lee, and Naor [3]. The latter paper implies, in particular, that every
n-point `1 metric embeds into `2 with distortion O(

√
log n log log n), almost matching decades old

Ω(
√

log n) lower bound due to Enflo [12]. Techniques from ARV have also been applied, to obtain
1Algorithms based on metric embeddings (typically) work for the non-uniform version of Sparsest Cut, which

is more general. The Leighton-Rao algorithm worked only for the uniform version.
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O(
√

log n) approximation to Minimum Uncut and related problems [1], to Vertex Separator
[13], and to obtain a 2 − O( 1√

log n
) approximation to Vertex Cover [18]. It was conjectured in

the ARV paper, that the integrality gap of the SDP relaxation of Sparsest Cut is bounded from
above by an absolute constant (they make this conjecture only for the uniform version, and the
(`22, `1, O(1))-Conjecture implies it also for the non-uniform version). Thus, if the (`22, `1, O(1))-
Conjecture and/or the ARV-Conjecture were true, one would potentially get a constant factor
approximation to a host of problems, and perhaps, an algorithm for Vertex Cover with an ap-
proximation factor better than 2! Clearly, it is an important open problem to prove or disprove the
(`22, `1, O(1))-Conjecture and/or the ARV-Conjecture. The main result in this paper is a disproval
of the (`22, `1, O(1))-Conjecture and a disproval of the non-uniform version of the ARV-Conjecture,
see Conjecture 6.16.2 The disprovals follow from the construction of a super-constant integrality
gap for the non-uniform version of Balanced Separator (which implies the same gap for the
non-uniform version of Sparsest Cut). We also obtain integrality gap instances for Maximum
Cut and Minimum Uncut. In the following sections, we describe our results in detail and present
an overview of our `22 versus `1 lower bound.

2 Our Results

2.1 The Disproval of (`2
2, `1, O(1))-Conjecture

We prove the following theorem which follows from the integrality gap construction for non-uniform
Balanced Separator. See Section 6 for definitions and basic facts.

Theorem 2.1 For every δ > 0 and for all sufficiently large n, there is an n-point `22 metric which
cannot be embedded into `1 with distortion less than (log log n)1/6−δ.

Remark 2.2 One of the crucial ingredients for obtaining the lower bound of (log log n)1/6−δ in
Theorems 2.1 and 2.3 is Bourgain’s Junta Theorem [8]. A recent improvement of this theorem due
to Mossel et al. [27] improves both of our lower bounds to (log log n)1/4−δ.

2.2 Integrality Gap Instances for Cut Problems

Sparsest Cut and Balanced Separator (non-uniform versions), as well as Maximum Cut
and Minimum Uncut are defined in Section 6.4. Natural SDP relaxations for these problems are
also described there. All the SDPs include the so-called triangle inequality constraints: For every
triple of vectors u,v,w in the SDP solution, ‖u − v‖2 + ‖v − w‖2 ≥ ‖u − w‖2. Note that these
constraints are always satisfied by the integral solutions, i.e., +1,−1 valued solutions. We prove
the following two theorems:

Theorem 2.3 Sparsest Cut, Balanced Separator (non-uniform versions of both) and Min-
imum Uncut have an integrality gap of at-least (log log n)1/6−δ, where δ > 0 is arbitrary. The
integrality gap holds for standard SDPs with triangle inequality constraints.

Theorem 2.4 Let αGW ( ≈ 0.878) be the approximation ratio obtained by Goemans-Williamson’s
algorithm for Maximum Cut [17]. For every δ > 0, the Goemans-Williamson’s SDP has an
integrality gap of at-least αGW + δ, even after including the triangle inequality constraints.

2We believe that even the uniform version of the ARV-Conjecture is false.
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This theorem relies on a Fourier analytic result called Majority is Stablest Theorem due to Mossel
et al. [27].

We note that without the triangle inequality constraints, Feige and Schechtman [15] already
showed an αGW + δ integrality gap. One more advantage of our result is that it is an explicit
construction, where as Feige and Schechtman’s construction is randomized (they need to pick
random points on the unit sphere). Our result shows that adding the triangle inequality constraints
does not add any power to the Goemans-Williamson’s SDP. This nicely complements the result
of Khot et al. [20], where it is shown that, assuming the Unique Games Conjecture (UGC), it is
NP-hard to approximate Maximum Cut within a factor better than αGW + δ.

2.3 Hardness Results for Sparsest Cut and Balanced Separator Assuming
the UGC

Our starting point is the hardness of approximation results for cut problems assuming the UGC
(see Section 8 for the statement of the conjecture). We prove the following result:

Theorem 2.5 Assuming the UGC, Sparsest Cut and Balanced Separator (non-uniform ver-
sions) are NP-hard to approximate within any constant factor.

This particular result was also proved3 by Chawla et al. [10]. Similar result for Minimum Uncut
is implicit in [19], where the author formulated the UGC and proved the hardness of approximating
Min-2SAT-Deletion. As mentioned before, Khot et al. [20] proved that the UGC implies αGW +δ
hardness result for Maximum Cut. As an aside, we note that the UGC also implies optimal 2− δ
hardness result for Vertex Cover, as shown in [22].

Therefore, assuming the UGC, all of the above problems are NP-hard to approximate within
respective factors, and hence, the corresponding integrality gap examples must exist (unless P=NP).
In particular, if the UGC is true, then the (`22, `1, O(1))-Conjecture is false. This is a rather peculiar
situation, because the UGC is still unproven, and may very well be false. Nevertheless, we are
able to disprove the (`22, `1, O(1))-Conjecture unconditionally (which may be taken as an argument
supporting the UGC). Indeed, the UGC plays a crucial role in our disproval. Let us outline the
basic approach we take. First, we build an integrality gap instance for a natural SDP relaxation
of Unique Games (see Figure 6). Surprisingly, we are then able to translate this integrality gap
instance into an integrality gap instance of Sparsest Cut, Balanced Separator, Maximum
Cut and Minimum Uncut. This translation mimics the PCP reduction from the UGC to these
problems (note that the same reduction also proves hardness results assuming the UGC)! We believe
that this novel approach will have several applications in the future. Already, inspired by our work,
Khot and Naor [21] have proved several non-embeddability results (e.g. Edit Distance into `1), and
Arora et al. [2] have constructed integrality gap instances for the MaxQP problem.

2.4 Integrality Gap Instance for the Unique Games SDP Relaxation

As mentioned above, we construct an integrality gap instance for a natural SDP relaxation of
Unique Games (see Figure 6). Here, we choose to provide an informal description of this con-
struction (the reader should be able to understand this construction without even looking at the
SDP formulation).

3We would like to stress that our work was completely independent, and no part of our work was influenced by
their paper.

6



Theorem 2.6 (Informal statement) Let N be an integer and η > 0 be a parameter (think of N
as large and η as very tiny). There is a graph G(V,E) of size 2N/N with the following properties:
Every vertex u ∈ V is assigned a set of unit vectors B(u) := {u1, . . . ,uN} that form an orthonormal
basis for the space RN . Further,

1. For every edge e = (u, v) ∈ E, the set of vectors B(u) and B(v) are almost the same upto
some small perturbation. To be precise, there is a permutation πe : [N ] 7→ [N ], such that
∀ 1 ≤ i ≤ N , 〈uπe(i),vi〉 ≥ 1− η. In other words, for every edge (u, v) ∈ E, the basis B(u)
moves “smoothly/continuously” to the basis B(v).

2. For any labeling λ : V 7→ [N ], i.e., assignment of an integer λ(u) ∈ [N ] to every u ∈ V ,
for at-least 1 − 1

Nη fraction of the edges e = (u, v) ∈ E, we have πe(λ(u)) 6= λ(v). In other
words, no matter how we choose to assign a vector uλ(u) ∈ B(u) for every vertex u ∈ V , the
movement from uλ(u) to vλ(v) is “discontinuous” for almost all edges (u, v) ∈ E.

3. All vectors in ∪u∈VB(u) have co-ordinates in the set { 1√
N
, −1√

N
}, and hence, any three of them

satisfy the triangle inequality constraint.

The construction is rather non-intuitive: One can walk on the graph G by changing the ba-
sis B(u) continuously, but as soon as one picks a representative vector for each basis, the motion
becomes discontinuous almost everywhere! Of course, one can pick these representatives in a contin-
uous fashion for any small enough local sub-graph of G, but there is no way to pick representatives
in a global fashion. This construction eventually leads us to a `22 metric which, roughly speaking,
is locally `1-embeddable, but globally, it requires super-constant distortion to embed into `1 (such
local versus global phenomenon has also been observed by Arora et al. [4]).

3 Difficulty in Proving `2
2 vs. `1 Lower Bound

In this section, we describe the difficulties in constructing `22 metrics that do not embed well into
`1. This might partly explain why one needs an unusual construction as the one in this paper. Our
discussion here is informal, without precise statements or claims.

Difficulty in constructing `22 metrics: To the best of our knowledge, no natural families of `22
metrics are known other than the Hamming metric on {−1, 1}k. The Hamming metric is an `1
metric, and hence, not useful for the purposes of obtaining `1 lower bounds. Certain `22 metrics can
be constructed via Fourier analysis, and one can also construct some by solving SDPs explicitly.
The former approach has a drawback that metrics obtained via Fourier methods typically embed
into `1 isometrically. The latter approach has limited scope, since one can only hope to solve SDPs
of moderate size. Feige and Schechtman [15] show that selecting an appropriate number of points
from the unit sphere gives a `22 metric. However, in this case, most pairs of points have distance
Ω(1) and hence, the metric is likely to be `1-embeddable with low distortion.

Difficulty in proving `1 lower bounds: To the best of our knowledge, there is no standard
technique to prove a lower bound for embedding a metric into `1. The only interesting (super-
constant) lower bound that we know is due to [6, 25], where it is shown that the shortest path
metric on a constant degree expander requires Ω(log n) distortion to embed into `1.

General theorems regarding group norms: A group norm is a distance function d(·, ·) on a
group (G, ◦), such that d(x, y) depends only on the group difference x◦y−1. Using Fourier methods,
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it is possible to construct group norms that are `22 metrics. However, it is known that any group
norm on Rk, or on any group of characteristic 2, is isometrically `1-embeddable (see [11]). It is also
known (among the experts in this area) that such a result holds for every abelian group. Therefore,
any approach, just via group norms would be unlikely to succeed, as long as the underlying group
is abelian. (But, only in the abelian case, the Fourier methods work well.)

The best known lower bounds for the `22 versus `1 question were due to Vempala (10
9 for a metric

obtained by a computer search), and Goemans (1.024 for a metric based on the Leech Lattice),
see [30]. Thus, it appeared that an entirely new approach was needed to resolve the (`22, `1, O(1))-
Conjecture. In this paper, we present an approach based on tools from complexity theory, namely,
the UGC, PCPs, and Fourier analysis of boolean functions. Interestingly, Fourier analysis is used
both to construct the `22 metric, as well as, to prove the `1 lower bound.

4 Overview of Our `2
2 vs. `1 Lower Bound

In this section, we present a high level idea of our `22 versus `1 lower bound (see Theorem 2.1).
Given the construction of Theorem 2.6, it is fairly straight-forward to describe the candidate `22
metric: Let G(V,E) be the graph, and B(u) be the orthonormal basis for RN for every u ∈ V , as
in Theorem 2.6. Fix s = 4. For u ∈ V and x = (x1, . . . , xN ) ∈ {−1, 1}N , define the vector Vu,s,x

as follows:

Vu,s,x :=
1√
N

N∑
i=1

xiu⊗2s
i (1)

Note that since B(u) = {u1, . . . ,uN} is an orthonormal basis for RN , every Vu,s,x is a unit vector.
Fix t to be a large odd integer, for instance 2240 + 1, and consider the set of unit vectors S =
{V⊗t

u,s,x | u ∈ V, x ∈ {−1, 1}N}. Using, essentially, the fact that the vectors in ∪u∈VB(u) are a
good solution to the SDP relaxation of Unique Games, we are able to show that every triple of
vectors in S satisfy the triangle inequality constraint and, hence, S defines a `22 metric. One can
also directly show that this `22 metric does not embed into `1 with distortion less than (logN)1/6−δ.

However, we choose to present our construction in a different and a quite indirect way. The
(lengthy) presentation goes through the Unique Games Conjecture, and the PCP reduction from
Unique Games integrality gap instance to Balanced Separator. Hopefully, our presentation
will bring out the intuition as to why and how we came up with the above set of vectors, which
happened to define a `22 metric. At the end, the reader will recognize that the idea of taking all
+/− linear combinations of vectors in B(u) (as in Equation (1)) is directly inspired by the PCP
reduction. Also, the proof of the `1 lower bound will be hidden inside the soundness analysis of
the PCP!

The overall construction can be divided into three steps:

1. A PCP reduction from Unique Games to Balanced Separator.

2. Constructing an integrality gap instance for a natural SDP relaxation of Unique Games.

3. Combining these two to construct an integrality gap instance of Balanced Separator.
This also gives a `22 metric that needs (log log n)1/6−δ distortion to embed into `1.

8



We present an overview of each of these steps in three separate sections. Before we do that, let
us summarize the precise notion of an integrality gap instance of Balanced Separator. To keep
things simple in this exposition, we will pretend as if our construction works for the uniform version
of Balanced Separator as well. (Actually, it doesn’t. We have to work with the non-uniform
version and it complicates things a little.)

4.1 SDP Relaxation of Balanced Separator

Given a graph G′(V ′, E′), Balanced Separator asks for a (1
2 ,

1
2)-partition of V ′ that cuts as few

edges as possible. (However, the algorithm is allowed to output a roughly balanced partition, say
(1
4 ,

3
4)-partition.) Following is an SDP relaxation of Balanced Separator:

Minimize
1
|E′|

∑
e′={i,j}∈E′

1
4
‖vi − vj‖2 (2)

Subject to

∀ i ∈ V ′ ‖vi‖2 = 1 (3)
∀ i, j, l ∈ V ′ ‖vi − vj‖2 + ‖vj − vl‖2 ≥ ‖vi − vl‖2 (4)∑

i<j ‖vi − vj‖2 ≥ |V ′|2 (5)

Figure 1: SDP relaxation of the uniform version of Balanced Separator

Note that a {+1,−1}-valued solution represents a true partition, and hence, this is an SDP
relaxation. Constraint (4) is the triangle inequality constraint and Constraint (5) stipulates that
the partition be balanced. The notion of integrality gap is summarized in the following definition:

Definition 4.1 An integrality gap instance of Balanced Separator is a graph G′(V ′, E′) and
an assignment of unit vectors i 7→ vi to its vertices such that:

• Every almost balanced partition (say (1
4 ,

3
4)-partition; the choice is arbitrary) of V ′ cuts at-

least α fraction of edges.

• The set of vectors {vi| i ∈ V ′} satisfy (3)-(5), and the SDP objective value in Equation (2)
is at-most γ.

The integrality gap is defined to be α/γ. (Thus, we desire that γ � α.)

The next three sections describe the three steps involved in constructing an integrality gap
instance of Balanced Separator. Once that is done, it follows from a folk-lore result that the
resulting `22 metric (defined by vectors {vi| i ∈ V ′}) requires distortion at-least Ω(α/γ) to embed
into `1. This would prove Theorem 2.1 with an appropriate choice of parameters.

4.2 The PCP Reduction from Unique Games to Balanced Separator

An instance U(G(V,E), [N ], {πe}e∈E) of Unique Games consists of a graph G(V,E) and permu-
tations πe : [N ] 7→ [N ] for every edge e = (u, v) ∈ E. The goal is to find a labeling λ : V 7→ [N ] that
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satisfies as many edges as possible. An edge e = (u, v) is satisfied if πe(λ(u)) = λ(v). Let OPT(U)
denote the maximum fraction of edges satisfied by any labeling.

UGC (Informal Statement): It is NP-hard to decide whether an instance U of Unique Games
has OPT(U) ≥ 1 − η (YES instance) or OPT(U) ≤ ζ (NO instance), where η, ζ > 0 can be made
arbitrarily small by choosing N to be a sufficiently large constant.

It is possible to construct an instance of Balanced Separator G′ε(V
′, E′) from an instance

U(G(V,E), [N ], {πe}e∈E) of Unique Games. We describe only the high level idea here. The
construction is parameterized by ε > 0. The graph G′ε has a block of 2N vertices for every u ∈ V .
This block contains one vertex for every point in the boolean hypercube {−1, 1}N . Denote the set
of these vertices by V ′[u]. More precisely,

V ′[u] := {(u,x) | x ∈ {−1, 1}N}.

We let V ′ := ∪u∈V V
′[u]. For every edge e = (u, v) ∈ E, the graph G′ε has edges between the blocks

V ′[u] and V ′[v]. These edges are supposed to capture the constraint that the labels of u and v
are consistent (i.e. πe(λ(u)) = λ(v)). Roughly speaking, a vertex (u,x) ∈ V ′[u] is connected to a
vertex (v,y) ∈ V ′[v] if and only if, after identifying the co-ordinates in [N ] via the permutation πe,
the Hamming distance between the bit-strings x and y is at-most εN .
This reduction has the following two properties:

Theorem 4.2 (PCP reduction: Informal statement)

1. (Completeness/YES case): If OPT(U) ≥ 1− η, then the graph G′ε has a (1
2 ,

1
2)-partition that

cuts at-most η + ε fraction of its edges.

2. (Soundness/NO Case): If OPT(U) ≤ 2−O(1/ε2), then every (1
4 ,

3
4)-partition of G′ε cuts at-least√

ε fraction of its edges.

Remark 4.3 We were imprecise on two counts: (1) The soundness property holds only for those
partitions that partition a constant fraction of the blocks V ′[u] in a roughly balanced way. We call
such partitions piecewise balanced. This is where the issue of uniform versus non-uniform version
of Balanced Separator arises. (2) For the soundness property, we can only claim that every
piecewise balanced partition cuts at least εt fraction of edges, where any t > 1

2 can be chosen in
advance. Instead, we write

√
ε for the simplicity of notation.

4.3 Integrality Gap Instance for the Unique Games SDP Relaxation

This has already been described in Theorem 2.6. The graph G(V,E) therein along with the ortho-
normal basis B(u), for every u ∈ V, can be used to construct an instance U(G(V,E), [N ], {πe}e∈E) of
Unique Games. For every edge e = (u, v) ∈ E, we have an (unambiguously defined) permutation
πe : [N ] 7→ [N ], where 〈uπe(i),vi〉 ≥ 1− η, for all 1 ≤ i ≤ N .

Theorem 2.6 implies that OPT(U) ≤ 1
Nη . On the other hand, the fact that for every edge e =

(u, v), the bases B(u) and B(v) are very close to each other means that the SDP objective value for U
is at-least 1−η. (Formally, the SDP objective value is defined to be Ee=(u,v)∈E

[
1
N

∑N
i=1〈uπe(i),vi〉

]
.)

Thus, we have a concrete instance of Unique Games with optimum at most 1
Nη = o(1), and

which has an SDP solution with objective value at-least 1 − η. This is what an integrality gap
example means: The SDP solution cheats in an unfair way!
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4.4 Integrality Gap Instance for the Balanced Separator SDP Relaxation

Now we combine the two modules described above. We take the instance U(G(V,E), [N ], {πe}e∈E)
as above, and run the PCP reduction on it. This gives us an instance G′(V ′, E′) of Balanced
Separator. We show that this is an integrality gap instance in the sense of Defintion 4.1.

Since U is a NO instance of Unique Games (i.e. OPT(U) = o(1)), Theorem 4.2 implies that
every (piecewise) balanced partition of G′ must cut at-least

√
ε fraction of the edges. We need to

have 1/Nη ≤ 2−O(1/ε2) for this to hold.
On the other hand, we can construct an SDP solution for the Balanced Separator instance

which has an objective value of at-most O(η + ε). Note that a typical vertex of G′ is (u,x), where
u ∈ V and x ∈ {−1, 1}N . To this vertex, we attach the unit vector V⊗t

u,s,x (for s = 4, t = 2240 + 1),
where

Vu,s,x :=
1√
N

N∑
i=1

xiu⊗2s
i .

It can be shown that the set of vectors {V⊗t
u,s,x | u ∈ V, x ∈ {−1, 1}N} satisfy the triangle

inequality constraint, and hence, defines a `22 metric. Vectors V⊗t
u,s,x and V⊗t

u,s,−x are antipodes of
each other, and hence, the SDP Constraint (5) is also satisfied. Finally, we show that the SDP
objective value (Expression (2)) is O(η + ε). It suffices to show that for every edge ((u,x), (v,y))
in G′(V ′, E′), we have 〈

V⊗t
u,s,x,V

⊗t
v,s,y

〉
≥ 1−O(st(η + ε)).

This holds because, whenever ((u,x), (v,y)) is an edge of G′, we have (after identifying the indices
via the permutation πe : [N ] 7→ [N ]): (a) 〈uπe(i),vi〉 ≥ 1− η, for all 1 ≤ i ≤ N . (b) The Hamming
distance between x and y is at-most εN .

4.5 Quantitative Parameters

It follows from above discussion (see also Definition 4.1) that the integrality gap for Balanced Sep-
arator is Ω(1/

√
ε) provided that η ≈ ε, and Nη > 2O(1/ε2). We can choose η ≈ ε ≈ (logN)−1/3.

Since the size of the graph G′ is at-most n = 22N , we see that the integrality gap is ≈ (log log n)1/6

as desired.

4.6 Proving the Triangle Inequality

As mentioned above, one can show that the set of vectors {V⊗t
u,s,x | u ∈ V, x ∈ {−1, 1}N} satisfy

the triangle inequality constraints. This is the most technical part of the paper, but we would
like to stress that this is where the “magic” happens. In our construction, all vectors in ∪u∈VB(u)
happen to be points of the hypercube {−1, 1}N (upto a normalizing factor of 1/

√
N), and therefore,

they define an `1 metric. The apparently outlandish operation of taking their +/− combinations
combined with tensoring, miraculously leads to a metric that is (`22 and) non-`1-embeddable.

5 Organization of the Main Body of the Paper

In Sections 6.1 and 6.2 we recall important definitions and results about metric spaces. Section
6.4 defines the cut optimization problems we will be concerned about: Sparsest Cut, Balanced
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Separator, Maximum Cut and Minimum Uncut. We also give their SDP relaxations for which
we will construct integrality gap instances. Section 6.5 presents useful tools from Fourier analysis.

In Section 7, we present our overall strategy for disproving the (`22, `1, O(1))-Conjecture. We give a
disproval of the (`22, `1, O(1))-Conjecture assuming an appropriate integrality gap construction for
Balanced Separator.

Section 8 presents the UGC of Khot [19]. We also present a natural SDP relaxation of Unique
Games in this section. In Section 9 we present the integrality gap instance for the SDP relaxation
of Unique Games. We then abstract out the key properties of the instance in Sections 9.3 and
9.3.1.

We build on the Unique Games integrality gap instance in Section 9 to obtain the integrality gap
instances for Balanced Separator, Maximum Cut and Minimum Uncut. These are presented
in Section 10. This section has two parts: In the first part (Section 10.1), we present the graphs,
and in the second part (Section 10.2), we present the corresponding SDP solutions. We establish
the soundness of the instances in Section 11 by presenting the corresponding PCP reductions.

Section 10.4 is the most technical part of the paper and this is where we establish that the SDP
solutions we construct satisfy the triangle inequality constraint.

6 Preliminaries

6.1 Metric Spaces

Definition 6.1 (X, d) is a metric space, or d is a metric on X if:

1. For all x ∈ X, d(x, x) = 0.

2. For all x, y ∈ X,x 6= y d(x, y) > 0.

3. For all x, y ∈ X, d(x, y) = d(y, x).

4. For all x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z).

(X, d) is said to be a finite metric space if X is finite. (X, d) is called a semi-metric space if one
allows d(x, y) = 0 even when x 6= y.

Definition 6.2 (X1, d1) embeds with distortion at-most Γ into (X2, d2) if there exists a map φ :
X1 7→ X2 such that for all x, y ∈ X

d1(x, y) ≤ d2(φ(x), φ(y)) ≤ Γ · d1(x, y).

If Γ = 1, then (X1, d1) is said to isometrically embed in (X2, d2).

The metrics we would be concerned with in this paper are:

1. `p metrics: For X ⊆ Rm, for some m ≥ 1, and x,y ∈ X, `p(x,y) = (
∑m

i=1 |xi − yi|p)1/p .
Here, p ≥ 1, and the metric `∞(x,y) = maxm

i=1 |xi − yi|.
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2. Cut (semi-)metrics: A cut metric δS on a set X, defined by the set S ⊆ X is:

δS(x, y) =
{

1 if |{x, y} ∩ S| = 1
0 otherwise

The cut-cone (denoted CUTn) is the cone generated by cut metrics on an n-point set X.
Formally,

CUTn :=

{∑
S

λSδS : λS ≥ 0 for all S ⊆ X

}
.

To avoid referring to the dimension, denote CUT:= ∪nCUTn.

3. Negative type metrics: A metric space (X, d) is said to be of negative type if (X,
√
d) embeds

isometrically into `2. Formally, there is an integer m and a vector vx ∈ Rm for every x ∈ X,
such that d(x, y) = ‖vx − vy‖2. Equivalently, for a set of vectors v1, . . . ,vn ∈ Rm, d(i, j) :=
‖vi − vj‖2 defines a negative type metric provided that for every triple vi,vj ,vk, the angle
between the vectors vi − vj and vk − vj is at-most π/2. The class of all negative type
metrics is denoted by `22. A metric d on {1, . . . , n} is of negative type if and only if the
matrix Q, defined as Q[i, j] := 1

2 (d(i, n) + d(j, n)− d(i, j)) , is positive semi-definite. One
can optimize (any linear function) over the class of negative type metrics efficiently via semi-
definite programming. In particular, one can efficiently calculate the best distortion needed
to embed a given metric into `22.

6.2 Facts about Metric Spaces

Fact 6.3 [11] Any finite metric space isometrically embeds into `∞.

Fact 6.4 [11] (X, d) is `1 embeddable if and only if d ∈ CUT.

Fact 6.5 [11] Every `1 metric is of negative type (i.e. `1 ⊆ `22).

Theorem 6.6 (Bourgain’s Embedding Theorem [7]) Any n-point metric space embeds into
`1 with distortion at-most Cb log n, for some absolute constant Cb.

Fact 6.7 [6, 25] There is an n-point metric, any embedding of which into `1, requires Ω(log n)
distortion.

6.3 The (`2
2, `1, O(1))-Conjecture

Conjecture 6.8 ((`22, `1, O(1))-Conjecture, [16, 24]) Every negative type metric can be embed-
ded into `1 with distortion at-most Cneg, for some absolute constant Cneg ≥ 1.

6.4 Cut Problems and their SDP Relaxations

In this section, we define the cut problems that we study in the paper and present their SDP
relaxations. All graphs are complete undirected graphs with non-negative weights or demands
associated to its edges. For a graph G = (V,E), and S ⊆ V , let E(S, S) denote the set of edges
with one endpoint in S and other in S. A cut (S, S) is called non-trivial if S 6= ∅ and S 6= ∅.
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Remark 6.9 The versions of Sparsest Cut and Balanced Separator that we define below
are non-uniform versions with demands. The uniform version has all demands equal to 1 (i.e. unit
demand for every pair of vertices).

6.4.1 The Sparsest Cut Problem

Definition 6.10 (Sparsest Cut) For a graph G = (V,E) with a weight wt(e), and a demand
dem(e) associated to each edge e ∈ E, the goal is to optimize

min
∅6=S(V

∑
e∈E(S,S) wt(e)∑

e∈E(S,S) dem(e)
.

It follows from Fact 6.4 that the objective function above is the same as

min
d is `1 embeddable

∑
e={x,y}∈E wt(e)d(x, y)∑

e={x,y}∈E dem(e)d(x, y)
.

Denote this minimum for {G,wt,dem} by ψ1(G). Consider the following two quantities associated
to {G,wt,dem}:

ψ∞(G) := min
d is `∞ embeddable

∑
e={x,y}∈E wt(e)d(x, y)∑

e={x,y}∈E dem(e)d(x, y)
, and

ψneg(G) := min
d is negative type

∑
e={x,y}∈E wt(e)d(x, y)∑

e={x,y}∈E dem(e)d(x, y)
.

Facts 6.5 and 6.3 imply that ψ1(G) ≥ ψneg(G) ≥ ψ∞(G). In addition, Bourgain’s Embedding
Theorem (Theorem 6.6) can be used to show that ψ1(G) ≤ O(log n) ·ψ∞(G), where n := |V |. Fact
6.7 implies that this factor of O(log n) is tight upto a constant.

It is also the case that ψneg(G) is efficiently computable using the semi-definite program (SDP)
of Figure 2. Let the vertex set be V = {1, 2, . . . , n}. For a metric d on V, let Q := Q(d) be the
matrix whose (i, j)-th entry is Q[i, j] := 1

2 (d(i, n) + d(j, n)− d(i, j)) .

Minimize
∑

e={i,j}

wt(e)d(i, j) (6)

Subject to

∀i, j ∈ V d(i, j) ≥ 0 (7)
∀i, j ∈ V d(i, j) = d(j, i) (8)

∀ i, j, k ∈ V d(i, j) + d(j, k) ≥ d(i, k) (9)∑
e={i,j} dem(e)d(i, j) = 1 (10)

Q(d) is positive semidefinite (11)

Figure 2: SDP relaxation of Sparsest Cut
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Fact 6.11 Suppose that every n-point negative type metric embeds into `1 with distortion f(n).
Then, ψ1(G) ≤ f(n) · ψneg(G), and Sparsest Cut can be approximated within factor f(n). In
particular, if the (`22, `1, O(1))-Conjecture (Conjecture 6.8) is true, then there is a constant factor
approximation algorithm for Sparsest Cut.

6.4.2 The Balanced Separator Problem

Definition 6.12 (Balanced Separator) For a graph G = (V,E) with a weight wt(e), and a
demand dem(e) associated to each edge e ∈ E, let D :=

∑
e∈E dem(e) be the total demand. Let a

balance parameter B be given where D/4 ≤ B ≤ D/2. The goal is to find a non-trivial cut (S, S)
that minimizes ∑

e∈E(S,S)

wt(e),

subject to ∑
e∈E(S,S)

dem(e) ≥ B.

The cuts that satisfy
∑

e∈E(S,S) dem(e) ≥ B are called B-balanced cuts.

Figure 3 is an SDP relaxation of Balanced Separator with parameter B.

Minimize
1
4

∑
e={x,y}

wt(e)‖vx − vy‖2 (12)

Subject to

∀x ∈ V ‖vx‖2 = 1 (13)
∀ x, y, z ∈ V ‖vx − vy‖2 + ‖vy − vz‖2 ≥ ‖vx − vz‖2 (14)

1
4

∑
e={x,y} dem(e)‖vx − vy‖2 ≥ B (15)

Figure 3: SDP relaxation of Balanced Separator

We need the following two (folk-lore) results stating that one can find a balanced partition in a
graph by iteratively finding (approximate) sparsest cut in the graph.

Theorem 6.13 Suppose x 7→ vx is a solution for SDP of Figure 3 with objective value

1
4

∑
e={x,y}

wt(e)‖vx − vy‖2 ≤ ε.

Assume that the negative type metric defined by the vectors {vx| x ∈ V } embeds into `1 with
distortion f(n) (n = |V |). Then, there exists a B′-balanced cut (S, S), B′ ≥ B/3 such that∑

e∈E(S,S)

wt(e) ≤ O(f(n) · ε).
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Lemma 6.14 If there is factor f(n) approximation for Sparsest Cut, then there is a O(f(n))
pseudo-approximation to Balanced Separator. To be precise, given a Balanced Separator
instance which has a D/2-balanced partition (D is the total demand) that cuts edges with weight α,
the algorithm finds a D/6-balanced partition that cuts edges with weight at-most O(f(n) · α).

6.4.3 The ARV-Conjecture

Conjecture 6.15 (Uniform Version) The integrality gap of the SDP of Figure 1 is O(1).

Conjecture 6.16 (Non-Uniform Version) The integrality gap of the SDP of Figure 3 is O(1).

Fact 6.17 The (`22, `1, O(1))-Conjecture implies the non-uniform ARV-Conjecture (Conjecture 6.16).

In this paper, we disprove the (`22, `1, O(1))-Conjecture by disproving the non-uniform ARV-Conjecture.

6.4.4 The Maximum Cut Problem

Definition 6.18 (Maximum Cut) For a graph G = (V,E) with a weight wt(e) associated to each
edge e ∈ E, the goal is to optimize

max
∅6=S(V

∑
e∈E(S,S) wt(e)∑

e∈E wt(e)
.

Without loss of generality we may assume that
∑

e∈E wt(e) = 1. Figure 4 is a semi-definite relax-
ation of Maximum Cut.

Maximize
1
4

∑
e={x,y}

wt(e)‖vx − vy‖2 (16)

Subject to

∀x ∈ V ‖vx‖2 = 1 (17)
∀ x, y, z ∈ V ‖vx − vy‖2 + ‖vy − vz‖2 ≥ ‖vx − vz‖2 (18)

Figure 4: SDP for Maximum Cut

Goemans and Williamson [17] gave αGW (≈ 0.878) approximation algorithm for Maximum Cut.
They showed that every SDP solution with objective value γSDP can be rounded to a cut in the
graph that cuts edges with weight ≥ αGW · γSDP. We note here that their rounding procedure does
not make use of the triangle inequality constraints.

6.4.5 The Minimum Uncut Problem

Definition 6.19 (Minimum Uncut) Given a graph G = (V,E) with a weight wt(e) associated to
each edge e ∈ E, the goal is to optimize

min
∅6=S(V

∑
e∈E(S,S)∪E(S,S) wt(e)∑

e∈E wt(e)
.

16



Minimize

1− 1
4

∑
e={x,y}

wt(e)‖vx − vy‖2

 (19)

Subject to

∀x ∈ V ‖vx‖2 = 1 (20)
∀ x, y, z ∈ V ‖vx − vy‖2 + ‖vy − vz‖2 ≥ ‖vx − vz‖2 (21)

Figure 5: SDP relaxation of Minimum Uncut

Without loss of generality we may assume that
∑

e∈E wt(e) = 1. Figure 5 is a semi-definite relax-
ation of Minimum Uncut. This is similar to that for Maximum Cut.

Goemans and Williamson [17] showed that every SDP solution for Minimum Uncut with objective
value βSDP can be rounded to a cut in the graph, such that the weight of edges left uncut is at-
most O(

√
βSDP). We note again that their rounding procedure does not make use of the triangle

inequality constraints.

6.5 Fourier Analysis

Consider the real vector space of all functions f : {−1, 1}n 7→ R, where addition of two functions is
defined as pointwise addition. For f, g : {−1, 1}n 7→ R, define the following inner product: 〈f, g〉2 :=
2−n

∑
x∈{−1,1}n f(x)g(x).4 For a set S ⊆ [n], define the Fourier character χS(x) :=

∏
i∈S xi. It is

well-known (and easy to prove) that the set of all Fourier characters form an orthonormal basis
with respect to the above inner product. Hence, every function f : {−1, 1}n 7→ R has a (unique)
representation as f =

∑
S⊆[n] f̂SχS , where the Fourier coefficient f̂S := 〈f, χS〉2.

Fact 6.20 (Parseval’s Identity) For any f : {−1, 1}n 7→ {−1, 1},
∑

S⊆[n] f̂
2
S = 1.

Definition 6.21 (Long Code) The Long Code over a domain [N ] is indexed by all inputs x ∈
{−1, 1}N . The Long Code f of an element j ∈ [N ] is defined as f(x) := χ{j}(x) = xj , for all
x = (x1, . . . , xN ) ∈ {−1, 1}N .

Thus, a Long Code is simply a boolean function that is a dictatorship, i.e., it depends only on one
co-ordinate. In particular, if f is the Long Code of j ∈ [N ], then f̂{j} = 1 and all other Fourier
coefficients are zero.

Definition 6.22 For ρ ∈ (−1, 1),
Sρ(f) :=

∑
S⊆[n]

f̂2
Sρ

|S|.

4Notice that this inner product is the same as the standard inner product of truth-tables of f and g upto the
normalizing factor of 1/2n.
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Theorem 6.23 (Majority Is Stablest [27]) For every ρ ∈ (−1, 0] and ε > 0, there is a small
enough δ := δ(ε, ρ) > 0, and a large enough k := k(ε, ρ), such that, for any f : {−1, 1}n 7→ [−1, 1],
if Inf≤k

i (f) ≤ δ for all 1 ≤ i ≤ n, then

Sρ(f) ≥ 1− 2
π

arccos ρ− ε.

Here, Inf≤k
i (f) :=

∑
S:i∈S,|S|≤k f̂

2
S .

For f : {−1, 1}n 7→ R, and p ≥ 1, let ‖f‖p :=
(

1
2n

∑
x∈{−1,1}n |f(x)|p

)1/p
.

Definition 6.24 (Hyper-contractive Operator) For each ρ ∈ [−1, 1], the Bonami-Beckner op-
erator Tρ is a linear operator that maps the space of functions {−1, 1}n 7→ R into itself via

Tρ[f ] =
∑

S⊆[n]

ρ|S|f̂SχS .

Fact 6.25 For a boolean function f : {−1, 1}n 7→ {−1, 1}, and ρ ∈ [0, 1],

‖T√ρ[f ]‖2
2 = Sρ(f).

Theorem 6.26 (Bonami-Beckner Inequality [29]) Let f : {−1, 1}n 7→ R and 1 < p < q. Then

‖Tρ[f ]‖q ≤ ‖f‖p

for all 0 ≤ ρ ≤
(

p−1
q−1

)1/2
.

Theorem 6.27 (Bourgain’s Junta Theorem [8]) Fix any 1
2 < t < 1. Then, there exists a

constant ct > 0, such that, for all integers k, for all γ > 0 and for all boolean functions f :
{−1, 1}n 7→ {−1, 1},

If
∑

S : |S|>k

f̂2
S < ctk

−t then
∑

S : | bfS |≤γ4−k2

f̂2
S < γ2.

6.6 Standard Inequalities

The following are some standard inequalities which will be used in the soundness analysis of the
PCPs without any explicit referencing. We state them here for completeness.

Fact 6.28 Let X be a random variable such that Pr[0 ≤ X ≤ 1] = 1, and 0 ≤ δ ≤ 1. If E[X] ≥ δ,
then Pr[X ≥ δ/2] ≥ δ/2.

Fact 6.29 (Markov’s Inequality) Let X be a non-negative random variable. For any t > 0,
Pr[X ≥ t] ≤ E[X]

t .

Fact 6.30 (Jensen’s Inequality) For a random variable X, E[X2] ≥ (E[X])2.
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7 Overall Strategy for Disproving the (`2
2, `1, O(1))-Conjecture

We describe the high-level approach to our disproval of the (`22, `1, O(1))-Conjecture in this section.
We construct an integrality gap instance of non-uniform Balanced Separator to disprove the
non-uniform ARV-Conjecture, and that suffices to disprove the (`22, `1, O(1))-Conjecture using the
(folk-lore) Fact 6.17. The instance has two parts: (1) The graph and (2) The SDP solution. The
graph construction is described in Section 10.1, while the SDP solution appears in Section 10.2.

We construct a complete weighted graph G(V,wt), with vertex set V and weight wt(e) on edge
e, and with

∑
e wt(e) = 1. The vertex set is partitioned into sets V1, V2, . . . , Vr, each of size |V |/r

(think of r ≈
√
|V |).

A cut A in the graph is viewed as a function A : V 7→ {−1, 1}. We are interested in cuts that
cut many sets Vi in a somewhat balanced way.

Definition 7.1 For 0 ≤ θ ≤ 1, a cut A is called θ-piecewise balanced if

Ei∈R[r]

[ ∣∣∣ Ex∈RVi [A(x)]
∣∣∣ ] ≤ θ.

We also assign a unit vector to every vertex in the graph. Let vx denote the vector assigned
to vertex x. Our construction of the graph G(V,wt) and the vector assignment x 7→ vx can be
summarized as follows:

Theorem 7.2 Fix any 1
2 < t < 1. For every sufficiently small ε > 0, there exists a graph G(V,wt),

with a partition V = ∪r
i=1Vi, and a vector assignment x 7→ vx for every x ∈ V, such that

1. |V | ≤ 22O(1/ε3)
.

2. Every 5
6 -piecewise balanced cut A must cut εt fraction of edges, i.e., for any such cut∑

e∈E(A,A)

wt(e) ≥ εt.

3. The unit vectors {vx | x ∈ V } define a negative type metric, i.e., the following triangle
inequality is satisfied:

∀ x, y, z ∈ V, ‖vx − vy‖2 + ‖vy − vz‖2 ≥ ‖vx − vz‖2 .

4. For each part Vi, the vectors {vx | x ∈ Vi} are well-separated, i.e.,

1
2
Ex,y∈RVi

[
‖vx − vy‖2

]
= 1.

5. The vector assignment gives a low SDP objective value, i.e.,

1
4

∑
e={x,y}

wt(e)‖vx − vy‖2 ≤ ε.

Theorem 7.3 The (`22, `1, O(1))-Conjecture is false. In fact, for every δ > 0, for all sufficiently
large n, there are n-point negative type metrics that require distortion at-least (log log n)1/6−δ to
embed into `1.
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Proof: Suppose that the negative type metric defined by vectors {vx| x ∈ V } in Theorem 7.2
embeds into `1 with distortion Γ. We will show that Γ = Ω

(
1

ε1−t

)
using Theorem 6.13.

Construct an instance of Balanced Separator as follows. The graph G(V,wt) is as in
Theorem 7.2. The demands dem(e) depend on the partition V = ∪r

i=1Vi. We let dem(e) = 1 if e
has both endpoints in the same part Vi for some 1 ≤ i ≤ r, and dem(e) = 0 otherwise. Clearly,
D :=

∑
e dem(e) = r ·

(|V |/r
2

)
.

Now, x 7→ vx is an assignment of unit vectors that satisfy the triangle inequality constraints.
This will be a solution to the SDP of Figure 3. Property (4) of Theorem 7.2 guarantees that

1
4

∑
e={x,y}

dem(e)‖vx − vy‖2 =
1
4
· r ·

(
|V |/r

2

)
· 2 = D/2 =: B.

Thus, the SDP solution is D/2-balanced and its objective value is at-most ε. Using Theorem 6.13,
we get a B′-balanced cut (A,A), B′ ≥ D/6 such that

∑
e∈E(A,A) wt(e) ≤ O(Γ · ε).

Claim: The cut (A,A) must be a 5
6 -piecewise balanced cut.

Proof of Claim: Let pi := Prx∈Vi [A(x) = 1]. The total demand cut by (A,A) is equal to∑r
i=1 pi(1− pi)|Vi|2. This is at-least B′ ≥ D/6 since (A,A) is B′-balanced. Hence

r∑
i=1

pi(1− pi) · |V |2/r2 ≥
1
6
r ·
(
|V |/r

2

)
.

Thus,
∑r

i=1 pi(1− pi) ≥ r
12 . By Cauchy-Schwartz,

Ei∈R[r]

[ ∣∣∣ Ex∈RVi [A(x)]
∣∣∣] =

1
r

r∑
i=1

|1−2pi| ≤

√√√√1
r

r∑
i=1

(1− 2pi)2 =

√√√√1− 4
r

r∑
i=1

pi(1− pi) ≤
√

2
3
<

5
6
.

Hence, (A,A) must be a 5
6 -piecewise balanced cut.

However, Property (2) of Theorem 7.2 says that such a cut must cut at-least εt fraction of
edges. This implies that Γ = Ω( 1

ε1−t ). The theorem follows by noting that t > 1
2 is arbitrary and

n := |V | ≤ 22O(1/ε3)
.

8 The Unique Games Conjecture (UGC)

In this section, we present the UGC due to Khot [19]. We also present the SDP relaxation of Unique
Games considered by Khot in [19] in Section 8.3. This SDP was inspired by a paper of Feige and
Lovasz [14]. We start by defining Unique Games and presenting some notations.

8.1 Unique Games

Definition 8.1 (Unique Games) An instance U (G(V,E), [N ], {πe}e∈E ,wt) of Unique Games
is defined as follows: G = (V,E) is a a graph with a set of vertices V and a set of edges E, with
possibly parallel edges. An edge e whose endpoints are v and w is written as e{v, w}. For every
e ∈ E, there is a bijection πe : [N ] 7→ [N ], and a weight wt(e) ∈ R+. For an edge e{v, w}, we think
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of πe as a pair of permutations {πv
e , π

w
e }, where πw

e = (πv
e )−1. πv

e is a mapping that takes a label
of vertex w to a label of vertex v. The goal is to assign one label to every vertex of the graph from
the set [N ]. The labeling is supposed to satisfy the constraints given by bijective maps πe. A labeling
λ : V 7→ [N ] satisfies an edge e{v, w}, if λ(v) = πv

e (λ(w)). Define the indicator function Iλ(e),
which is 1 if e is satisfied by λ and 0 otherwise. The optimum OPT(U) of the Unique Games
instance is defined to be

max
λ

∑
e∈E

wt(e) · Iλ(e).

Without loss of generality, we assume that
∑

e∈E wt(e) = 1.

Conjecture 8.2 (UGC [19]) For every pair of constants η, ζ > 0, there exists a sufficiently large
constant N := N(η, ζ), such that it is NP-hard to decide whether a Unique Games instance
U (G(V,E), [N ], {πe}e∈E ,wt) , has OPT(U) ≥ 1− η, or OPT(U) ≤ ζ.

8.2 Notations

The following notations will be used throughout the paper.

1. Since the graph can have parallel edges, we denote an edge e with end-points {v, w} by
e{v, w}.

2. For an edge e{v, w}, πv
e takes a label assigned to w to a label for v, and πw

e := (πv
e )−1. We

will often use πe when we do not want to refer to either πv
e or πw

e .

3. We always assume (without loss of generality) that
∑

e∈E wt(e) = 1. This is to be thought of
as a probability distribution over the edges of the graph.

4. Γ(v) will denote the set of edges adjacent to a vertex v.

5. pv := 1
2

∑
e∈Γ(v) wt(e). Since

∑
e∈E wt(e) = 1, this defines a probability distribution on the

vertices of the graph.

6. For a vertex v and e ∈ Γ(v), let Ψv(e) := wt(e)
2pv

. This defines a probability distribution on the
edges adjacent to v.

7. With the above notation, the following two sampling procedures are equivalent:

• Pick an edge e{v, w} with probability wt(e).

• Pick a vertex v with probability pv and then pick an edge e ∈ Γ(v) with probability
Ψv(e).

8.3 SDP Relaxation for Unique Games

Consider a Unique Games instance U = (G(V,E), [N ], {πe}e∈E ,wt) . Khot [19] proposed the SDP
in Figure 6. Here, for every u ∈ V, we associate a set of N orthogonal vectors {u1, . . . ,uN}. The
intention is that if i0 ∈ [N ] is a label for vertex u ∈ V , then ui0 =

√
N1, and ui = 0 for all

i 6= i0. Here, 1 is some fixed unit vector and 0 is the zero-vector. However, once we take the SDP
relaxation, this may no longer be true and {u1,u2, . . . ,uN} could be any set of orthogonal vectors.
In fact, in our construction, they will form an orthonormal basis of RN .
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Maximize
∑

e{u,v}∈E

wt(e) · 1
N

(
N∑

i=1

〈
uπu

e (i),vi

〉)
(22)

Subject to

∀ u ∈ V 〈u1,u1〉+ · · ·+ 〈uN ,uN 〉 = N (23)
∀ u ∈ V ∀ i 6= j 〈ui,uj〉 = 0 (24)
∀ u, v ∈ V ∀ i, j 〈ui,vj〉 ≥ 0 (25)

∀ u, v ∈ V
∑

1≤i,j≤N 〈ui,vj〉 = N (26)

Figure 6: SDP for Unique Games

Theorem 8.3 (Khot [19]) If the SDP in Figure 6 has a solution with objective value 1− δ, then

that solution can be rounded to get a labeling that satisfies edges with weight 1−O
(
N2δ1/5

√
log(1

δ )
)
.

9 Integrality Gap Instance for the SDP of Unique Games

In this section, we construct an integrality gap instance for the SDP in Figure 6. To be precise,
for parameters N and η, we will construct an instance U (G(V,E), [N ], {πe}e∈E ,wt) of Unique
Games such that (a) OPT(U) ≤ 1

Nη and (b) There is an SDP solution with objective value at-least
1− η. This construction will be later used to construct integrality gap instances for cut problems.

Let F denote the family of all boolean functions on {−1, 1}k. For f, g ∈ F , define the product
fg as (fg)(x) = f(x)g(x). Consider the equivalence relation ≡ on F defined as f ≡ g if and only if
there is a S ⊆ [k], such that f = gχS . This relation partitions F into equivalence classes P1, . . . ,Pm.
We denote by [Pi], the function fi ∈ Pi which is the smallest among all functions in Pi with respect
to 4. Thus, by definition,

Pi = {[Pi]χS | S ⊆ [k]}.

It follows from the orthogonality of the characters {χS}S⊆[k], that all the functions in any partition
are also orthogonal. Further, for a function f ∈ F , let P(f) denote the Pi in which f belongs.

For ρ > 0, let f ∈ρ F denote a random boolean function on {−1, 1}k where for every x ∈
{−1, 1}k, independently, f(x) = 1 with probability 1−ρ, and −1 with probability ρ. For a parameter
η > 0 and boolean functions f, g ∈ F , let wtη({f, g}) denote the following:

wtη({f, g}) := Prf ′∈1/2F , µµµ∈ηF
[
(f = f ′ ∧ g = f ′µµµ) ∨ (g = f ′ ∧ f = f ′µµµ)

]
.

First, notice that this probability does not change if we interchange the roles of f and g. Further,
for any S ⊆ [k], wtη({f, g}) = wtη({fχS , gχS}).

We are now ready to define the Unique Games instance for which we will establish the integral-
ity gap. Fix η > 0. First, we define the graph G = (V,E). The set of vertices is V := {P1, . . . ,Pm}.
For every f, g ∈ F , there is an edge in E between the vertices P(f) and P(g) with weight
wtη({f, g}). The set of labels for the Unique Games instance will be 2[k] := {S : S ⊆ [k]},
i.e., the set of labels [N ] is identified with the set 2[k] (and thus, N = 2k). This identification will
be used for the rest of the paper. The bijection πe, for the edge e{f, g} corresponding to the pair
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of functions f and g can now be defined: If f = [P(f)]χS and g = [P(g)]χT , for some S, T ⊆ [k],
then

πP(f)
e (T 4 U) := S 4 U, ∀ U ⊆ [k].

Here, 4 is the symmetric difference operator on sets. Note that πP(f)
e : 2[k] 7→ 2[k] is a permutation

on the set of allowed labels.

Remark 9.1 It is readily verified (for the graph defined above) that for a vertex v ∈ V, the quantity

pv :=
1
2

∑
e∈Γ(v)

wtη(e),

is independent of v. The weight function wtη should be thought of as a probability distribution on
the edges, while the function pv should be thought of as the probability distribution on the vertices,
induced by wtη.

9.1 Soundness: No Good Labeling

We show that any labeling to the Unique Games instance described above achieves an objective
of at-most 1

Nη . Consider a labeling R : {P1,P2, . . . ,Pm} 7→ 2[k] which assigns to each Pi, a subset
of [k]. We extend this labeling (denote this extended labeling by R) to all g ∈ F as follows: For
g = [P(g)]χT , define R(g) := R(P(g)) 4 T. We claim that the objective of the Unique Games
instance for this labeling is exactly equal to the following probability:

Prf∈RF , µµµ∈ηF [R(f) = R(fµµµ)] . (27)

The reason is this: Let e{f, g} be an edge of the Unique Games instance with f = [P(f)]χS ,
g = [P(g)]χT , and g = fµµµ. Then

πP(f)
e (R(P(g))) = R(P(f)) ⇐⇒ R(P(g))∆T = R(P(f))∆S

⇐⇒ R(g) = R(f) ⇐⇒ R(fµµµ) = R(f)

Thus, the labeling R satisfies the edge e{f, g} if and only if R(f) = R(fµ). Hence, the objective
of the Unique Games instance (i.e. total weight of its edges satisfied) equals (27).

We will upper-bound this probability using the Bonami-Beckner Inequality. For a set S ⊆ [k],
let RS(f) be the indicator function, which is 1 if R(f) = S, and 0 otherwise. Clearly, for any
extended labeling R, and any S ⊆ [k], Ef∈RF [RS(f)] = 1

N .

Prf∈RF , µµµ∈ηF [R(f) = R(fµµµ) = S] = Ef∈RF , µµµ∈ηF
[
RS(f)RS(fµµµ)

]
.

Via the Fourier expansion of the functionRS : {−1, 1}N 7→ {0, 1}, we get that the above expectation
is ∑

α⊆[N ]

(
R̂S

α

)2
(1− 2η)|α| =

∥∥∥T√1−2η[RS ]
∥∥∥2

2
≤
∥∥RS

∥∥2

2−2η
=

1

N
1

1−η

≤ 1
N1+η

.

Here, the second last inequality uses the Bonami-Beckner Inequality (see Theorem 6.26). Hence,
by a union bound over the sets S ⊆ [k], it follows that

Prf∈RF ,µµµ∈ηF [R(f) = R(fµµµ)] ≤ 1
Nη

.

This proof, using the Bonami-Beckner Inequality, was suggested by Ryan O’Donnell.
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9.2 Completeness: A Good SDP Solution

Let N := 2k and F be the set of functions f : {−1, 1}k 7→ {−1, 1} as before. For f ∈ F , let uf

denote the unit vector (with respect to the `2 norm) corresponding to the truth-table of f. Formally,
indexing the vector uf with coordinates x ∈ {−1, 1}k, (uf )x := f(x)√

N
.

Recall that in the SDP relaxation of Unique Games, for every vertex in V, we need to assign
a set of orthogonal vectors. Let f = [Pi] be the representative boolean function for the vertex Pi.

With Pi, we associate the set of vectors
{
u⊗2

fχS

}
S⊆[k]

. The following facts are easily verified.

1.
∑

S⊆[k]

〈
u⊗2

fχS
,u⊗2

fχS

〉
=
∑

S⊆[k] 〈ufχS
,ufχS

〉2 = N.

2. For S 6= T ⊆ [k],
〈
u⊗2

fχS
,u⊗2

fχT

〉
= 〈ufχS

,ufχT
〉2 = 〈uχS ,uχT 〉

2 = 0.

3. For f, g ∈ F and S, T ⊆ [k],
〈
u⊗2

fχS
,u⊗2

gχT

〉
= 〈ufχS

,ugχT 〉
2 ≥ 0.

4. For f ∈ Pi, g ∈ Pj for i 6= j,∑
S,T⊆[k]

〈
u⊗2

fχS
,u⊗2

gχT

〉
=

∑
S,T⊆[k]

〈ufχS
,ugχT 〉

2 =
∑

T⊆[k]

‖ugχT ‖
2 = N.

Here, the second last equality follows from the fact that, for any f ∈ F , {ufχS
}S⊆[k] forms

an orthonormal basis for RN .

Hence, all the conditions of the SDP for Unique Games are satisfied. Next, we show that this
vector assignment has an objective at-least 1−9η. Notice that most of the weight is concentrated on
edges corresponding to pairs of boolean functions f, g which differ at at-most 2η fraction of points.
More formally, it follows from a Chernoff type bound that for any f ∈ F , Prµµµ∈ηF [dist(f, fµµµ) ≥
2ηN ] ≤ (0.9)ηN . Here, dist(f, g) is defined as the number of points where f and g differ. Hence,
for N ≥ Ω

(
1
η log 1

η

)
, this probability is at-most η. Further, if dist(f, g) ≤ 2ηN, 〈uf ,ug〉 ≥ 1− 4η.

Hence,
〈
u⊗2

f ,u⊗2
g

〉
≥ (1− 4η)2 ≥ (1− 8η). This implies that the objective of this SDP solution is

at-least (1− η)(1− 8η) ≥ 1− 9η.

9.3 Abstracting the Unique Games Integrality Gap Instance

Letting n = 2N , the following theorem summarizes our integrality gap example for the SDP of
Unique Games.

Theorem 9.2 There is a constant c > 0, such that for any 0 < η < 1/2, for all n > 2
c
η

log 1
η ,

there is a Unique Games instance Uη (G(V,E), [N ], {πe}e∈E ,wt) satisfying properties in Fig. 7.
Moreover, this instance has an SDP solution as described in Theorem 9.3.
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Property
Vertex Set V |V | = n/ log n
Label Set [N ] [N ] is identified with 2[k]. Here N = 2k, n = 2N .

Optimum OPT(Uη)≤ log−η n

Prob. distr.
Edge Weights wt : E 7→ R+,

∑
e∈E wt(e) = 1

Γ(v) Set of edges adjacent to v
pv, v ∈ V pv = 1

2

∑
e∈Γ(v) wt(e) = 1

|V |

Ψv(e), v ∈ V Ψv(e) = wt(e)
2pv

Figure 7: Abstracting the Unique Games Instance

9.3.1 Abstracting the SDP solution

In this section, we summarize the key properties of the SDP solution presented in Section 9.2. For
every vertex v ∈ V of the Unique Games instance of Theorem 9.2, there is an associated set of
vectors: {vS}S⊆[k]. For instance, if the vertex v corresponds to the partition Pi, and f = [Pi] is the
representative, then we define vS := ufχS

. The set of vectors for vertices v, w, . . . will be denoted
by their boldface counterparts {vS}S⊆[k], {wT }T⊆[k], . . . respectively.

Theorem 9.3 For every v ∈ V of the Unique Games instance of Theorem 9.2, there is a set of
vectors {vS}S⊆[k] which satisfy the following properties:

1. Orthonormal Basis
The set of vectors {vS}S⊆[k] forms an orthonormal basis for the space R2k

. Hence, for any
vector w ∈ R2k

, ‖w‖2 =
∑

S⊆[k]〈w,vS〉2.

2. Triangle Inequality
For any u, v, w ∈ V, and any S, T, U ⊆ [k], 1 + 〈uS ,vT 〉 ≥ 〈uS ,wU 〉+ 〈vT ,wU 〉.

3. Matching Property
For any v, w ∈ V, and T1, T2, S ⊆ [k], 〈vT1 ,wT2〉 = 〈vT14S ,wT24S〉.

4. Closeness Property
For e{v, w} picked with probability wt(e), with probability at-least 1−η, there are sets S, S′ ⊆
[k] such that 〈vS ,wS′〉 ≥ 1 − 4η. Moreover, if πe is the bijection corresponding to this edge,
then πv

e (S′∆U) = S∆U for all U ⊆ [k].

5. Negative type property of the average
For v, w ∈ V, and an integer t > 0, consider the distance function

dt(v, w) :=
∥∥∥∥ 1√

N

∑
S⊆[k]

v⊗t
S − 1√

N

∑
T⊆[k]

w⊗t
T

∥∥∥∥2

2

.

Then, for all u, v, w ∈ V,
dt(u, v) + dt(v, w) ≥ dt(u,w).
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Hence, dt defines a negative type semi-metric (actually, `1 metric, as we will see). These
vectors will be useful in the construction of the integrality gap instance for Maximum Cut.

Proof:

1. Notice that for any f ∈ F , the set of vectors {ufχS
}S⊆[k] forms an orthonormal basis for the

space R2k
.

2. Notice that for any f, g, h ∈ F , 1 + 〈uf ,uh〉 ≥ 〈uf ,ug〉+ 〈ug,uh〉. This is because the set of
vectors {uf}f∈F are (normalized) truth-tables of {−1, 1}-valued functions.

3. Notice that for any f, g ∈ F , and T1, T2, S ⊆ [k],

〈ufχT1
,ugχT2

〉 = 〈ufχT14S
,ugχT24S

〉.

4. For any f ∈ F and µµµ ∈η F , let g := fµµµ. Then, for N ≥ Ω
(

1
η log 1

η

)
, 〈uf ,ug〉 ≥ 1− 4η with

probability at-least 1− η.

5. See the discussion after Theorem 9.4.

Theorem 9.4 [11, Theorem 8.2.5] Let 〈G, ◦, id〉 be an abelian group of characteristic 2, i.e.,
g ◦ g = id for all g ∈ G. Let d(g, h) be a distance function5 on G such that d(g, h) depends only on
g ◦ h. Then, d is of negative type if and only if it is `1-embeddable.

We view F = {−1, 1}N as a group (denoted G) with the multiplicative operator ◦ being the
point-wise multiplication between the boolean functions. The identity element id is the boolean
function which is 1 at all points. The set H := {χS}S⊆[k] forms a normal sub-group of G. The
group and the distance we apply Theorem 9.4 on will be G/H and dt(·, ·) respectively. It is easy to
check that dt is well defined. Further, G, and hence, H, has characteristic 2. We need to show that
for f, g ∈ G, dt(fH, gH) depends only on fg. Since both 1√

N

∑
S⊆[k] u

⊗t
fχS

and 1√
N

∑
T⊆[k] u

⊗t
gχT

are
unit vectors, it is sufficient to show that their inner product depends only on fg.〈

1√
N

∑
S⊆[k]

u⊗t
fχS

,
1√
N

∑
T⊆[k]

u⊗t
gχT

〉
=

1
N

∑
S,T⊆[k]

〈
ufχS

,ugχT

〉t
=

1
N

∑
S,T⊆[k]

(∑
x

f(x)g(x)χS4T (x)
N

)t

=
1
N

∑
S,T⊆[k]

(∑
x

(fg)(x)χS4T (x)
N

)t

Hence, Theorem 9.4 implies that dt is `1-embaddable, and hence, defines a negative type metric.
5In general, a distance function may not satisfy the triangle inequality.
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10 Integrality Gap Instances for Cut Problems

In this section, we describe the integrality gap instances for Balanced Separator, Maximum
Cut and Minimum Uncut, along with their SDP solutions. These are constructed from the
integrality gap instance of Unique Games, and its SDP solution (abstracted out in Section 9.3).
Each construction essentially mimics the PCP reduction from Unique Games to the respective
cut problem. These PCP reductions (in particular, the PCP soundness analysis that we need) are
presented separately in Section 11.

10.1 The Graphs

The starting point of all the constructions is the (NO) instance of Unique Games described
in Theorem 9.2. We recall the following notations which will be needed. For a permutation
π : [N ] 7→ [N ] and a vector x ∈ {−1, 1}N , the vector x ◦ π is defined to be the vector with its j-th
entry as (x ◦ π)j := xπ(j). For ε > 0, the notation x ∈ε {−1, 1}N means that the vector x is a
random {−1, 1}N vector, with each of its bits independently set to −1 with probability ε, and set
to 1 with probability 1− ε. In this section we will also be using the notations from Section 8.2.

10.1.1 Balanced Separator

This instance has a parameter ε > 0 and we refer to it as IBS
ε (V ∗, E∗). We start with the Unique

Games instance Uη (G(V,E), [N ], {πe}e∈E ,wt) of Theorem 9.2. In IBS
ε , each vertex v ∈ V is

replaced by a block of vertices denoted by V ∗[v]. This block consists of vertices (v,x) for each
x ∈ {−1, 1}N . Thus, the set of vertices for the Balanced Separator instance is

V ∗ := {(v,x) | v ∈ V, x ∈ {−1, 1}N} and V ∗ = ∪v∈V V
∗[v].

The edges in the Balanced Separator instance are defined as follows: For e{v, w} ∈ E, there is
an edge e∗ in IBS

ε between (v,x) and (w,y), with weight

wtBS(e∗) := wt(e) ·Pr
x′∈1/2{−1,1}N

µµµ∈ε{−1,1}N

[(
x = x′

)
∧
(
y = x′µµµ ◦ πv

e

)]
.

Notice that the size of IBS
ε is |V ∗| = |V | · 2N = n/ log n · n = n2/ log n.

Theorem 10.1 For every t ∈ (1
2 , 1), there exists a constant ct > 0 such that the following holds: Let

ε > 0 be sufficiently small and let Uη (G(V,E), [N ], {πe}e∈E ,wt) be an instance of Unique Games

with OPT(Uη) < 2−O(1/ε2). Let IBS
ε be the corresponding instance of Balanced Separator as

defined above. Let V ∗ = ∪v∈V V
∗[v] be the partition of its vertices as above. Then, any 5

6 -piecewise
balanced cut (A,A) in IBS

ε (in the sense of Definition 7.1) satisfies∑
e∗∈E∗(A,A)

wtBS(e∗) ≥ ctε
t.

This theorem is a direct corollary of Theorem 11.2. See Section 11.1 for more details.
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10.1.2 Maximum Cut

This instance has a parameter ρ ∈ (−1, 0) and we refer to it as IMC
ρ (V ∗, E∗). We start with the

Unique Games instance Uη (G(V,E), [N ], {πe}e∈E ,wt) of Theorem 9.2. In IMC
ρ , each vertex in

v ∈ V is replaced by a block of vertices (v,x), where x varies over {−1, 1}N . For every pair of edges
e{v, w}, e′{v, w′} ∈ E, there is an edge e∗ in IMC

ρ between (w,x) and (w′,y), with weight

wtMC(e∗) := (wt(e)Ψv(e′)) ·Prx′∈1/2{−1,1}N

µµµ∈ 1−ρ
2 {−1,1}N

[(
x = x′ ◦ πv

e

)
∧
(
y = x′µµµ ◦ πv

e′
)]
.

Notice that the size of IMC
ρ is n2/ log n.

Theorem 10.2 For any constants ρ ∈ (−1, 0) and λ > 0, there is a constant c(ρ, λ) such that
the following holds: Let Uη (G(V,E), [N ], {πe}e∈E ,wt) be an instance of Unique Games with
OPT(Uη) < c(ρ, λ). Let IMC

ρ be the corresponding instance of Maximum Cut as defined above.
Then, any cut (A,A) in IMC

ρ satisfies∑
e∗∈E∗(A,A)

wtMC(e∗) ≤ 1
π

arccos ρ+ λ.

This theorem essentially follows from the results of [20] and [27]. See Section 11.2 for more details.

10.1.3 Minimum Uncut

This instance has a parameter ε ∈ (0, 1) and we refer to it as IMUC
ε (V ∗, E∗). This is the same as

IMC
−1+2ε. More precisely, we start with the Unique Games instance Uη (G(V,E), [N ], {πe}e∈E ,wt)

of Theorem 9.2. In IMUC
ε , each vertex in v ∈ V is replaced by a block of vertices (v,x), where x

varies over {−1, 1}N . For every pair of edges e{v, w}, e′{v, w′} ∈ E, there is an edge e∗ in IMUC
ε

between (w,x) and (w′,y), with weight

wtMUC(e∗) := (wt(e)Ψv(e′)) ·Prx′∈1/2{−1,1}N

µµµ∈1−ε{−1,1}N

[(
x = x′ ◦ πv

e

)
∧
(
y = x′µµµ ◦ πv

e′
)]
.

Notice that the size of IMUC
ε is n2/ log n.

Theorem 10.3 For every t ∈ (1
2 , 1), there exists a constant ct > 0 such that the following holds:

Let ε > 0 be sufficiently small and let Uη (G(V,E), [N ], {πe}e∈E ,wt) be an instance of Unique

Games with OPT(Uη) < 2−O(1/ε2). Let IMUC
ε be an instance of Minimum Uncut as defined above.

Then, every cut in IMUC
ε has weight at most 1− ctε

t. In other words, every set of edges, removing
which leaves IMUC

ε bipartite, is of weight at-least ctεt.

This theorem is a direct corollary of Theorem 11.8, which is implicit in [19]. See Section 11.3 for
more details.

10.2 SDP Solutions

Now we describe the SDP solutions for the Balanced Separator, Maximum Cut, and Minimum
Uncut instances in Theorems 10.1, 10.2, and 10.3 respectively. Recall that [N ] is identified with
2[k]. Thus, x ∈ {−1, 1}N can be interpreted as a {+1,−1}-assignment to sets T ⊆ [k].
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Definition 10.4 For x ∈ {−1, 1}N , and T ⊆ [k], let x(T ) denote the jth co-ordinate of x where
j ∈ [N ] is the index identified with the set T .

Definition 10.5 For x ∈ {−1, 1}N , and a bijection π : 2[k] 7→ 2[k], x ◦ π is defined as

(x ◦ π)(T ) = x(π(T )).

Notice that this definition is slightly abused: Previously, for x ∈ {−1, 1}N , and π : [N ] 7→ [N ], x◦π
was defined to be the vector whose j-th co-ordinate is xπ(j). Upto the identification of j ∈ [N ] and
T ⊆ [k], this is consistent, and it will be clear from the context which definition we are referring to.

We start with the SDP solution of Theorem 9.3. Consider the following unit vectors, one for every
pair (v,x), where v ∈ V and x ∈ {−1, 1}N (note that V is the set of vertices of the Unique Games
instance of Theorem 9.2). Also, s is a positive integer (to be taken to be 4 in the rest of the paper).

Vv,s,x :=
1√
N

∑
T⊆[k]

x(T )v⊗2s
T . (28)

Further, for v ∈ V, and an integer t > 0, consider the vector

Vv,t :=
1√
N

∑
T⊆[k]

v⊗t
T . (29)

These vectors will be used as SDP solutions later on. In this section, we prove some of their generic
properties.

Fact 10.6 For every v ∈ V, x ∈ {−1, 1}N and every integer s > 0, ‖Vv,s,x‖ = 1. Further, for all
integers t > 0, ‖Vv,t‖ = 1.

Lemma 10.7 (Well Separated Lemma) For any integer s > 0, and any odd integer t > 0,

1
2
Ex∈1/2{−1,1}N , y∈1/2{−1,1}N

[
‖V⊗t

v,s,x −V⊗t
v,s,y‖2

]
= 1.

Lemma 10.8 Let 0 < η < 1/2, and assume that for u, v ∈ V and S, S′ ⊆ [k], 〈uS ,vS′〉 = 1 − η.
Let π : 2[k] 7→ 2[k] be defined as π(S′∆U) := S∆U, ∀ U ⊆ [k]. Then

• Lower Bound: (1− η)2s(1− 2rdist(x ◦ π,y))− (2η)s ≤ 〈Vu,s,x,Vv,s,y〉.

• Upper Bound: 〈Vu,s,x,Vv,s,y〉 ≤ (1− η)2s(1− 2rdist(x ◦ π,y)) + (2η)s.

Here, rdist(x,y) denotes the fraction of points where x and y differ.

Corollary 10.9 Let 0 < η < 1/2, and assume that for u, v ∈ V and S, S′ ⊆ [k], 〈uS ,vS′〉 = 1− η.
Then

(1− η)t − (2η)t/2 ≤
〈
Vu,t,Vv,t

〉
≤ (1− η)t + (2η)t/2.

Theorem 10.10 For s = 4 and t = 2240 + 1, the set of vectors {V⊗t
v,s,x}v∈V,x∈{−1,1}N give rise to

a negative-type metric.

Theorem 10.11 For s = 4 and t = 2241, the set of vectors {Vv,s,x ⊗Vv,t}v∈V,x∈{−1,1}N give rise
to a negative-type metric.

We differ the extremely technical proofs of these two theorems to Section 10.4.
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10.2.1 Solution for the SDP of IBS
ε

Now we present an SDP solution for IBS
ε (V ∗, E∗,wtBS) that satisfies Properties (3), (4) and (5) of

Theorem 7.2. This suffices to prove Theorem 7.3. For (v,x) ∈ V ∗, we associate the vector V⊗t
v,4,x,

where t = 2240 + 1. Property (3) follows from Theorem 10.10, while Property (4) follows from
Lemma 10.7. Property (5) follows from the following theorem.

Theorem 10.12
∑

e∗={(v,x),(w,y)}∈E∗ wtBS(e∗)‖V⊗t
v,4,x −V⊗t

w,4,y‖2 ≤ O(η + ε).

Proof: It is sufficient to prove that for an edge e{v, w} ∈ E picked with probability wt(e) (from
the Unique Games instance Uη), x ∈1/2 {−1, 1}N , and µµµ ∈ε {−1, 1}N ,

Ee{v,w}

Ex∈1/2{−1,1}N

µµµ∈ε{−1,1}N

〈
V⊗t

v,4,x,V
⊗t
w,4,xµµµ◦πv

e

〉 ≥ 1−O(t(η + ε)).

Since e{v, w} is a random edge of Uη, we know from the Closeness Property of Theorem 9.3, that
w.h.p., there are S, S′ ⊆ [k] such that 〈vS ,wS′〉 ≥ 1−O(η).Moreover, πv

e (S′∆U) = S∆U, ∀ U ⊆ [k].
Further, using Chernoff Bounds, we see that except with probability ε, rdist(x,xµµµ) ≤ 2ε. Thus,
using the lower bound estimate from Lemma 10.8, we get that〈

V⊗t
v,4,x,V

⊗t
w,4,xµµµ◦πv

e

〉
≥ 1−O(t(η + ε)).

This completes the proof.

Using Theorem 10.12 along with Theorem 10.1, for the choices ε = (log log n)−1/3, η = O(ε), one
gets the following theorem (note that OPT(Uη) ≤ log−η n).

Theorem 10.13 Non-uniform versions of Sparsest Cut and Balanced Separator have an
integrality gap of at-least (log log n)1/6−δ, where δ > 0 is arbitrary. The integrality gaps hold for
standard SDPs with triangle inequality constraints.

10.2.2 Solution for the SDP of IMC
ρ

Now we present an SDP solution for IMC
ρ (V ∗, E∗,wtMC) with an objective of at-least 1−ρ

2 −O(η).
For (w,x) ∈ V ∗, we associate the vector Vw,4,x⊗Vw,t. The following theorem shows that this SDP
solution to IMC

ρ has an objective at-least 1−ρ
2 −O(η).

Theorem 10.14

1
4

∑
e∗={(w,x),(w′,y)}∈E∗

wtMC(e∗)‖Vw,4,x ⊗Vw,t −Vw′,4,y ⊗Vw′,t‖2 ≥ 1− ρ

2
−O(η).

As a corollary to Theorem 10.2 and Theorem 10.14, we obtain an integrality gap of
1
π

arccos ρ+λ
1−ρ
2
−O(η)

for

Maximum Cut. Choosing the “critical” choice of ρ, and letting λ, η → 0, we get the following
theorem.
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Theorem 10.15 Let αGW ( ≈ 0.878) be the approximation ratio obtained by Goemans-Williamson’s
algorithm for Maximum Cut. For every δ > 0, the Goemans-Williamson’s SDP has an integrality
gap of at-least αGW + δ, even after including the triangle inequality constraints.

Proof: [of Theorem 10.14] It is sufficient to prove that for an edge e{v, w} ∈ E picked with
probability wt(e), e′{v, w′} ∈ Γ(v) picked with probability Ψv(e′), x ∈1/2 {−1, 1}N , and µµµ ∈ 1−ρ

2

{−1, 1}N ,

Ee{v,w},e′{v,w′}

E x∈1/2{−1,1}N

µµµ∈ 1−ρ
2
{−1,1}N

〈
Vw,4,x◦πv

e
⊗Vw,t,Vw′,4,xµµµ◦πv

e′
⊗Vw′,t

〉 ≤ ρ+O(η).

Notice that〈
Vw,4,x◦πv

e
⊗Vw,t,Vw′,4,xµµµ◦πv

e′
⊗Vw′,t

〉
=
〈
Vw,4,x◦πv

e
,Vw′,4,xµµµ◦πv

e′

〉 〈
Vw,t,Vw′,t

〉
.

Since e{v, w} and e′{v, w′} are random (but not independent) edges of Uη, we know from the
Closeness Property, that w.h.p., there are S, T, T ′ ⊆ [k] such that

〈vS ,wT 〉 ≥ 1−O(η), πv
e (T∆U) = S∆U, ∀ U ⊆ [k]

〈vS ,w′
T ′〉 ≥ 1−O(η), πv

e′(T
′∆U) = S∆U, ∀ U ⊆ [k].

This implies (via the triangle inequality) that 〈wT ,w′
T ′〉 ≥ 1 − O(η). Further, using Chernoff

Bounds, we see that w.h.p., we have 1−ρ
2 − η ≤ rdist(x,xµµµ) ≤ 1−ρ

2 + η. Now we use the estimate
from Lemma 10.8 for 〈Vw,4,x◦πv

e
,Vw′,4,xµµµ◦πv

e′
〉 and for 〈Vw,t,Vw′,t〉. The former dot-product is

ρ±O(η) and the latter is 1−O(η).

10.2.3 Solution for the SDP of IMUC
ε

Now we present an SDP solution for IMUC
ε (V ∗, E∗,wtMUC) with an objective of at-most O(η + ε).

Set t = 2240 + 1. For (w,x) ∈ V ∗, we associate the vector V⊗t
w,4,x. The triangle inequality follows

from Theorem 10.10. The following theorem shows that the SDP solution to IMUC
ε has a small

objective.

Theorem 10.16

1− 1
4

∑
e∗={(w,x),(w′,y)}∈E∗

wtMUC(e∗)‖V⊗t
w,4,x −V⊗t

w′,4,y‖
2 ≤ O(η + ε).

The proof of this theorem is similar to the one for Maximum Cut.

Using Theorem 10.16 along with Theorem 10.3, for the choices η = O(ε) and ε = (log log n)−1/3,
one gets the following theorem (note that OPT(Uη) ≤ log−η n).

Theorem 10.17 Minimum Uncut has an integrality gap of at-least (log log n)1/6−δ, where δ > 0
is arbitrary. The integrality gap holds for the standard SDP with the triangle inequality constraints.
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10.3 Proofs of Basic Properties of the SDP Solutions

Proof: [of Lemma 10.7]

1
2
Ex,y

[
‖V⊗t

v,s,x −V⊗t
v,s,y‖2

]
= Ex,y

[
1− 〈V⊗t

v,s,x,V
⊗t
v,s,y〉

]
= 1−Ex,y

 1
N

∑
S,T⊆[k]

x(T )y(T )〈vS ,vT 〉2s

t
= 1.

The last equality follows from the fact that the contribution of (x,y) to the expectation is cancelled
by that of (x,−y).

Proof: [of Lemma 10.8]

〈Vu,s,x,Vv,s,y〉 =
1
N

∑
T,T ′⊆[k]

x(T )y(T ′)〈uT ,vT ′〉2s

=
1
N

∑
T,T ′⊆[k]

x(S 4 T )y(S′ 4 T ′)〈uS4T ,vS′4T ′〉2s.

We first show that in the above summation, terms with T = T ′ dominate the summation. Since
〈uS ,vS′〉 = 1−η, the Matching Property implies that for all T ⊆ [k], 〈uS4T ,vS′4T 〉 = 1−η. Further,
since the vectors {vT ′}T ′⊆[k] form an orthonormal basis for RN ,

∑
T ′⊆[k] 〈uS4T ,vS′4T ′〉2 = 1.

Hence, ∑
T ′⊆[k],T ′ 6=T

〈uS4T ,vS′4T ′〉2s ≤
(
1− (1− η)2

)s ≤ (2η − 2η2)s = (2η)s.

Now, 〈Vu,s,x,Vv,s,y〉 is at-least

1
N

∑
T⊆[k]

x(S 4 T )y(S′ 4 T )〈uS4T ,vS′4T 〉2s − 1
N

∑
T,T ′⊆[k]

T 6=T ′

〈uS4T ,vS′4T ′〉2s,

and at-most

1
N

∑
T⊆[k]

x(S 4 T )y(S′ 4 T )〈uS4T ,vS′4T 〉2s +
1
N

∑
T,T ′⊆[k]

T 6=T ′

〈uS4T ,vS′4T ′〉2s.

The first term in both these expressions is

1
N

∑
T⊆[k]

x(S∆T )y(S′∆T )(1− 2η)2s = (1− 2rdist(x ◦ π,y))(1− 2η)2s.

The second term is bounded by (2η)s as seen above. This completes the proof of the lemma.
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10.4 Proving the Triangle Inequality

In this section, we prove Theorem 10.10 and Theorem 10.11. Unfortunately, the proof relies on
heavy case-analysis and is not very illuminating.

10.4.1 Main Lemma

Lemma 10.18 Let {ui}N
i=1, {vi}N

i=1, {wi}N
i=1 be three sets of unit vectors in RN , such that the

vectors in each set are mutually orthogonal. Assume that any three of these vectors satisfy the
triangle inequality. Assume, moreover, that

〈u1,v1〉 = 〈u2,v2〉 = · · · = 〈uN ,vN 〉, (30)
λ := 〈u1,w1〉 = 〈u2,w2〉 = · · · = 〈uN ,wN 〉 ≥ 0, (31)

∀1 ≤ i, j ≤ N, |〈ui,wj〉| ≤ λ, (32)
1− η := 〈v1,w1〉 = 〈v2,w2〉 = · · · = 〈vN ,wN 〉, (33)

where 0 ≤ η ≤ 2−40s and s = 4. Let si, ti, ri ∈ {−1, 1} for 1 ≤ i ≤ N . Define unit vectors

u :=
1√
N

N∑
i=1

siu⊗2s
i , v :=

1√
N

N∑
i=1

tiv⊗2s
i w :=

1√
N

N∑
i=1

riw⊗2s
i .

Then, the vectors u,v,w satisfy the triangle inequality 1 + 〈u,v〉 ≥ 〈u,w〉+ 〈v,w〉, i.e.,

N +
N∑

i,j=1

sitj〈ui,vj〉2s ≥
N∑

i,j=1

sirj〈ui,wj〉2s +
N∑

i,j=1

tirj〈vi,wj〉2s. (34)

Proof: It suffices to show that for every 1 ≤ j ≤ N ,

1 +
N∑

i=1

sitj〈ui,vj〉2s ≥
N∑

i=1

sirj〈ui,wj〉2s + tjrj〈vj ,wj〉2s +
∑

1≤i≤N,i6=j

〈vi,wj〉2s. (35)

We consider four cases depending on value of λ.

(Case 1) λ ≤ η : Since 〈vj ,wj〉 = 1−η, and
∑

1≤i≤N 〈vi,wj〉2 = 1, we have
∑

1≤i≤N ;i6=j〈vi,wj〉2s ≤
(2η − η2)s. Also,

∑N
i=1〈ui,wj〉2s ≤ λ2s−2 ≤ η2s−2. Moreover, for any 1 ≤ i ≤ N , by the triangle

inequality, 1 ± 〈ui,vj〉 ≥ 〈vj ,wj〉 ± 〈ui,wj〉 ≥ 1 − η − λ ≥ 1 − 2η, and therefore, |〈ui,vj〉| ≤ 2η.
Therefore,

∑N
i=1〈ui,vj〉2s ≤ (2η)2s−2. Thus, it suffices to prove that

1 ≥ (2η)2s−2 + η2s−2 + (1− η)2s + (2η − η2)s.

This is true when η ≤ 2−40s.

(Case 2) η ≤ λ ≤ 1−√η : We will show that

1 +
N∑

i=1

sitj〈ui,vj〉2s ≥
N∑

i=1

sirj〈ui,wj〉2s + tjrj(1− η)2s + (2η − η2)s. (36)
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(Subcase i) tj 6= rj : In this case it suffices to show that

1 + (1− η)2s ≥
N∑

i=1

〈ui,vj〉2s +
N∑

i=1

〈ui,wj〉2s + (2η − η2)s.

Again, as before, we have that for every 1 ≤ i ≤ N, |〈ui,wj〉| ≤ λ ≤ 1 − √
η, and |〈ui,vj〉| ≤

λ+ η ≤ 1−√η + η. Thus, it suffices to prove that

1 + (1− η)2s ≥ (1−√η + η)2s−2 + (1−√η)2s−2 + (2η − η2)s.

This also holds when η ≤ 2−40s.

(Subcase ii) tj = rj : We need to prove (36). It suffices to show that

1− (1− η)2s − (2η − η2)s ≥
N∑

i=1

|〈ui,wj〉|2s − 〈ui,vj〉2s| =
N∑

i=1

|θ2s
i − µ2s

i |

where θi := |〈ui,wj〉|, µi := |〈ui,vj〉|. Clearly,

|θi − µi| ≤ |〈ui,vj〉 − 〈ui,wj〉| ≤ 1− 〈vi,wj〉 = η.

Here, we used the assumption that (ui,vj ,wj) satisfy the triangle inequality. Note also that
max1≤i≤N θi = λ and

∑N
i=1 θ

2
i = 1. Let J := {i | θi ≤ η} and I := {i | θi ≥ η}. We have,

N∑
i=1

|θ2s
i − µ2s

i | ≤
∑
i∈J

(θ2s
i + µ2s

i ) +
∑
i∈I

((θi + η)2s − θ2s
i )

≤ (η)2s−2 + (2η)2s−2 +
∑
i∈I

((θi + η)2s − θ2s
i ).

Lemma 10.19 implies that the summation on the last line above is bounded by

2s−2∑
l=1

(
2s
l

)
λ2s−l−2ηl + (2s+ 1)η2s−2.

Thus, it suffices to show that

1− (1− η)2s − (2η − η2)s ≥
2s−2∑
l=1

(
2s
l

)
λ2s−l−2ηl + (4η)2s−2.

This is true if

2sη −
2s∑
l=2

(
2s
l

)
ηl − (2η − η2)s ≥ 2sλ2s−3η +

2s∑
l=2

(
2s
l

)
ηl + (4η)2s−2.

This is true if 2sη(1 − λ2s−3) ≥ η2(22s + 22s + 1 + 42s). This is true if 2sη
√
η ≥ η2 · 42s+1, which

holds when η ≤ 2−40k. Note that we used the fact that λ ≤ 1−√η.
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(Case 3) 1 −√
η ≤ λ ≤ 1 − η2 : We have 〈vj ,wj〉 = 1 − η, 〈uj ,wj〉 = λ =: 1 − ζ. This implies

that 〈uj ,vj〉 = 1− δ, where by the triangle inequality

η ≤ ζ + δ, δ ≤ η + ζ, ζ ≤ η + δ.

Thus, to prove (35), it suffices to show that

1 + sjtj〈uj ,vj〉2s ≥ sjrj〈uj ,wj〉2s + tjrj〈vj ,wj〉2s+

(2η − η2)s + (2ζ − ζ2)s + (2δ − δ2)s.

Depending on signs sj , tj , rj , this reduces to proving one of the three cases:

1 + (1− δ)2s ≥ (1− ζ)2s + (1− η)2s + (2η − η2)s + (2ζ − ζ2)s + (2δ − δ2)s.

1 + (1− η)2s ≥ (1− ζ)2s + (1− δ)2s + (2η − η2)s + (2ζ − ζ2)s + (2δ − δ2)s.

1 + (1− ζ)2s ≥ (1− η)2s + (1− δ)2s + (2η − η2)s + (2ζ − ζ2)s + (2δ − δ2)s.

We will prove the first case, and the remaining two are proved in a similar fashion. We have that
1 + (1− δ)2s − (1− ζ)2s − (1− η)2s

≥ 1 + (1− (ζ + η))2s − (1− ζ)2s − (1− η)2s

≥ 2s(2s− 1) · ζη −
∑

3≤i+j≤2s
i≥1,j≥1

(
2s
i+ j

)(
i+ j

i

)
ζiηj

≥ 2s(2s− 1)ζη − 28sζη ·max{ζ, η, δ}
≥ min{ζη, ηδ, ζδ},

provided that 28s max{ζ, η, δ} ≤ 1. Thus, it suffices to have

min{ζη, ηδ, ζδ} ≥ (2η − η2)s + (2ζ − ζ2)s + (2δ − δ2)s.

This is clearly true, since, ζ, η, δ are within squares (or square-roots) of each other, and η ≤ 2−40s.

(Case 4) 1 − η2 ≤ λ : This is essentially same as Case (2). Just interchange 1 − η with λ and
interchange ui,vi for every i. This completes the proof of the Main Lemma.

Lemma 10.19 Let η, λ and {θi}N
i=1 be non-negative reals, such that

∑N
i=1 θ

2
i ≤ 1, and for all i,

η ≤ θi ≤ λ. Then

N∑
i=1

((θi + η)2s − θ2s
i ) ≤

2s−2∑
l=1

(
2s
l

)
λ2s−l−2ηl + (2s+ 1)η2s−2.

35



Proof: Clearly, N ≤ 1/η2.

N∑
i=1

(θi + η)2s − θ2s
i =

N∑
i=1

2s∑
l=1

(
2s
l

)
θ2s−l
i ηl

=
2s−2∑
l=1

(
2s
l

) N∑
i=1

θ2s−l
i ηl + 2s ·

(
N∑

i=1

θi

)
η2s−1 +Nη2s

≤
2s−2∑
l=1

(
2s
l

)
λ2s−l−2ηl + 2s ·

√
Nη2s−1 +Nη2s

≤
2s−2∑
l=1

(
2s
l

)
λ2s−l−2ηl + (2s+ 1)η2s−2.

Lemma 10.20 Let a, b, c ∈ [−1, 1] such that 1 + a ≥ b + c. Then, 1 + at ≥ bt + ct for every odd
integer t ≥ 1.

Proof: First, we notice that it is sufficient to prove this inequality when 0 ≤ a, b, c ≤ 1.

Suppose that b < 0 and c < 0, then bt + ct < 0 ≤ 1 + at. Hence, without loss of generality
assume that b ≥ 0. If c < 0 and a ≥ 0, then bt + ct < bt ≤ 1 + at. If c < 0 and a < 0, by
hypothesis, 1 − c ≥ b − a, which is the same as 1 + |c| ≥ b + |a|, and proving 1 + at ≥ bt + ct

is equivalent to proving 1 + |c|t ≥ bt + |a|t. Hence, we may assume that c ≥ 0. If a < 0, then
1 + at = 1− |a|t ≥ 1− |a| = 1 + a ≥ b+ c ≥ bt + ct. Hence, we may assume that 0 ≤ a, b, c ≤ 1.

Further, we may assume that a < b ≤ c. Since, if a ≥ b, then 1 + at ≥ ct + bt. 1 + a ≥ b + c
implies that 1− c ≥ b− a. Notice that both sides of this inequality are positive. It follows from the
fact that 0 ≤ a < b ≤ c ≤ 1, that

∑t−1
i=0 c

i ≥
∑t−1

i=0 a
ibt−1−i. Multiplying these two inequalities, we

obtain 1− ct ≥ bt − at, which implies that 1 + at ≥ bt + ct. This completes the proof.

10.4.2 Proof of Theorem 10.10

We will prove that any three vectors V⊗t
u,s,x, V⊗t

v,s,y and V⊗t
w,s,z satisfy the triangle inequality. For

T ⊆ [k], let rT := x(T ), sT := y(T ), tT := z(T ), so that

V⊗t
u,s,x =

 1√
N

∑
T⊆[k]

rTu⊗2s
T

⊗t

= (say) W⊗t
u ,

V⊗t
v,s,y =

 1√
N

∑
T⊆[k]

sT v⊗2s
T

⊗t

= (say) W⊗t
v ,

V⊗t
w,s,z =

 1√
N

∑
T⊆[k]

tT w⊗2s
T

⊗t

= (say) W⊗t
w .
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We need to show that

1 + 〈V⊗t
v,s,y,V

⊗t
w,s,z〉 ≥ 〈V⊗t

u,s,x,V
⊗t
v,s,y〉+ 〈V⊗t

u,s,x,V
⊗t
w,s,z〉.

We can assume that at-least one of the dot-products has magnitude at-least 1/3; otherwise,
the inequality trivially holds. Assume, w.l.o.g., that |〈V⊗t

u,s,x,V
⊗t
w,s,z〉| ≥ 1/3. This implies that

|〈Wu,Ww〉|t ≥ 1/3, and therefore, |〈Wu,Ww〉| = 1 − η′, for some η′ = O(1/t). Hence, for some
S, T ⊆ [k], |〈uS ,wT 〉| = 1− η for some η ≤ 2−40s. By relabeling, if necessary, we may assume that
〈u∅,w∅〉 = 1− η.

Note that we need to show that

1 + 〈Wv,Ww〉t ≥ 〈Wu,Wv〉t + 〈Wu,Ww〉t.

By Lemma 10.20, it suffices to show that

1 + 〈Wv,Ww〉 ≥ 〈Wu,Wv〉+ 〈Wu,Ww〉.

For notational convenience, we replace indexing by T ⊆ [k] with indexing by 1 ≤ i ≤ N where
N = 2k, and ∅ is identified with 1. Thus, we write si, ti, ri instead of sT , tT , rT . We also write ui

instead of uT , vi instead of vT and wi instead of wT . Thus, we need to show that

N +
N∑

i,j=1

sitj〈vi,wj〉2s ≥
N∑

i,j=1

sirj〈ui,vj〉2s +
N∑

i,j=1

tirj〈ui,wj〉2s.

As noted before, we may assume that 〈u1,w1〉 = 1− η, and hence, by the Matching Property,

〈u1,w1〉 = 〈u2,w2〉 = · · · = 〈uN ,wN 〉 = 1− η.

Let λ := max1≤i,j≤N |〈ui,vj〉|. We may assume, w.l.o.g., that the maximum is achieved for u1,v1,
and again by the Matching Property,

〈u1,v1〉 = 〈u2,v2〉 = · · · = 〈uN ,vN 〉 = λ.

Now, the desired inequality follows from Lemma 10.18.

10.4.3 Proof of Theorem 10.11

The proof is similar to that of Theorem 10.10 that appears in Section 10.4.2. Recall that s = 4,
and t = 2241. First we need a simple lemma.

Lemma 10.21 Let a, b, c ∈ [−1, 1] such that 1 + a ≥ b+ c. Let a′, b′, c′ ∈ [0, 1] such that 1 + a′ ≥
b′ + c′, 1 + b′ ≥ a′ + c′ and 1 + c′ ≥ a′ + b′. Then, 1 + aa′ ≥ bb′ + cc′.

Proof: For fixed a, b, c ∈ [−1, 1], consider the following LP: It can be verified that the only vertices
of the (bounded) polytope for the above LP are: (x, y, z) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and
(1, 1, 1). Hence, the minima has to occur at one of these vertices. The objective function at these
5 points is:

• At (0, 0, 0), it is 1.
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Minimize 1 + ax− by − cz (37)

Subject to

0 ≤ x, y, z ≤ 1
x− y − z ≥ −1

−x+ y − z ≥ −1
−x− y + z ≥ −1

• At (1, 0, 0), it is 1 + a, which is at-least 0 as a ≥ −1.

• At (0, 1, 0), it is 1− b, which is at-least 0 as b ≤ 1.

• At (0, 0, 1), it is 1− c, which is at-least 0 as c ≤ 1.

• At (1, 1, 1), it is 1 + a− b− c, which is at-least 0 by hypothesis.

This shows that the objective is at-least 0, hence, 1 + ax− by− cz ≥ 0 for all feasible points. Since
a′, b′, c′ form a feasible point, the lemma follows.

We will prove that any three vectors Vu,s,x ⊗ Vu,t, Vv,s,y ⊗ Vv,t and Vw,s,z ⊗ Vw,t satisfy the
triangle inequality. For T ⊆ [k], let rT := x(T ), sT := y(T ), tT := z(T ), so that

Vu,s,x ⊗Vu,t =

 1√
N

∑
T⊆[k]

rTu⊗2s
T

⊗

 1√
N

∑
T⊆[k]

u⊗t
T

 = (say) Wu,

Vv,s,y ⊗Vv,t =

 1√
N

∑
T⊆[k]

sTv⊗2s
T

⊗

 1√
N

∑
T⊆[k]

v⊗t
T

 = (say) Wv,

Vw,s,z ⊗Vw,t =

 1√
N

∑
T⊆[k]

tTw⊗2s
T

⊗

 1√
N

∑
T⊆[k]

w⊗t
T

 = (say) Ww.

We need to show that
1 + 〈Wv,Ww〉 ≥ 〈Wu,Wv〉+ 〈Wu,Ww〉.

We can assume that at-least one of the dot-products has magnitude at-least 1/3; otherwise, the
inequality trivially holds. Assume, w.l.o.g., that |〈Wu,Ww〉| ≥ 1/3. Hence,

|〈Vu,s,x,Vw,s,z〉||〈Vu,t,Vw,t〉| ≥ 1/3.

Hence, |〈Vu,t,Vw,t〉| ≥ 1/3. Hence, for some S, T ⊆ [k], |〈uS ,wT 〉| = 1− η, for some η ≤ 2−40s. By
relabeling, if necessary, we may assume that 〈u∅,w∅〉 = 1− η.

We know from Theorem 9.3 that

1 + 〈Vu,t,Vv,t〉 ≥ 〈Vu,t,Vw,t〉+ 〈Vv,t,Vw,t〉
1 + 〈Vu,t,Vw,t〉 ≥ 〈Vu,t,Vv,t〉+ 〈Vv,t,Vw,t〉
1 + 〈Vv,t,Vw,t〉 ≥ 〈Vu,t,Vw,t〉+ 〈Vu,t,Vv,t〉
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Hence, by Lemma 10.21, it suffices to show that

1 + 〈Vv,s,y,Vw,s,z〉 ≥ 〈Vu,s,x,Vw,s,z〉+ 〈Vu,s,x,Vv,s,y〉.

Rest is exactly as in the proof of Theorem 10.10, We restate it for completeness. For notational
convenience, we replace indexing by T ⊆ [k] with indexing by 1 ≤ i ≤ N where N = 2k, and ∅ is
identified with 1. Thus, we write si, ti, ri instead of sT , tT , rT . We also write ui instead of uT , vi

instead of vT and wi instead of wT . Thus, we need to show that

N +
N∑

i,j=1

sitj〈vi,wj〉2s ≥
N∑

i,j=1

sirj〈ui,vj〉2s +
N∑

i,j=1

tirj〈ui,wj〉2s.

As noted before, we may assume that 〈u1,w1〉 = 1− η, and hence, by the Matching Property,

〈u1,w1〉 = 〈u2,w2〉 = · · · = 〈uN ,wN 〉 = 1− η.

Let λ := max1≤i,j≤N |〈ui,vj〉|. We may assume, w.l.o.g., that the maximum is achieved for u1,v1,
and again by the Matching Property,

〈u1,v1〉 = 〈u2,v2〉 = · · · = 〈uN ,vN 〉 = λ.

Now, the desired inequality follows from Lemma 10.18.

11 PCP Reductions

This section contains the proofs of Theorems 10.1, 10.2 and 10.3. In fact, we do more: We also es-
tablish, assuming the UGC, hardness of approximation results for non-uniform versions of Sparsest
Cut and Balanced Separator, and for Minimum Uncut. Optimal hardness of approximation
result for Maximum Cut (assuming the UGC) was already known, see [20]. The hardness results
are proved via the standard paradigm of composing an inner PCP with the outer PCP provided
by the UGC. We present a separate inner PCP for Balanced Separator, Maximum Cut and
Minimum Uncut. The inner PCP for Maximum Cut was proposed by Khot et al. in [20], while
that for Minimum Uncut is implicit in [19].

The reduction from a PCP to a graph theoretic problem is standard: Replace bits in the proof
by vertices, and replace every (2-query) PCP test by an edge of the graph. The weight of the edge
is equal to the probability that the test is performed by the PCP verifier. The task of proving
Theorems 10.1, 10.2 and 10.3 corresponds exactly to the soundness analysis for the corresponding
inner PCPs, i.e., proving Theorems 11.2, 11.5 and 11.8 respectively.

11.1 Inner PCP for Balanced Separator

In this section, we establish that, assuming the UGC, it is NP-hard to (pseudo)-approximate Bal-
anced Separator to within any constant factor. By a standard reduction, this immediately
implies, again assuming the UGC, that it is NP-hard to approximate Sparsest Cut to within any
constant factor. First, we describe an inner PCP that reads two bits from the proof and accepts
if and only if the two bits are equal. For ε ∈ (0, 1), the verifier V BS

ε is given a Unique Games
instance U(G(V,E), [N ], {πe}e∈E). The verifier expects, as a proof, the Long Code of the label of
every vertex v ∈ V. Formally, a proof Π is {Av}v∈V , where each Av ∈ {−1, 1}N is the supposed
Long Code of the label of v.
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The Verifier V BS
ε with Parameter ε ∈ (0, 1)

1. Pick e{v, w} ∈ E with probability wt(e).

2. Pick a random x ∈1/2 {−1, 1}N and µµµ ∈ε {−1, 1}N .

3. Let π := πe : [N ] → [N ] be the bijection corresponding to e{v, w}. Accept if and only if

Av(x) = Aw((xµµµ) ◦ πv
e ).

Theorem 11.1 (Completeness) For every ε ∈ (0, 1), if OPT(U) ≥ 1 − η, then there is a proof
Π such that Pr

[
V BS

ε accepts Π
]
≥ (1 − η)(1 − ε). Moreover, every table Av in Π is balanced, i.e.,

exactly half of its entries are +1 and the rest half are −1.

Proof: Since OPT(U) ≥ 1 − η, there is a labeling λ for which the total weight of the edges
satisfied is at-least 1−η. Hence, if we pick an edge e{v, w} with probability wt(e), with probability
at-least 1− η, we have λ(v) = πv

e (λ(w)). Let the proof consist of Long Codes of the labels assigned
by λ to the vertices. With probability 1 − ε, we have µµµλ(v) = 1. Hence, with probability at-least
(1− η)(1− ε),

Av(x) = xλ(v) = (xµµµ)πv
e (λ(w)) = Aw((xµµµ) ◦ πv

e ).

Noting that a Long Code is balanced, this completes the proof.

We say that a proof Π = {Av}v∈V is θ-piecewise balanced if

Ev

[
|Âv

∅|
]
≤ θ.

Here, the expectation is over the probability distribution pv on the vertex set V.

Theorem 11.2 For every t ∈ (1
2 , 1), there exists a constant bt > 0 such that the following holds:

Let ε > 0 be sufficiently small and let U be an instance of Unique Games with OPT(U) < 2−O(1/ε2).
Then, for every 5/6-piecewise balanced proof Π,

Pr
[
V BS

ε accepts Π
]
< 1− btε

t.

Proof: The proof is by contradiction: We assume that there is a 5/6-piecewise balanced proof Π,
which the verifier accepts with probability at-least 1− btε

t, and deduce that OPT(U) ≥ 2−O(1/ε2).

We let bt := 1−e−2

96 ct, where ct is the constant in Bourgain’s Junta Theorem.
The probability of acceptance of the verifier is

1
2

+
1
2
Ev,e{v,w},x,µµµ [Av(x)Aw(xµµµ ◦ πv

e )] .

Using the Fourier expansion Av =
∑

α Â
v
αχα and Aw =

∑
β Â

w
βχβ , and the orthonormality of

characters, we get that this probability is

1
2

+
1
2
Ev,e{v,w}

[∑
α

Âv
αÂ

w
πw

e (α)(1− 2ε)|α|
]
.
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Here α ⊆ [N ]. Hence, the acceptance probability is

1
2

+
1
2
Ev

[∑
α

Âv
αEe{v,w}

[
Âw

πw
e (α)

]
(1− 2ε)|α|

]
.

If this acceptance probability is at-least 1− btε
t, then,

Ev

[∑
α

Âv
αEe{v,w}

[
Âw

πw
e (α)

]
(1− 2ε)|α|

]
≥ 1− 2btεt.

Hence, over the choice of v, with probability at-least 23
24 ,∑

α

Âv
αEe{v,w}

[
Âw

πw
e (α)

]
(1− 2ε)|α| ≥ 1− 48btεt.

Call such vertices v ∈ V good. Fix a good vertex v. Using the Cauchy-Schwarz Inequality we get,

∑
α

Âv
αEe{v,w}

[
Âw

πw
e (α)

]
(1− 2ε)|α| ≤

√∑
α

Âv
α

2
(1− 2ε)2|α|

∑
α

E2
e{v,w}

[
Âw

πw
e (α)

]
.

Combining Jensen’s Inequality and Parseval’s Identity, we get that∑
α

E2
e{v,w}

[
Âw

πw
e (α)

]
≤ 1.

Hence,
1− 96btεt ≤

∑
α

Âv
α

2
(1− 2ε)2|α|.

Now we combine Parseval’s Identity with the fact that 1− x ≤ e−x to obtain∑
α : |α|> 1

ε

Âv
α

2
≤ 96

1− e−2
btε

t = ctε
t.

Hence, by Bourgain’s Junta Theorem ∑
α : |cAv

α|≤ 1
50

4−1/ε2

Âv
α

2
≤ 1

2500
.

Call α good if α ⊆ [N ] is nonempty, |α| ≤ ε−1 and |Âv
α| ≥ 1

504−1/ε2
.

Bounding the contribution due to large sets

Using the Cauchy-Schwarz Inequality, Parseval’s Identity and Jensen’s Inequality, we get∣∣∣∣∣∣∣
∑

α : |α|> 1
ε

Âv
αEe{v,w}

[
Âw

πw
e (α)

]
(1− 2ε)|α|

∣∣∣∣∣∣∣ ≤
√ ∑

α : |α|>ε−1

Âv
α

2
<
√
ctεt.
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We can choose ε to be small enough so that the last term above is less than 1/50.

Bounding the contribution due to small Fourier coefficients

Similarly, we use
∑

α : |cAv
α|≤ 1

50
4−1/ε2 Âv

α

2
≤ 1

2500 , and get∣∣∣∣∣∣∣
∑

α : |cAv
α|≤ 1

50
4−1/ε2

Âv
αEe{v,w}

[
Âw

πw
e (α)

]
(1− 2ε)|α|

∣∣∣∣∣∣∣ ≤
1
50
.

Bounding the contribution due to the empty set

Since Ev

[
|Âv

∅|
]
≤ 5

6 , Ev

[
Ee{v,w}

[
|Âv

∅Â
w
∅ |
]]

≤ 5
6 . This is because each |Âv

∅| ≤ 1. Hence, with

probability at-least 1
12 over the choice of v, Ee{v,w}

[
|Âv

∅Â
w
∅ |
]
≤ 10

11 . Hence, with probability at-least
1
24 over the choice of v, v is good and Ee{v,w}

[
|Âv

∅Â
w
∅ |
]
≤ 10

11 . Call such a vertex very good.

Lower bound for a very good vertex with good sets
Hence, for a very good v,∑

α is good

Âv
αEe{v,w}

[
Âw

πw
e (α)

]
(1− 2ε)|α| ≥ 1− 1

50
− 1

50
− 10

11
≥ 1

22
. (38)

The labeling
Now we define a labeling for the Unique Games instance U as follows: For a vertex v ∈ V , pick
α with probability Âv

α

2
, pick a random element of α and define it to be the label of v.

Let v be a very good vertex. It follows that the weight of the edges adjacent to v satisfied by this
labeling is at-least

Ee{v,w}

 ∑
α is good

Âv
α

2
Âw

πw
e (α)

2 1
|α|

 ≥ ε Ee{v,w}

 ∑
α is good

Âv
α

2
Âw

πw
e (α)

2

 .
This is at-least

ε
1

2500
4−2/ε2

Ee{v,w}

 ∑
α is good

Âw
πw

e (α)

2

 ,
which is at-least

ε
1

2500
4−2/ε2

Ee{v,w}

 ∑
α is good

Âw
πw

e (α)

2
(1− 2ε)|α|

 .
It follows from the Cauchy-Schwarz Inequality and Parseval’s Identity that this is at-least

ε
1

2500
4−2/ε2

Ee{v,w}

∣∣∣∣∣∣
∑

α is good

Âv
αÂ

w
πw

e (α)(1− 2ε)|α|

∣∣∣∣∣∣
2 .
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Using Jensen’s Inequality, we get that this is at-least

ε
1

2500
4−2/ε2

Ee{v,w}

∣∣∣∣∣∣
 ∑

α is good

Âv
αÂ

w
πw

e (α)(1− 2ε)|α|

∣∣∣∣∣∣
2

≥ ε
1

2500
4−2/ε2 1

484
.

Here, the last inequality follows from our estimate in Equation (38). Since, with probability at-
least 1

24 over the choice of v, v is very good, our labeling satisfies edges with total weight at-least

Ω
(
ε 4−2/ε2

)
. This completes the proof of the theorem.

Hardness of approximating Sparsest Cut and Balanced Separator

Assuming the UGC, for any η, ζ > 0, it is NP-hard to determine whether an instance U of Unique
Games has OPT(U) ≥ 1− η or OPT(U) ≤ ζ. We choose η = ε and ζ ≤ 2−O(1/ε2) so that (a) when
OPT(U) ≥ 1 − η, there is a (piecewise balanced) proof that the verifier accepts with probability
at-least 1− 2ε and (b) when OPT(U) ≤ ζ, the verifier does not accept any 5/6-piecewise balanced
proof with probability more than 1− btε

t. Here bt is as in the statement of Theorem 11.2.

Consider the instance of Balanced Separator, IBS
ε , as described in Section 10.1.1. We recall it

here: This instance has a parameter ε. Start with a Unique Games instance

U (G(V,E), [N ], {πe}e∈E ,wt) ,

and replace each vertex v ∈ V by a block of vertices (v,x) for each x ∈ {−1, 1}N . For an edge
e{v, w} ∈ E, there is an edge in IBS

ε between (v,x) and (w,y), with weight

wt(e) ·Pr
x′∈1/2{−1,1}N

µµµ∈ε{−1,1}N

[(
x = x′

)
∧
(
y = x′µµµ ◦ πv

e

)]
.

This is exactly the probability that V BS
ε picks the edge e{v, w}, and decides to look at the x-th

(resp. y-th) coordinate in the Long Code of the label of v (resp. w).

The demand function dem is 1 for any edge between vertices in the same block, and 0 otherwise.
Let B := 1

2 |V |
(
2N

2

)
, be half of the total demand.

Suppose that OPT(U) ≥ 1−η. Let λ be a labeling that achieves the optimum. Consider the partition
(S, S) in IBS

ε , where S consists of all vertices (v,x) with the property that the Long Code of λ(v)
evaluated at x is 1. Clearly, the demand cut by this partition is exactly equal to B. Moreover, it
follows from Theorem 11.1 that this partition cuts edges with weight at-most η + ε = 2ε.

Now, suppose that OPT(U) ≤ ζ. Then, it follows from Theorem 11.2, that any B′-balanced parti-
tion, with B/3 ≤ B′ ≤ B, cuts at-least btεt fraction of the edges. This is due to the following: Any
partition (S, S) in IBS

ε corresponds to a proof Π in which we let the (supposed) Long Code of the
label of v to be 1 at the point x if (v,x) ∈ S, and −1 otherwise. Since B/3 ≤ B′ ≤ B, as in the
proof of Theorem 7.2, Π is 5/6 piecewise balanced and we apply Theorem 11.2.

Thus, we get hardness factor of Ω
(
1/ε1−t

)
for Balanced Separator and hence, by Lemma 6.14,

for Sparsest Cut as well.

Theorem 11.3 Assuming the UGC (Conjecture 8.2), it is NP-hard to approximate (non-uniform
versions of) Balanced Separator and Sparsest Cut to within any constant factor.

43



11.2 Inner PCP for Maximum Cut

We describe an inner PCP that reads two bits from the proof and accepts if and only if the two
bits are unequal. The verifier and the soundness analysis is due to Khot et al. [20]. The soundness
analysis uses the Majority is Stablest Conjecture (see Theorem 6.23), which has been recently
proved by Mossel et al. [27]. The hardness result for Maximum Cut follows from the standard
reduction from the PCP to a graph.

The verifier V MC
ρ is given a Unique Games instance U(G(V,E), [N ], {πe}e∈E). The verifier

expects, as a proof, the Long Code of the label of every vertex v ∈ V. Formally, a proof Π is
{Av}v∈V , where each Av ∈ {−1, 1}N is the supposed Long Code of the label of v. The verifier is
parameterized by ρ ∈ (−1, 0).

The Verifier V MC
ρ with Parameter ρ ∈ (−1, 0)

1. Pick v ∈ V with probability pv. Then, pick two edges e{v, w}, e′{v, w′}, independent of each
other, where e is picked with probability Ψv(e) and e′ with probability Ψv(e′).

2. Pick x ∈1/2 {−1, 1}N and µµµ ∈(1−ρ)/2 {−1, 1}N .

3. Let πe and πe′ be the bijections for edges e and e′ respectively. Accept if and only if

Aw(x ◦ πv
e ) 6= Aw′((xµµµ) ◦ πv

e′).

Theorem 11.4 (Completeness) For every ρ ∈ (−1, 0), if OPT(U) ≥ 1− η, then there is a proof
Π with Pr

[
V MC

ρ accepts Π
]
≥ (1−2η)(1−ρ)

2 .

Proof: Since OPT(U) ≥ 1−η, there is a labeling λ for which the total weight of the edges satisfied
is at-least 1−η. Hence, with probability at-least 1−2η over the choice of edges e{v, w} and e′{v, w′},
λ(v) = πv

e (λ(w)) = πv
e′(λ(w′)). Let the proof consist of Long Codes of the labels assigned by λ to

the vertices. With probability 1−ρ
2 , µµµλ(v) = −1. Hence, with probability at-least (1−2η)(1−ρ)

2 ,

Aw(x ◦ πv
e ) = xπv

e (λ(w)) = xλ(v) 6= (xµµµ)λ(v) = (xµµµ)πv
e′ (λ(w′)) = Aw′((xµµµ) ◦ πv

e′).

This completes the proof.

Theorem 11.5 (Soundness [20]) For any constants ρ ∈ (−1, 0) and λ > 0, there is a constant
c(ρ, λ) such that the following holds: Let U be an instance of Unique Games with OPT(U) <
c(ρ, λ). Then, for any proof Π,

Pr
[
V MC

ρ accepts Π
]
<

1
π

arccos(ρ) + λ.

Proof: The proof is by contradiction. Assume that there is a proof Π := {Av}v∈V , where Av

is the supposed Long Code for the label assigned to v, which the verifier accepts with probability
at-least 1

πarccos ρ+ λ. Then, with probability at-least λ/2 over the choice of v,

1
2
− 1

2
Ee{v,w},e′{v,w′}

 ∑
α,β

πv
e (α)=πv

e′ (β)

Âw
α Â

w′
β ρ

|α|

 ≥ 1
π

arccos ρ+
λ

2
.
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Call such a vertex v good. Fix a good vertex v. Note that e{v, w} and e′{v, w′} are identically
distributed. Hence, the above can be written as∑

α

(
Ee{v,w}

[
Âw

πw
e (α)

])2
ρ|α| ≤ 1− 2

π
arccos ρ− λ.

Let Cv(x) := Ee{v,w} [Aw(x ◦ πv
e )] . Hence,∑

α

Ĉv
α

2
ρ|α| ≤ 1− 2

π
arccos ρ− λ.

Applying the Majority is Stablest Theorem on Cv, we get that there is a coordinate, say iv, such
that Inf≤k

iv
(Cv) ≥ ζ. Here ζ, k are some constants depending on λ and ρ. Since Inf≤k

iv
(Cv) ≥ ζ,

ζ ≤
∑

α: iv∈α
|α|≤k

Ee{v,w}

[
Âw

πw
e (α)

]2
≤

∑
α: iv∈α
|α|≤k

Ee{v,w}

[
Âw

πw
e (α)

2]
.

The last inequality follows from Jensen’s Inequality. Hence,

ζ ≤ Ee{v,w}

[
Inf≤k

πw
e (iv)(A

w)
]
.

Hence, with probability at-least ζ/2 over the choice of edges e{v, w} adjacent to a good vertex v,

ζ

2
≤ Inf≤k

πw
e (iv)(A

w). (39)

The labeling
Now we define a labeling for the good vertices of the Unique Games instance U as follows: Let
Cand2[v] := {j ∈ [N ] : Inf≤k

j (Cv) ≥ ζ}, and let Cand1[v] := {j ∈ [N ] : Inf≤k
j (Av) ≥ ζ/2}.

Then, let Cand[v] := Cand1[v] ∪ Cand2[v]. Since
∑

j Inf≤k
j (Av) ≤ k, |Cand1[v]| ≤ 2k/ζ. Similarly,

|Cand2[v]| ≤ k/ζ. Further, for a good vertex v, as noted above, Cand2[v] 6= ∅. The labeling is as
follows: Pick a random i from Cand[v] and let it be the label of v. Hence, for a good vertex v,
with probability at-least ζ/3k, i ∈ Cand2[v]. Further, it follows from Equation (39), it follows that
for i ∈ Cand2[v], with probability at-least ζ/2 over the choice of e{v, w}, πw

e (i) ∈ Cand1[w]. This

will be assigned to w with probability at-least ζ/3k. Hence, this labeling satisfies at least λ
2

ζ
2

(
ζ
3k

)2

fraction of the edges. Since k, ζ depend only on λ and ρ, we can let c(ρ, λ) := λ
2

ζ
2

(
3k
ζ

)2
to complete

the proof of the theorem.

The following theorem, due to Khot et al., follows immediately from Theorems 11.4 and 11.5.

Theorem 11.6 [20] Assuming the UGC (Conjecture 8.2), Maximum Cut is NP-hard to approxi-
mate within any factor greater than αGW ≈ 0.878.
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11.3 Inner PCP for Minimum Uncut

In this section, we describe the verifier V MUC
ε . This is exactly the same as V MC

−1+2ε. We describe it
explicitly for the sake of completeness. The verifier V MUC

ε is given a Unique Games instance

U(G(V,E), [N ], {πe}e∈E).

The verifier expects, as a proof, the Long Code of the label of every vertex v ∈ V. Formally, a proof
Π is {Av}v∈V , where each Av ∈ {−1, 1}N is the supposed Long Code of the label of v. The verifier
is parameterized by ε ∈ (0, 1).

The Verifier V MUC
ε with Parameter ε ∈ (0, 1)

1. Pick v ∈ V with probability pv. Then, pick two edges e{v, w}, e′{v, w′}, independent of each
other, where e is picked with probability Ψv(e) and e′ with probability Ψv(e′).

2. Pick x ∈1/2 {−1, 1}N and µµµ ∈1−ε {−1, 1}N .

3. Let πe and πe′ be the bijections for edges e and e′ respectively. Accept if and only if

Aw(x ◦ πv
e ) 6= Aw′((xµµµ) ◦ πv

e′).

Theorem 11.7 (Completeness) For every ε ∈ (0, 1), if OPT(U) ≥ 1 − η, then there is a proof
Π with Pr

[
V MUC

ε accepts Π
]
≥ (1− 2η)(1− ε).

Proof: Since OPT(U) ≥ 1−η, there is a labeling λ for which the total weight of the edges satisfied
is at-least 1−η. Hence, with probability at-least 1−2η over the choice of edges e{v, w} and e′{v, w′},
λ(v) = πv

e (λ(w)) = πv
e′(λ(w′)). Let the proof consist of Long Codes of the labels assigned by λ to

the vertices. With probability 1− ε, µµµλ(v) = −1. Hence, with probability at-least (1− 2η)(1− ε),

Aw(x ◦ πv
e ) = xπv

e (λ(w)) 6= (xµµµ)πv
e′ (λ(w′)) = Aw′((xµµµ) ◦ πv

e′).

This completes the proof.

Theorem 11.8 (Soundness) For every t ∈ (1
2 , 1), there exists a constant bt > 0 such that the

following holds: Let ε > 0 be sufficiently small and let U be an instance of Unique Games with
OPT(U) < 2−O(1/ε2). Then, for every proof Π,

Pr
[
V MUC

ε accepts Π
]
< 1− btε

t.

Proof: The proof is by contradiction: We assume that there is a proof Π := {Av}v∈V , where Av

is the supposed Long Code for the label assigned to v, which the verifier accepts with probability
at-least 1−btεt, and deduce that OPT(U) ≥ 2−O(1/ε2). We let bt := 1−e−2

4 ct, where ct is the constant
in Bourgain’s Junta Theorem.
The probability that the verifier accepts Π is

1
2
− 1

2
Ev,e{v,w},e′{v,w′},x,µµµ

[
Aw(x ◦ πv

e )Aw′(xµµµ ◦ πv
e′)
]
.
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Using the Fourier expansion Aw =
∑

α Â
w
αχα and Aw′ =

∑
β Â

w′
β χβ, and the orthonormality of

characters, we get that this probability is

1
2
− 1

2
Ev,e{v,w},e′{v,w′}

 ∑
α,β

πv
e (α)=πv

e′ (β)

Âw
α Â

w′
β (2ε− 1)|α|

 .
Here α, β ⊆ [N ]. If the acceptance probability is at-least 1− btε

t, then,

−Ev,e{v,w},e′{v,w′}

 ∑
α,β

πv
e (α)=πv

e′ (β)

Âw
α Â

w′
β (2ε− 1)|α|

 ≥ 1− 2btεt.

Hence, over the choice of v, with probability at-least 1
2 ,

−Ee{v,w},e′{v,w′}

 ∑
α,β

πv
e (α)=πv

e′ (β)

Âw
α Â

w′
β (2ε− 1)|α|

 ≥ 1− 4btεt.

Call such vertices good. Fix a good vertex v. Now, e{v, w} and e′{v, w′} are identically distributed.
Hence, the above can be written as

−
∑
α

(
Ee{v,w}

[
Âw

πw
e (α)

])2
(2ε− 1)|α| ≥ 1− 4btεt.

If we let ε < 1/2, the contribution of α = ∅ will be negative. Hence, we may assume that Âw
∅ = 0

for every w ∈ V. Hence,

−
∑
α

(−1)|α|
(
Ee{v,w}

[
Âw

πw
e (α)

])2
(1− 2ε)|α| ≥ 1− 4btεt.

Using Jensen’ Inequality, it follows that

Ee{v,w}

[∑
α

Âw
πw

e (α)

2
(1− 2ε)|α|

]
≥ 1− 4btεt.

Hence, as in the proof of Theorem 11.2,

Ee{v,w}

 ∑
|α|> 1

ε

Âw
πw

e (α)

2

 ≤ 4
1− e−2

btε
t. (40)

For every v ∈ V, define a function Cv(x) : {−1, 1}N 7→ R as Cv(x) := Ee{v,w} [Aw(x ◦ πv
e )] . Then,

Ĉv
α = Ee{v,w}

[
Âw

πw
e (α)

]
. Combining Equation (40) with Jensen’s Inequality, for a good vertex v,∑

|α|> 1
ε

Ĉv
α

2
≤ 4

1− e−2
btε

t.
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Hence, by Bourgain’s Junta Theorem, ∑
α:|cCv

α|≤ 1
10

4−1/ε2

Ĉv
α

2
≤ 1

100
. (41)

Let α be such that |Ĉv
α| ≥ 1

104−1/ε2
. Then, Ee{v,w}

[∣∣Âw
πw

e (α)

∣∣] ≥ 1
104−1/ε2

. Hence,

Pre{v,w}

[∣∣Âw
πw

e (α)

∣∣ ≥ 1
20

4−1/ε2

]
≥ 1

20
4−1/ε2

. (42)

The labeling
Now we define a labeling for the Unique Games instance U as follows: For a good vertex v ∈ V ,
define the set of candidate labels as follows: Let Cand1[v] :=

{
α|α 6= ∅, |α| ≤ 1

ε , |Âv
α| ≥ 1

204−1/ε2
}

and Cand2[v] :=
{
α|α 6= ∅, |α| ≤ 1

ε , |Ĉv
α| ≥ 1

104−1/ε2
}
. Then, let Cand[v] := Cand1[v]∪Cand2[v]. It

follows from Parseval’s Identity that |Cand[v]| ≤ |Cand1[v]| + |Cand2[v]| ≤ 600 · 42/ε2
. Further, it

follows from Equation (41) that |Cand2[v]| 6= ∅. The labeling is as follows: Pick a random α from
Cand[v] and let a random element of α be the label of v. For a good vertex v, let α 6= ∅ ∈ Cand2[v]. It
follows from Equation 42 that for at-least 1

204−1/ε2
fraction of neighbors w of v,

∣∣Âw
πw

e (α)

∣∣ ≥ 1
204−1/ε2

.

Since 0 < |πw
e (α)| ≤ 1

ε , π
w
e (α) ∈ Cand1[w]. Hence, Cand2[v] ∩ Cand1[w] 6= ∅. Hence, this labeling

satisfies at-least
1
2
· (20 · 41/ε2

)(600 · 42/ε2
)2 · ε

edges. This completes the proof of the theorem.

The following theorem now follows immediately:

Theorem 11.9 Assuming the UGC, it is NP-hard to approximate Minimum Uncut to within any
constant factor.

12 Conclusion

We have presented a construction of an n-point negative type metric that requires distortion of
(log log n)1/6−δ to embed into `1. The best upper bound for embedding negative type metrics into
`1 (rather, into `2 ⊆ `1) is O(

√
log n log log n) by Arora, Lee, and Naor [3]. It would be nice to

close this gap. We believe that the connection between PCPs and metric embeddings, and the
general approach of using PCP reductions to construct integrality gap instances would find several
applications in future. In particular, combining the techniques in this paper with the PCP reduction
for Vertex Cover by Khot and Regev [22] may lead to new integrality gap results for Vertex
Cover.

It would be nice to give a more illuminating reason why our vectors satisfy the triangle inequality
constraints. It may be true that our vectors satisfy the so-called k-gonal inequalities for small values
of k (i.e. k = 5, 7, . . .), and, perhaps, even for all values of k. This would imply that adding the
k-gonal inequalities to the SDP relaxations does not increase their power. We leave this as an open
problem.
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The results in this paper seem to support the UGC, and resolving this conjecture remains
a major open problem. The integrality gap instance for Unique Games (Theorem 2.6) might
suggest approaches towards this goal.
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and an improved approximation to generalized sparsest cut. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 102–111, 2005.

[10] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On
the hardness of approximating multicut and sparsest-cut. In Proceedings of the Annual IEEE
Conference on Computational Complexity, number 20, pages 144–153, 2005.

[11] M. Deza and Monique Laurent. Geometry of cuts and metrics. Springer-Verlag, New York,
1997.

[12] Peter Enflo. On the non-existence of uniform homeommorphism between Lp spaces. Arkiv.
Mat., 8:103–105, 1969.

[13] Uriel Feige, Mohammad Taghi Hajiaghayi, and James R. Lee. Improved approximation algo-
rithms for minimum-weight vertex separators. In Proceedings of the ACM Symposium on the
Theory of Computing, number 37, pages 563–572, 2005.

50
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