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Abstract

We study a very basic open problem regarding the PCP characterization of NP, namely, the power
of PCPs with � non-adaptive queries and perfect completeness. Optimal results are known if one sac-
rifices either non-adaptiveness or perfect completeness. Håstad [11] constructs a � -query non-adaptive
PCP with soundness ������ but it loses prefect completeness ( �	��
 is an arbitrarily small constant).
Guruswami et al. [9] construct a � -query PCP with perfect completeness and soundness �� ��� but the
queries are adaptive. In a sharp contrast, Zwick [15] shows that a � -query non-adaptive PCP with perfect
completeness cannot achieve soundness below 
� . The lowest soundness known till now for such a PCP
is �� ��� given by a construction of Håstad [11].

In this paper, we construct a � -query non-adaptive PCP with perfect completeness and soundness���
��� ��� , which improves upon the previous best soundness of �� ��� . A standard reduction from PCPs to
constraint satisfaction problems (CSPs) implies that it is NP-hard to tell if a boolean CSP on � -variables
has a satisfying assignment or no assignment satisfies more than

���
������� fraction of the constraints.

Our construction uses “biased Long Codes” introduced by Dinur and Safra [6]. We develope new
� -query tests to check consistency between such codes. These tests are analyzed by extending Håstad’s
Fourier methods [11] to the biased case.
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1 Introduction

The celebrated PCP Theorem ([2], [1]) states that NP has probabilistic proof systems where the verifier is
extremely efficient in terms of the number of random bits used and the number of queries made to the proof.
A probabilistic polynomial-time verifier is said to be �����������
	�������� -restricted, if on an input � of length � ,
the verifier uses at most �
����� random bits and queries at most 	������ bits from the proof. For ������������� ,
let PCP ��� ��� �
�������
	������! denote the class of languages " which have a proof system where the verifier is
���
�������
	�������� -restricted and satisfies the following properties :

# Completeness : If input �%$&" , there exists a proof that the verifier accepts with probability � .
# Soundness : If �('$&" , no proof is accepted with probability more than � .
The parameters � and � are called the completeness and the soundness parameter respectively. The

queries made by the verifier could be adaptive or non-adaptive. To make this point explicit, we will denote
the corresponding classes by aPCP ��� � � �
�������
	������! (adaptive queries) and naPCP ��� � � �
�������
	)�����! (non-adaptive
queries) respectively. With this notation, the PCP Theorem can be stated as

Theorem 1.1 (The PCP Theorem [1], [2]) *,+.-0/
12+434+65 � 587�9:�<;=�?>A@2BC������;=���D�! 
In this statement we have �%EF� , i.e. when �G$H" , there exists a proof that the verifier always ac-

cepts. Such a verifier is said to have perfect completeness, which is a natural property one may desire of a
proof system. After the discovery of the PCP Theorem, a series of papers ([3], [4], [11], [9], [14]) led to
constructions of verifiers which achieve better and better trade-off between the number of queries and the
soundness parameter. Such constructions have direct implications for hardness of approximating optimiza-
tion problems, for example Max-3SAT, Max-Cut and Vertex Cover. In this paper, we study the power of
PCPs when the verifier is allowed to make only I non-adaptive queries to the proof and required to have
perfect completeness. The question we address is :

What is the smallest value of � s.t. NP - naPCP 5 � � �<;��?>J@2BC�����KIL NM
This question has been well-studied before and optimal results are known if we sacrifice either the perfect
completeness or non-adaptiveness. H åstad’s [11] famous I -bit PCP construction shows that

Theorem 1.2 ([11]) O=P6Q0�)� *,+�-0/
12+434+ 5�RTS �VUWDX S �<;��?>J@2BC�����KIL 
H åstad’s verifier loses perfect completeness and the analysis of this verifier makes an essential use of this
feature. Guruswami et al. [9] consider adaptive verifiers and prove that

Theorem 1.3 ([9]) O�P6Q0�)� *Y+�-�12+Z34+ 5 � UW[X S �<;��?>A@2B\�����KIL 
However when we require both perfect completeness and non-adaptiveness, the situation changes dramat-
ically. Zwick [15] gives a polynomial-time randomized algorithm which given a satisfiable instance of a
boolean I -CSP, finds an assignment satisfying ]^ fraction of the constraints. This result implies that

Theorem 1.4 ([15]) /
12+Z34+_5 � ] 7 ^ �<;=�?>A@2BC�����KIL `-0a4+C+
Therefore a I -query non-adaptive verifier with perfect completeness cannot achieve soundness below ]^

unless NP - BPP, in sharp contrast with the adaptive or imperfect completeness case where the verifiers
can achieve soundness

59Yb P . On the other hand, such a verifier can achieve soundness c^ b P as shown by
H åstad [11] and this result is the best known result till date.

In this paper we partially bridge the gap ( c^ vs ]^ ) between H åstad’s result and Zwick’s result, by con-
structing a 3 query non-adaptive PCP with perfect completeness and soundness of

9�d9
e�b P . The following
theorem states the main result in this paper :

2



Theorem 1.5 O=P_Q0�)� *,+.-0/
12+Z3 + 5 � W��W���X S �<;��?>A@2B\�����KIL 
A standard reduction from PCPs to CSPs (taking the bits in the proof as variables of a CSP and the tests

of the verifier as the constraints of the CSP) gives the following theorem :

Theorem 1.6 For any constant P_Q�� , it is NP-hard to tell if a boolean CSP on I -variables has a satisfying
assignment or no assignment satisfies more than

9�d9
e,b P fraction of the constraints.

Main techniques : The main technique in this paper is to use “biased Long Codes” introduced by Dinur
and Safra [6]. Their paper uses Long Codes in a very combinatorial way whereas we use Fourier analysis of
biased Long Codes, extending H åstad’s Fourier methods to the biased case. We build new PCP tests where
the verifier uses I non-adaptive queries, has perfect completeness and reasonable soundness.

The main test in the paper relies on the following observation. For � E 59 b P and 	&E ����� , let 	�

denote the distribution on a bit � where one sets � E � with probability � and �%E � with probability 	 .
Consider the following distribution on I bits ��� �
� ��� � :

��� �
� ��� �CE
������ �����
�?�)�
�)�
� � with probability 	 9
�?�)��� ���D� with probability �N	
��� �
�)���D� with probability �N	
��� ��� �
� � with probability �N	
��� ��� ���D� with probability � 9 ���N	

This distribution satisfies the following properties (which turn out to be crucial for analysis) :

# Each of the bits ���
�N��� is distributed according to 	 
 .
# The bits �����
�N��� � are pairwise independent.

# Pr � ��������� E �  � � .
This observation leads (in a straightforward manner) to a I -bit non-adaptive PCP test with perfect com-

pleteness. The fact that the triple �����
�N��� � takes only � different settings corresponds to the fact that the
PCP verifier’s test has only � satisfying assignments. One may ideally expect soundness ]^ , however the test
breaks down when the proof consists solely of � s or of � s since the verifier accepts when the bits read are
�?�)�
�)�
� � and ��� ��� ���D� . We handle this problem by combining the test with three more tests. We are then able
to show that the soundness is at most

9�d9
e6b P .
We would like to point out that H åstad’s I -bit PCP (Theorem 1.2) is based on a distribution on I bits with�(E ����� . This distribution gives non-zero probability mass to all the � settings of bits ��� �
� ��� � . However

the verifier rejects the settings for which ��� �!��� E � . These " settings have a total probability mass of P
and therefore the completeness is only �#� P .
Overview of the paper : Section 2 introduces the tools used in the paper including the 2-Prover Games, the
biased Long Codes and the Fourier Analysis. Section 3 describes the I -bit PCP tests of the verifier which is
the crux of the paper. We construct the final PCP verifier in Section 4. We conclude in Section 5 suggesting
ways to improve the results in this paper.

2 Preliminaries

2.1 Standard Framework for PCP Constructions

An equivalent statement of the PCP Theorem is the following :
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Theorem 2.1 For some constant � � � , it is NP-hard to distinguish whether a 3-SAT formula � is satisfiable
(the YES instance) or no assignment satisfies more than a fraction � of the clauses (the NO instance).

One can assume that the formula � in Theorem 2.1 has a regular structure, meaning every clause contains
exactly I variables and every variable appears in exactly � clauses. We call such a formula an instance of
3-SAT-5.

We follow the standard framework for PCP constructions developed by Bellare et al [4] and H åstad
[11]. In this framework, we first construct a 2-Prover-1-Round Game from the 3-SAT-5 instance � given by
Theorem 2.1. The PCP verifier then expects as a proof the encodings of provers’ answers in the 2-Prover
Game. The specific encoding used is the Long Code introduced by Bellare et al. The test of the verifier
consists of reading a few bits from the proof and performing a local consistency check.

2.2 The 2-Prover-1-Round Game

We will use the 2-Prover Game constructed by Khot [12] which is a slight modification of the 2-Prover
Games used earlier (see [4], [11]). The verifier in this game will be denoted by � 9 
 5�� (to distinguish it from
the PCP verifier we want to construct).

Let ��� 5 ��� 9 ��������� be the variables and �
	 5 ��	 9 ��������� be the clauses of the 3-SAT-5 instance � . The
game is parameterized by two integers 
 and � . Think of 
6����� � and these parameters can be made as
large as one wants independent of each other. The verifier � 9 
 5�� picks a set of 
�� clauses at random, say� E��
	 5 ��	 9 ����������	������ . � will be the question to the Prover � who is required to give as an answer, a
satisfying assignment to the clauses in

�
. Denoting the set of satisfying assignments to

�
by ��� , the

answer of Prover � is some � $���� . Now the verifier picks a random subset of
�

with size � , say  �E�
	"! U ��	"! W �������L��	"!$#%� where � �'& 5 �'& 9 �����T�(& � �)
�� . Each clause 	*!,+ contains I variables and the verifier
picks one of these variables at random, say � !-+ . By abuse of notation, let .�E/��� ! U ��� ! W ����������� ! #0�21 � �43  � .
Note that . is a set of � variables and �5
 � �D�6� clauses. . will be the question to the Prover � who is
required to give as an answer, an assignment to . satisfying all the clauses in . . Denoting the set of all
such assignments by �87 , the answer of Prover � is some 9 $/�87 . Note that every assignment to

�
can be restricted to an assignment to . and this is precisely the consistency check the verifier performs.
The verifier � 9 
 5�� accepts iff 9 is a restriction of � . Defining a map : �,� 7<; �=�?>@A�47 which maps an
assignment to

�
to its restriction to . , the verifier accepts iff : �,� 7 �B� �CEC9 .

We will denote by D , the set of all questions asked to the Prover � and by E , the set of all questions
asked to the Prover � . Clearly, if the formula � is a YES instance (i.e. satisfiable), the provers in this
game have a strategy that makes the verifier accept with probability � . The strategy is to fix one satisfying
assignment to � and give answers consistent with this assignment.

If the formula � is a NO instance (i.e. no assignment satisfies more than a fraction � of the clauses),
Raz’s Parallel Repetition Theorem [13] implies the following :

Theorem 2.2 If � is a NO instance, no strategy of the provers can make the verifier accept with probability
more than � � d where � d � � is an absolute constant.

We need the following smoothness property of this 2-Prover Game which is proved in Appendix B.

Lemma 2.3 For a fixed
� $FD and G(-H�I� ��G.'EKJ , we have

L 7NM �O : �PG � OPQ � �O G O b �
 �B: EK: �,� 7 �
where the expectation is taken over the choice of the question . to Prover-2 conditional on the question to
Prover-1 being

�
. In particular, if 
/R 5SBS and

O G O R 5SBT , then except with probability �2P , O : �PG � O R���� P 9 .
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As mentioned before, the PCP verifier expects as a proof, the Long Codes of provers’ answers in the
2-Prover Game. We define the Long Code and the biased version of the Long Code in the next section.

2.3 Biased Long Code and Fourier Analysis

It is convenient to change the �D�)���
� -notation to � � � � �
� -notation. Henceforth, we will assume that the
encodings/proofs will consist of � and ��� instead of bits � and � respectively.

The Long Code on a set � is indexed by all functions � ; � >@ � ��� ���
� . We denote� ; E ��� O � ; � >@ � ��� ���
� �
The Long Code � of �Y$ � is defined as

� ���)� E�� ��� � O�� $ �
A “biased” Long Code with bias ��� �H� � has a probability distribution on the indices � of the code,
where an index is selected by picking a function � with � ��� � E � � with probability � and � ��� � E � with
probability � ��� independently for all � $ � . We denote this as � $
	 	 
 �B� � . Let 	 E � ��� .

We briefly explain the Fourier analysis of biased Long Codes. It is well-known how to extend the Fourier
methods to the biased case (e.g. see [8]). One needs to identify the right orthonormal basis.

The space of all “tables” � ; � >@�� forms a real vector space with dimension ��
 ��
 where addition of
two tables is defined as pointwise addition. For example, a long code is one such table. We define an inner
product on this space as

��� 5 ��� 9 Q ; E L������������ � � � � 5 �����!� 9 �����! 
For every � $ � , define a function "�# ; � >@$� as

" # ���)�CE % �'& 	 � � if � ��� �CE � �& � � 	 if � ��� �CE �
Now we identify an orthonormal basis for the vector space. For every subset G - � , the character(*) ; � >@$� is defined as (*) ; E,+# � ) " #

With this definition, (.-0/ � and for any � $ � , (
1 #�2 E3" # . It is instructive to verify that the characters (
)
are orthonormal and we do this in Appendix A. It follows that any table � can be expressed as

� E54)76 ��8�
)9(*)

where 8�
) are real numbers called Fourier Coefficients. When the range of � is � ��� ���
� , we have

Parseval’s identity, i.e. : ) 8�
9) E � .

3 The Tests of the Verifier

The test of the verifier will be a combination of " tests, 
 5 � 
 9 � 
<; and 
�= . The verifier will perform the "
tests with probabilities to be decided later. Let us fix � E 59 b P and let 	 E � � � . The parameters P�� 
6��� are
chosen in the following way : Given P arbitrarily small, we choose 
 E 5SBS and then choose � sufficiently
large. This particular order is necessary in the analysis.
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3.1 The Test � 5
The test 
 5 is based on the I -bit distribution described in the introduction.

Test 
 5
1. Pick a random set

� $ D and its random sub-set . $ E as the verifier � 9 
 5�� would do. Let � ��� be
the supposed Long Codes of assignments to

�
and . respectively. Let : E : �,� 7 be the projection

between
�

and . .

2. Pick functions � $ 	 	 
 �B�I7 � and � $ 	 	 
 �B�4� � independently.

3. Define a function � ; �C� >@ � � � ���
� as follows : For every � $ ��� ,

# If � �B: � �
��� E � and � � �
� E � , define � � �
� E �
# If � �B: � �
��� E � and � � �
� E � � , define � � �
�CE � �
# If � �B: � �
��� E � � and � � �
�CE � , define � � �
�CE � �
# If � �B: � �
���4E � � and � � �
� E � � , define � � �
� E � with probability 	 � � and define � � �
� E � �

with probability �#� 	 � � .
4. Accept iff the triple ��� ��� ����� ���)����� ���N���,$  5 where

 5 ; E/� ��� ��� ���D���D��� � � � � � �D��� � � � �D� ��� �D���D��� � � � �2���D� �D� ���2� � � ��� �D� �
3.2 Completeness

Note that when the 3-SAT-5 formula � is satisfiable, the provers in the 2-Prover Game have a strategy that
makes the verifier � 9 
 5�� always accept. Consider a proof obtained by encoding the provers’ answers by
correct long codes. For this proof, � ��� are Long Code of some �0$)� 7 and � $)�4� with : � ��� EG� .
Now by definition of Long Code, ��� ��� ����� ��������� ��� ��� E ��� ��� ��� � � ��������� ����� E ��� �B: � ������� � � ��������� ����� and
we note that the test always chooses ��� � �T���N� so that

��� �B: � �
����� � � �
����� � �
���6$  5 O � $ �4�
Therefore the PCP verifier always accepts, i.e. it has perfect completeness.

3.3 Soundness

Now consider the case when the formula � is a NO instance. We will bound the acceptance probability of
the verifier using Fourier analysis methods.

Lemma 3.1 When ���
�N��� $ � � � ���
� , the expression

� � � � � � � b ��� b � � b � � b I ��� ��
takes value � when ��� �
� ��� � $  5 and � otherwise.

Using this lemma, the acceptance probability of the verifier can be written as the expression

Pr[Acc] E L �,� 7)� � � � � 	 M ���
� ��� � � � ����� � � ���N� b � ��� �!� ���)� b � ��� �!� ���N� b � ���)�!� ���N� b I�� ��� �!� ���)�!� ���N�� Q
(1)
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Lemma 3.2 In Test 
 5 , the function � is identically distributed as the function � (i.e. both are distributed
according to 	 
 �B�4� � ) and the functions ��� � ��� and ��� ���N� are pairwise independent.

It follows from this lemma thatL � � � ��� �! E 8�
- � L � � � �����! E L 	 � � ��� �! E 8�

-L � � � � � ��� �!� ���)�! E L � � 	 � � ��� �!� ���N�! E 8�
-
8�
-

We postpone the analysis of the term
L � � 	 � � ���)�!� ��� �! and look at the “interesting term”L �,� 7 � �[� � � 	 � � ��� �!� ���)�!� ���N�! 

Using Fourier expansions of � and � , we get

L �,� 7 � � � � � 	 � 4� � ) � � 8�
�
8�
)
8�����
( � ��� � (*) ����� ( � ��� �! 

Because of pairwise independence of ��� � ��� and ��� ���N� , it follows that the expectation is non-zero only
if G E�� and �(-(: �PG � . Thus the expression reduces to

L �,� 7 � � � � � 	 � 4� � )	� � 6�
 � ) � 8�
�
8�
9) � ( � ��� � ( ) ���)� ( ) ��� �! (2)

We need the following technical lemma which is proved in Appendix C.

Lemma 3.3 If G -(�I� , �(-(: �PG � and for every � $ : �PG`�
� # ; E O � � O � $ GC� : � �
� E�� � O (3)

then in Test 
 5 we have

L � � � � 	 � ( � ��� � (*) ����� (*) ���N�! E +# � 
 � ) � � �


	 b � � � 	� � ����� � +# � ��� �N	



�#�.� � 	� � �����

In particular, this expectation has magnitude at most � .

Define ���PG �CE 4� 6�
 � ) � � ���� - 8�
� L �[� � � 	 � ( � ��� � (*) ���)� ( ) ��� �! 

Thus expression (2) can be written as (with expectation over
� � . implicit),

8�
-
8�
9- b 8�

- 4) �� - 8�
9) +# � 
 � ) �



	 b �`� � 	� � � ��� b 4) �� - � 
 ) 
 � 587�SBT 8�

9) ���PG`� b 4) �� - � 
 ) 
 � 587�SBT 8�
9) ���PG`� (4)

We upper bound the second, third and the fourth terms separately. Note that

O ���PG � O � 4� 6�
 � ) �
O
8�
� O +# � 
 � ) � � �����

	 b � � � 	� � ��� ���
� +# � � ��� �

�N	 
 �#��� � 	� � ��� � ���
� 4� 6�
 � ) � 8�

9����� 4� 6�
 � ) � +# � 
 � ) � � �����
	 b � � � 	� � ��� ���

9 � +# � � ��� �
�N	 
 �#�0� � 	� � ��� � ���

9
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� ��� +# � 
 � ) �
�
���
	 b � � � 	� � � � ���

9
b ��� �

� 	 
 � ��� � 	� � � � � ���
9��

E +# � 
 � ) �


	 b � � 	� � 9 � � �

� ���#� �2P�� 
 
 � ) � 
 7�9
Consider the expectation over the choice of . . When

O G O Q ��� P ; , using Lemma 2.3, except with
probability �2P , we have

O : �PG � O R ��� P 9 and consequently
O ���PG � O � ��� ���2P � 587 � 9�S W � � P . This upper bounds

the third term in expression (4). The fourth term is

��������
4������
	�� � � 
 U���� T 	� �����	 ������� ��� 8�

9)
8�
� L � � � � 	 � ( � ��� � (*) ����� (*) ���N�! ��������

� 4) �� - � 
 ) 
 � 587�S T � � 6�
 � ) � � ���� - 8�
9) O
8�
� O

� 4
 ) 
 � 587�SPT � � 6�
 � ) � 8�
9) 4) �� - � 
 ) 
 � 587�SBT � � 6�
 � ) � � ���� - 8�

9� 8�
9)

� & � 587�SBT 4) �� - � 
 ) 
 � 587�SBT � � 6�
 � ) � � ���� - 8�
9� 8�

9) (5)

Now note that expression (5) (with the outer expectation over
� � . ) gives a way of defining provers’

strategy in the 2-Prover Game. On question
�

, Prover- � picks G - � � with probability 8�
9) , picks a

random �0$(G and gives it as an answer. On question . , Prover- � picks � - � 7 with probability 8�
9� ,

picks a random � $ � and gives it as an answer. Expression (5) gives the probability that � -4: �PG`� ,O G O � ��� P ; and � 'E�J . With a further P ; probability, we have : � ��� E � and the verifier in the 2-Prover
Game accepts. However by Theorem 2.2 the acceptance probability of the 2-Prover Game can be assumed
to be arbitrarily small (by choosing � large enough) and hence expression (5) can be upper bounded by P .

Now we are left with the second term in equation (4) and the term
L � � 	 � � �����!� ��� �! . We observe that

both these terms look alike and can be bounded simultaneously.L � � 	 � � ���)�!� ��� �! E L � � 	 � 4 ) � � 8�
)
8� �
(*) ����� ( � ���)�! 

E 4 ) 8�
9) L � � 	 � ( ) ���)� ( ) ��� �! 

E 8�
9- b 4) �� - 8�

9) +# � 
 � ) � �?	 b � � �
	� � � � � (6)

� 8�
9- b 4

5 �*
 ) 
 � 587�SBT 8�
9) +# � 
 � ) � �?	 b � � �

	� � � � � b 4
 ) 
 � 587�SBT 8�
9) ��� � �2P�� 
 
 � ) � 
 (7)

where computing the expectation in equation (6) is a special case of Lemma 3.3 with � E J . When
O G O �

��� P ; , Corollary B.2 implies that except with probability
O G O � 
 ��P , there exists �%$ : �PG � such that � # E � .

When � # E � , the product in (6) vanishes. When
O G O Q���� P ; , Lemma 2.3 implies that except with probability�2P , O : �PG`� O R ��� P 9 and consequently ���#� �2P���
 
 � ) � 
 is a negligible quantity.

Combining all the bounds proved so far, the acceptance probability of the test 
 5 can be bounded by,

Pr[Acc] � L �,� 7 M ��� 8�
- ��� 8�

- b � 8�
-
8�
- b 8�

9- b I 8�
-
8�
9-

� Q b ;��VP � (8)
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3.4 The Test � 9
The Test 
 9 is a variation of the Test 
 5 . After picking functions � � � , the verifier picks � in a different way
and the acceptance condition is also different.

Test 
 9
1. Pick a random set

� $ D and its random sub-set . $ E as the verifier � 9 
�� � would do. Let � ��� be
the supposed Long Codes of assignments to

�
and . respectively. Let : E : �,� 7 be the projection

between
�

and . .

2. Pick functions � $ 	 	 
 �B�I7 � and � $ 	 	 
 �B�4� � independently.

3. Define a function � ; �C� >@ � � � ���
� as follows : For every � $ ��� ,

# If � �B: � �
��� E � and � � �
� E � , define � � �
� E � �
# If � �B: � ������E � and � � �
��E � � , define � � �
��E � with probability 	 � � and define � � �
��E � �

with probability �#� 	 � � .
# If � �B: � �
��� E � � and � � �
�CE � , define � � �
�CE �
# If � �B: � �
��� E � � and � � �
�CE ��� , define � � �
� E � �

4. Accept iff the triple ��� ��� ����� ���)����� ���N���,$  9 where

 9 ; E � ��� ��� � � �D���D��� � ��� ���D���D���2� � � ��� �D��� � � � �D� �D�D���L� ��� ��� � � � �D���
It is clear that the test has perfect completeness. To analyze the soundness, we arithmetize the acceptance

condition as,

Pr[Acc] E L �,� 7)� � � � � 	 M � b � ��� � � � ����� � � ���N� � � ��� �!� ���)� � � ��� �!� ���N� b � ���)�!� ���N� � I�� ��� �!� ���)�!� ���N�� Q
(9)

Note that in Test 
 9 , � is distributed identically as � . Also, ��� � ��� and ��� ���N� are pairwise independent.
The test 
 9 can be analyzed along more or less the same lines as the test 
 5 and it can be shown that

Pr[Acc] � L �,� 7 M � b 8�
- ��� 8�

- ��� 8�
-
8�
- b 8�

9- � I 8�
-
8�
9-

� Q b ;��VP � (10)

We omit the proof. However we state equivalent of Lemma 3.3 for the test 
 9 as Lemma D.1.

3.5 The Test � ;
The test 
<; is a Not-All-Equal test on a supposed Long Code � . Note that tests 
 5 � 
 9 check consistency
between two tables � and � . However, test 
 ; is a test on a single table � .

Test 
<;
1. Pick a random set

� $FD and let � be the supposed Long Code of the assignment to
�

.

2. Pick I functions � 5 � � 9 � � ; ; �4� >@ � ��� ���
� , where for every � $ ��� , we set

��� 5 � ����� � 9 � �
��� ��;:� �
���CE % � � � ��� ���D���D��� � ��� ���D���D��� ���2� � �D� with probability
9; ��� each

��� � � � � ���D���D� � � ��� � � �D���D� � � ����� ���L� with probability � � 5; each

9



3. Accept iff Not-All-Equal � � ��� 5 ����� ��� 9 ����� ��� ;L���
Clearly, the test always accepts a correct Long Code and has perfect completeness. We note that each� ! $ 	 
 �B�4� � , however there is no independence between any pair of them. Arithmetizing the Not-All-

Equal predicate, we get

Pr[Acc] E L �,� � U � � W � � T M I � � ��� 5 �!� ��� 9 � � � ��� 9 �!� ��� ;D� � � ����;D�!� ��� 5 �" Q (11)

This expression can be shown to be (see Appendix E)

Pr[Acc] E L � M I�� I : ) 8�
9) 
 �.� 5; 587 = X ; S W587 = RTS W � � 
 ) 

" Q

� L � M I�� I 8�
9- b I � � 5; b P � : ) �� - 8�

9)
" Q

E L � M I�� I 8�
9- b I�� 5; b P � ���#� 8�

9- �" Q
� L � � �#� 8�

9-  b P (12)

3.6 The Test � =
This test is also on a supposed long code � .

Test 
 =
1. Let � be the supposed Long Code of the assignment to a random

�
in D .

2. Pick I functions � 5 � � 9 � � ; ; �4� >@ � ��� ���
� , where for every � $ ��� , we set

��� 5 � �
��� � 9 � �
��� ��; � ����� E
�� � � � � � � � ���D� with probability � � �0�
� � � ��� ���D���D��� � � � ���D� with probability � � ; 
9 each
� � � ��� � � �D���D��� � ��� � � �D� with probability


 9 each

3. Accept iff � � ��� 5 ����� ��� 9 ����� ��� ;L��� 'EG� � � � � � � � �D�
We can see that the test accepts a correct Long Code and has perfect completeness. In the No case, we

split the probability of acceptance in the following manner,

Pr[Acc] � Pr[ � � ��� 5 ����� ��� ; ��� 'EG� � � � � �D� ] b Pr[ � ��� 9 � E � � � ��� ; � E ��� ] (13)

Arithmetizing the terms we get (see Appendix F for details),

Pr[ � � ��� 5 ����� ��� ;L���Y'E � � � � ���D� ] E L �,� � U � � T M I b � ��� 5 � b � ��� ;D� � � ��� 5 �!� ��� ;D�" Q
� L � M I b � 8�

- � 8�
9-

" Q b ;=�VP�� (14)

and

Pr[ � ��� 9 � E � � � ��� ;�� E � � ] E L �,� � W � � T M � b � ��� 9 � � � ��� ;D� � � ��� 9 �!� ��� ;D�" Q
� L � M � � 8�

9-
" Q b ;��VP�� (15)
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Combining (13), (14) and (15) we get,

Pr[Acc] � L � M � b 8�
-
� � 8�

9-
� Q b ;=�VP�� (16)

4 The Final PCP and Proof of Theorem 1.5

Now we are ready to construct the final PCP verifier. Let �<R � be a parameter to be chosen later. The
verifier perform the tests with the following probabilities.

Verifier performs test

������������������ �����������������


 5 with probability
"�� b "
� � b�� �


 9 with probability
"�� b "
� � b�� �


 ; with probability
�

� � b�� �

�= with probability

"
� � b�� �

We have,

Pr[Acc] � L �,� 7 M 
 "�� b "� � b�� � �
��� 8�

- � � 8�
- b � 8�

-
8�
- b 8�

9- b I 8�
-
8�
9-

� b

 "�� b "
� � b�� � �

� b 8�
- � � 8�

- � � 8�
-
8�
- b 8�

9- � I 8�
-
8�
9-

�
b

 �
� � b�� � � ���#� 8�

9- � b 
 "
� � b�� � �



� b 8�

-
� � 8�

9-
� � Q b ;��VP��

Simplifying and omitting the expectation over .Z� � we get,

Pr[Acc] �
� � b�� ��� 8�

9- b ��� 8�
- �

� � b�� � b ;=�VP��

E
� � b��_b � 9 �.� 8�

- b ��� 9
� � b�� � b ;=�VP��

�
� � b��_b � 9
� � b�� � b ;��VP�� (17)

Now the above expression is minimized for � E 5; . At this value we get Pr[Acc] � 9�d9
e b ;��VP � � ;= , for P
small enough. This gives us an improvement over the previous bound. This proves the main result in the
paper, i.e. Theorem 1.5.

5 Conclusion

We constructed a I -query non-adaptive PCP with perfect completeness and soundness below c^ . This makes
a partial progress on a fairly long-standing problem. However, it seems difficult to construct a PCP with

11



soundness ]^ b P and new ideas seem to be needed. Or perhaps there are algorithms that do better than ]^ on
satisfiable I -CSPs.

We hope that the techniques in this paper would be useful to settle some other open problems regarding
the power of PCPs with a small number of queries. For example, can a " -query PCP achieve soundness
below

59 even with imperfect completeness ?
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A Orthonormality of Characters ���

We have

� ( ) � ( ) Q0E L � M (*) ���)� 9 Q E L � M +# � ) " #
���)� 9 Q E +# � )
L � M " #������ 9 Q E �

where in the last step we note that since �($ 	 	 
 �B� � , we have " # ���)� E � & 	 � � with probability � and" # ���)�CE & � � 	 with probability 	 . Therefore
L � M " # ���)� 9 Q E�� �L	 � � b 	 � � � 	�E �

When G�'E�� , assume w.l.o.g. that � d $ G 3 � . Then

� (*) � ( �=Q E L � M " # � ���)� +# � ) � 1 # � 2 " # ����� +#�� � � " #�� ���)� Q
E L � M " # � ���)� Q � L � M +# � ) � 1 # � 2 " # ���)� +#�� � � " # � ���)� Q
E �

where we used the fact that
L � M " # � ���)� Q E�� � � �'& 	 � � � b 	 � � & � � 	:� E � .

B Proof of Lemma 2.3

First we prove the following lemma.

Lemma B.1 For any � �
� $ ��� , �('E � , +�� 7Z� : ��� �CEK: � ���! � 5�
Proof: Assume that

� E �
	 5 ��	 9 �������D��	�� �0� and assume w.l.o.g. that assignments � and � differ on the
clause 	 5 . Now consider the process of picking a random . . One picks a subset  - � of size � at random
and replaces the clauses in  by variables. If � denotes this set of variables, then . E�� 1 � � 3  C� . With
probability � � 5� , we have 	 5 '$  , therefore 	 5 $'. and consequently, the restrictions of assignments �
and � to the set . are distinct. This proves the claim.

Corollary B.2 For any fixed
� $ D and any G - ��� ��GF'E J , over the choice of . , except with

probability 
 ) 
� , there exists � $ G such that

O �
	=$ G �
�
	 'E �N� : � ��	 �Y'EK: � �
�
Proof: Fix any � $ G . Apply Lemma B.1 to � �N�
� 	 � for every � 	 $ G �
� 	 'E � and then take a union
bound.

Now we prove Lemma 2.3. According to Lemma B.1, for any � 'E � , their “collision probability” via
the map : is small. Therefore, : must map “large” sets to “large” sets with high probability. To be precise,
for any G(-(�I� ��G.'E J , we have L 7 M �O : �PG � O Q � �O G O b �

Proof:

L 7NM �O : �PG � O Q � L 7NM Pr # � � � ) � : ��� �CEK: � �
�! Q
13



� L 7 M �O G O b Pr � 	 ��� � 	� ���� � : ��� �\EK: � ���! Q
E �O G O b L � 	 ��� � 	� ���� M Pr 7 � : ��� � EK: � �
�! Q
� �O G O b �


C Proof of Lemma 3.3

It suffices to consider the case when
O : �PG � O E � , i.e. all elements of G -<� � map to the same element of�I7 . The general case follows by considering every � $ : �PG � separately. In the special case when

O : �PG � O E
� , let : �PG �,E ��� d � and we have � # � E O G O . We will compute the desired expectation by carefully looking
at the way � ��� d ��� � � �
����� � �
� are defined in the Test 
 5 . We consider the two possibilities � E ��� d � E : �PG �
and � E J separately.

C.1 Calculation for ���	��

���

We want to compute L � � � � 	 � ( � ��� � ( ) ���)� ( ) ���N�! E L � � � � 	 � " # � ��� � +
�
� ) " �)���)� " �)��� �! (18)

Case i : � ��� d �6E � which happens with probability 	 . In this case, " # � ��� �_E & � � 	 . After fixing � ��� d � ,
the values ��� � ��������� ����� are picked independently for different � $ G . Thus

L � � 	 � +
�
� ) " �)���)� " �)��� �! E +� � ) L

� � 	 � " � ���)� " �����N�! E 
 L � � 	 � " � � ���)� " � � ���N�! � 
 ) 
 (19)

where � d $ G is any fixed element. To compute this expectation, note that after fixing � ��� d � E � , one sets

��� � � d ����� � � d ��� E % ��� ���D� with probability 	
� � � � � �D� with probability �

Thus the last expectation in (19) is 	 � & � � 	 & � � 	 b � � � � & 	 � � � � � � & 	 � � � E �
Case ii : � ��� d � E ��� which happens with probability � . In this case " # � ��� � E � & 	 � � and equation (19)
holds again. To compute this expecctation, we note that after fixing � ��� d � E � � , we set

��� � � d ����� � � d ���CE
�� � ��� � ���D� with probability 	
� ��� ���D� with probability 	
� ��� � � �D� with probability � � 	

Thus the last expectation in (19) is

	 � & � � 	 � � � & 	 � � � b 	 � � � & 	 � � � � & � � 	 b � ��� 	:� � � � & 	 � � � � � � & 	 � � � E �_	 � �
Combining the two cases, the expectation in equation (18) is

	 � & � � 	 � ���D� 
 ) 
 b � � � � & 	 � � � � � �_	 � � � 
 ) 
 E � �N	 �


� ��� �_	 � � � 
 ) 
 � (20)

as desired.
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C.2 Calculation for �����

We want to compute L � � � � 	 � ( - ��� � (*) ���)� (*) ���N�! E L � � � � 	 � +
�
� ) " � ���)� " �����N�! (21)

This calculation is very similar to the calculation for the expectation (18), except that we do not multiply by" # � ��� � . From equation (20), the desired expectation can be written as

	 � ���D� 
 ) 
 b � � � �_	 � � � 
 ) 
 E 	 b �`� �_	 � � � 
 ) 

D Main Technical Lemma for Test ���

We state a technical lemma needed for analysis of Test 
 9 .
Lemma D.1 If G -(�I� , �(-H: �PG � and for every �%$ : �PG �

� # ; E O � � O � $ GC� : � �
� E�� � O (22)

then in Test 
 9 we haveL � � � � 	 � ( � ��� � ( ) ���)� ( ) ���N�! E +# � 
 � ) � � �

 � b 	�� � 	� � � � � � +# � ��� � 	


 �0� b � � 	� � � � �
In particular, this expectation has magnitude at most � .

Using this Lemma, the test 
 9 can be analyzed in almost the same way as the test 
 5 .
E Soundness Analysis for Test � �
We will analyze

L � � ��� 5 �!� ��� 9 �! , the remaining two terms are identical.L �
U �
� W � � ��� 5 �!� ��� 9 �! E L �

U �
� W � 4 ) � � 8�

)
8� �
(*) ��� 5 � ( �N��� 9 �! 

E 4 ) 8�
9) L � U � � W � ( ) ��� 5 � (*) ��� 9 �! 

E 4 ) 8�
9) 
 � �

I
��� " b I2P 9
��� " � P 9 � 


) 

where we used the fact that � 5 $*	�	 
 �B�4� � , � 9 $ 	 	 
 �B�4� � and therefore expectation is non-zero only
when G E�� . The expectation on the last line can be compted explicitly. This proves equation (12).

F Soundness analysis of Test ���

We want to analyse the term,

Pr[ � � ��� 5 ����� ��� 9 ��� 'E � � � � � �D� ]
E L �,� � U � � W M I b � ��� 5 � b � ��� ;D� � � ��� 5 �!� ��� ;D�" Q
E �"



I b L �,� � U � � ��� 5 �! b L �,� � T � � ��� ; �! � L �,� � U � � T � � ��� 5 �!� ��� ; �! � (23)
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Now,
L �,� � U � � ��� 5 �! E L �,� � T � � ����;D�! E L � � 8�

-  . Also,

L �
U �
� T � � ��� 5 �!� ����;D�! E L �

U �
� T � 4 ) � � 8�

)
8� �
(*) ��� 5 � ( �N��� ;D�! (24)

E 4 ) 8�
9) L � U � � T � (*) ��� 5 � ( ) ��� ;D�! 

E 4 ) 8�
9) L � U � � T � +� � ) " � ��� 5 � " � ��� ; �! 

E 4 ) 8�
9) � +
�
� ) L � U � � T � " �)��� 5 � " � ��� ;D�! A 

E 4 ) 8�
9) � L � U � � T � " � � ��� 5 � " � � ����;D�! �� 
 ) 
 (25)

The distribution of ��� 5 � � d ��� � ; � � d ��� is as follows,

��� 5 � � d ��� � ;:� � d ��� E
���� ���
� � � ���D� with probability � ���
��� � � �D� with probability � ���
��� ���D� with probability � �.�VI � ���:�
� � � � � �D� with probability � ���

Therefore, we get,

L �
U �
� T � " � � ��� 5 � " � � ����;D�! E � � � � �

� �
	 �


 � � 	� � b


�#� I �� � � � 	 b � � � 	� (26)

E � � b � 	 � I � 9
	 b 	 �

E � � �N	 b � ��� � � 9 	 b 	 9� 	
E � � � ��� � � � b � � � � � 9 ���#��� � b ���#��� � 9� 	
E

� � ; � I � 9 ��� � b �� 	
E �� 	 M �


 �� b P � ; � I 
 �� b P � 9 ��� 
 �� b P � b � Q
E � �VP � (27)

where, � �VP � is ;��VP � . Using this we get,L �
U �
� T � � ��� 5 �!� ��� ; �! E 4 ) 8�

9) � L � U � � T � " � � ��� 5 � " � � ��� ; �! �� 
 ) 

E 4 ) 8�

9) �P�`�VP���� 
 ) 

E 8�

9- b ;��VP�� (28)

which gives us that,

Pr[ � � ��� 5 ����� ��� 9 ��� 'E � ��� � � �D� ] � L � M I b � 8�
- � 8�

9-
" Q b ;=�VP�� (29)
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Now we analyse the term,

Pr[ � ��� 9 � E � � � ��� ;D� E � � ]
E L �,� � W � � T M � b � ��� 9 � � � ����;�� � � ��� 9 �!� ����;D�" Q
E


 � b L �,� � W � � ��� 9 �! � L �,� � T � � ��� ;D�! � L �,� � W � � T � � ��� 9 �!� ����;D�! " �
(30)

Now,
L �,� � W � � ��� 9 �! _E L �,� � T � � ��� ; �! _E L � � 8�

-  . We also notice that the distribution of ��� 9 � � d ��� � ; � � d ���
and ��� 5 � � d ��� � ;:� � d ��� is identical and therefore we get that,

L � W � � T � � ��� 9 �!� ��� ;D�! E 8�
9- b ;��VP � (31)

which gives us that,

Pr[ � ��� 9 � E � � � ��� ;[�CE � � ] � L � M � � 8�
9-

" Q b ;=�VP�� (32)
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