V22.0453-001: Honors Theory of Computation
 Problem Set 4
 Due Dec 9, 2005

All problems are worth 10 points.

Problem 1

Answer whether each of the following languages is decidable, and justify your answer. You may find Rice's Theorem useful for some parts.

1. $\{\langle M, w, t\rangle: M$ halts on w in t steps $\}$
2. $\{\langle M\rangle: \varepsilon \in L(M)\}$
3. $\{\langle M\rangle: M$ halts on $\varepsilon\}$
4. $\{\langle M\rangle: M$ halts on some input $\}$
5. $\{\langle M\rangle: L(M)$ is context-free $\}$

Problem 2

For each of the following statements, state whether it is TRUE or FALSE, and justify your answer.

1. \exists constants $c<d$ such that $n^{d}=O\left(n^{c}\right)$
2. $10^{10} \cdot n^{1000}=O\left(2^{0.001 n}\right)$
3. $n^{10}=O\left(2^{\log ^{2} n}\right)$
4. $2^{\sqrt{\log n}}=O(\sqrt{n})$
5. $n^{\log n}=O\left(2^{\sqrt{n}}\right)$

Problem 3

Show that P is closed under the star operation (Hint: Use dynamic programming.) Recall that for a language L,

$$
L^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0, x_{i} \in L \forall 1 \leq i \leq k\right\}
$$

Problem 4

Let DOUBLE-SAT $=\{\langle\phi\rangle \mid \phi$ is a boolean formula that has at least two satisfying assignments $\}$. Show that DOUBLE-SAT is NP-complete.

Problem 5

Problem 7.22 on Page 273 of Sipser (Problem 7.24 on page 296 in the new edition. This is the problem about \neq-SAT problem).

Problem 6

Problem 7.23 on Page 273 of Sipser (Problem 7.25 on page 296 in the new edition. This is the problem about MAX-CUT problem).

