V22.0453-001: Honors Theory of Computation

Problem Set 2

All problems are worth 10 points. Due on Oct 21, 2010.

Problem 1

Prove that the following languages are not regular:

1. $\left\{0^{n} 1^{m} 0^{n} \mid n \geq 0\right\}$
2. $\{w \mid w$ is not a palindrome $\}$

Problem 2

Consider a new kind of finite automaton called an All-Paths-NFA. An All-Paths-NFA M is a 5 tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$ that accepts $x \in \Sigma^{*}$ if every possible computation of M on x ends in a state from F. Note, in contrast, that an ordinary NFA accepts a string if some computation ends in an accept state. Prove that All-Paths-NFAs recognize the class of regular languages.

Problem 3

If A is a language, let $A_{-\frac{1}{2}}$ be the set of all first halves of strings in A so that

$$
A_{-\frac{1}{2}}=\{x \mid \text { for some } y,|x|=|y|, \text { and } x y \in A\}
$$

Show that if A is regular, so is $A_{-\frac{1}{2}}$.

Problem 4

Give context-free grammars that generate the following languages. Also give informal description of the PDAs accepting these languages. The alphabet is $\{0,1\}$.

1. $\{w \mid$ length of w is odd $\}$
2. $\{w \mid w$ contains more 1s than 0 s$\}$
3. $\{w \mid w$ is a palindrome $\}$

Problem 5

For a language A, let $\operatorname{SUFFIX}(A)$ denote the set of all suffixes of strings in A, i.e.

$$
\operatorname{SUFFIX}(A)=\{v \mid u v \in A \text { for some string } u\}
$$

Show that if A is a context-free language, so is $\operatorname{SUFFIX}(A)$.

Problem 6

Use the pumping lemma to show that the following languages are not context free:

1. $\left\{0^{n} 1^{n} 0^{n} 1^{n} \mid n \geq 0\right\}$
2. $\left\{0^{i} 1^{j} \mid i \geq 1, j \geq 1, i=j k\right.$ for some integer $\left.k\right\}$
