Homework II G22.3033-002 Computational Complexity

February 23, 2009

You are expected to solve all the problems, but for grading purposes, submit written solutions to any 4 of the problems. Due on Mon, March 16^{th} . Collaboration is allowed; please mention your collaborators.

1. Show that $\Sigma_k = NP^{SAT_{k-1}}$.

We define $L \in \Sigma_k$ if and only if there is a deterministic polynomial time verifier V such that

$$x \in L \iff \exists y_1 \ \forall y_2 \cdots \ Q_k y_k \ V(x, y_1, \cdots, y_k) = 1$$

where length of y_1, y_2, \ldots, y_k is bounded by a polynomial in |x|.

- 2. Show that $P^{PSPACE} = NP^{PSPACE} = PSPACE$
 - Show that if PH = PSPACE, then PH collapses to some finite level.
 - Can PH have a complete problem (complete under polynomial time reductions)?
- 3. (**DP-completeness**) This problem studies the class DP (D stands for difference). A language $L \in DP$ if and only if there are languages $B \in NP$ and $C \in coNP$ so that $L = B \cap C$.
 - The problem SAT-UNSAT is defined as follows: Given Boolean formulae ϕ, ψ , decide if ϕ is satisfiable And ψ is unsatisfiable. Show that this problem is DP-complete (under polynomial time reductions).

- ullet A graph G is in HC-CRITICAL is G is not Hamiltonian but adding any edge to G will make it Hamiltonian. Show that HC-CRITICAL is in DP.
- 4. Show that NP^{BPP} ⊆ BPP^{NP} (Hint: First show that a language in NP^{BPP} is accepted by a polytime NTM that makes a single query to a BPP oracle and that too at the end).
 - Show that if $NP \subseteq BPP$, then PH collapses to BPP.
- 5. (NEXP-completeness) Define NEXP = $\bigcup_{k=1,2,...}$ NTIME(2^{n^k}). Show that the following problem is NEXP-complete: Given < M, x, n >, consisting of description of a NTM M, input x and an integer n in binary, does M have an accepting computation on x in n steps.
- 6. A circuit C is called an *implicit representation* of another circuit C^* if C takes as input a binary integer i such that $n+1 \leq i \leq N$, and outputs a triple (TYPE, j, k) where
 - Input to C^* is an *n*-bit string $x_1x_2...x_n$.
 - TYPE \in {AND, OR, NOT} indicates the type of i^{th} gate in circuit C^* .
 - $1 \le j, k \le N$.
 - The input of the i^{th} gate in C^* is the output of the j^{th} and k^{th} gates of C^* (if TYPE= NOT, then k is ignored. If $1 \leq j, k \leq n$, then the j^{th} or k^{th} gate is taken to be an input bit x_i).
 - The N^{th} gate in C^* is its output gate.

Note that we could have $N = 2^n$, the circuit C could be of size $\operatorname{poly}(\log N) = \operatorname{poly}(n)$ and still implicitly represent a circuit C^* of size N (in short, a circuit can implicitly represent another circuit of size exponential in its own size).

Let IMPLICIT CIRCUIT-SAT be the following problem: Given a circuit C that is an implicit representation of circuit C^* , decide if C^* is satisfiable. Show that this problem is NEXP-complete (Hint: Use the regular structure of the circuit produced in Cook's reduction).

- 7. Show that $NP^{NP \cap coNP} = NP$.
 - Generalize this to $NP^{\Sigma_k \cap \Pi_k} = \Sigma_k$.

- 8. The problem Graph Consistency (GC) asks, for two given sets A and B of graphs, whether there exists a graph G such that every graph $g \in A$ is isomorphic to a (not necessarily induced) subgraph of G but each graph $h \in B$ is not isomorphic to any subgraph of G. Show that GC is in Σ_2 . (Optional: show that it is Σ_2 -complete).
- 9. Show that if $\Sigma_k = \Pi_k$ for some k, then $PH = \Sigma_k$.