Homework II

G22.3033-002

Computational Complexity

February 23, 2009

You are expected to solve all the problems, but for grading purposes, submit written solutions to any 4 of the problems. Due on Mon, March $16^{\text {th }}$. Collaboration is allowed; please mention your collaborators.

1. Show that $\Sigma_{k}=\mathrm{NP}^{S A T_{k-1}}$.

We define $L \in \Sigma_{k}$ if and only if there is a deterministic polynomial time verifier V such that

$$
x \in L \Longleftrightarrow \exists y_{1} \forall y_{2} \cdots Q_{k} y_{k} \quad V\left(x, y_{1}, \cdots, y_{k}\right)=1
$$

where length of $y_{1}, y_{2}, \ldots, y_{k}$ is bounded by a polynomial in $|x|$.
2. - Show that $P^{\text {PSPACE }}=$ NP $^{\text {PSPACE }}=$ PSPACE

- Show that if PH = PSPACE, then PH collapses to some finite level.
- Can PH have a complete problem (complete under polynomial time reductions) ?

3. (DP-completeness) This problem studies the class DP (D stands for difference). A language $L \in D P$ if and only if there are languages $B \in \mathrm{NP}$ and $C \in \mathrm{coNP}$ so that $L=B \cap C$.

- The problem SAT-UNSAT is defined as follows: Given Boolean formulae ϕ, ψ, decide if ϕ is satisfiable And ψ is unsatisfiable. Show that this problem is DP-complete (under polynomial time reductions).
- A graph G is in HC-CRITICAL is G is not Hamiltonian but adding any edge to G will make it Hamiltonian. Show that HCCRITICAL is in DP.

4. - Show that $\mathrm{NP}^{\mathrm{BPP}} \subseteq \mathrm{BPP}^{\mathrm{NP}}$ (Hint : First show that a language in $\mathrm{NP}^{\mathrm{BPP}}$ is accepted by a polytime NTM that makes a single query to a BPP oracle and that too at the end).

- Show that if NP \subseteq BPP, then PH collapses to BPP.

Show that the following problem is NEXP-complete : Given $\langle M, x, n\rangle$, consisting of description of a NTM M, input x and an integer n in binary, does M have an accepting computation on x in n steps.

6. A circuit C is called an implicit representation of another circuit C^{*} if C takes as input a binary integer i such that $n+1 \leq i \leq N$, and outputs a triple ($T Y P E, j, k$) where

- Input to C^{*} is an n-bit string $x_{1} x_{2} \ldots x_{n}$.
- TYPE $\in\{$ AND, OR, NOT $\}$ indicates the type of $i^{\text {th }}$ gate in circuit C^{*}.
- $1 \leq j, k \leq N$.
- The input of the $i^{\text {th }}$ gate in C^{*} is the output of the $j^{\text {th }}$ and $k^{\text {th }}$ gates of C^{*} (if TYPE $=$ NOT, then k is ignored. If $1 \leq j, k \leq n$, then the $j^{t h}$ or $k^{\text {th }}$ gate is taken to be an input bit x_{i}).
- The $N^{t h}$ gate in C^{*} is its output gate.

Note that we could have $N=2^{n}$, the circuit C could be of size $\operatorname{poly}(\log N)=\operatorname{poly}(n)$ and still implcitly represent a circuit C^{*} of size N (in short, a circuit can implicitly represent another circuit of size exponential in its own size).

Let IMPLICIT CIRCUIT-SAT be the following problem : Given a circuit C that is an implicit representation of circuit C^{*}, decide if C^{*} is satisfiable. Show that this problem is NEXP-complete (Hint : Use the regular structure of the circuit produced in Cook's reduction).
7. - Show that $\mathrm{NP}^{\mathrm{NP} \cap c o N P}=\mathrm{NP}$.

- Generalize this to $\mathrm{NP}^{\Sigma_{k} \cap \Pi_{k}}=\Sigma_{k}$.

8. The problem Graph Consistency (GC) asks, for two given sets A and B of graphs, whether there exists a graph G such that every graph $g \in A$ is isomorphic to a (not necessarily induced) subgraph of G but each graph $h \in B$ is not isomorphic to any subgraph of G. Show that GC is in Σ_{2}. (Optional : show that it is Σ_{2}-complete).
9. Show that if $\Sigma_{k}=\Pi_{k}$ for some k, then $\mathrm{PH}=\Sigma_{k}$.
