Endterm
 Computational Complexity

Solve all 6 questions. The solutions are due by 9:00 pm on Monday, May 4. Some hints are given on page 3. All the best!

Problems

1. A DNF formula in (boolean) variables $x_{1}, x_{2}, \ldots, x_{n}$ is of the form

$$
\phi=D_{1} \vee D_{2} \cdots \vee D_{m}
$$

$$
\text { where for } 1 \leq i \leq m, \quad D_{i}=y_{i_{1}} \wedge y_{i_{2}} \ldots \wedge y_{i_{k}}
$$

and each y_{j} is a variable or its negation. Show that deciding if a DNF formula is satisfiable is in P but counting the number of satisfying solutions is \#P-complete.
2. Let L be the language accepted by a family of circuits $\left\{C_{n}\right\}$ which consist of AND, NOT and PARITY gates such that

- Circuit C_{n} has n inputs, size $2^{n^{O(1)}}$ and depth $O(1)$.
- AND gates have fan-in bounded by poly (n).
- PARITY gates have unbounded fanin.
- The circuits C_{n} are uniformly generated by a polynomial time DTM M.

Show that $L \in \oplus \mathrm{P}$. In other words show that there is a polynomial time NTM N which has an odd number of accepting computations on input x iff $x \in L$.
3. Let $\mathbb{Z}_{3}=\{0,1,-1\}$ be the field of integers modulo 3 . We say that a polynomial $P\left(X_{1}, \cdots, X_{n}\right)$ in n variables is multilinear if the degree of each X_{i} in P is at most 1. For instance $P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{2} X_{3}$ is multilinear but $X_{1}^{2}+X_{2}^{2}$ is not.

- Show that every function $f:\{0,1\}^{n} \rightarrow \mathbb{Z}_{3}$ is computed by a unique multilinear polynomial in $\mathbb{Z}_{3}\left[X_{1}, \cdots, X_{n}\right]$.
- Consider all Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Let the degree of function f be the degree of the unique polynomial computing f. Show that AND and OR functions have degree n.
- The MOD- k function is 1 if $\sum_{i=1}^{n} x_{i}$ is divisible by k, and 0 otherwise. Show that MOD-2 (PARITY) has degree n but MOD-3 has degree 2 .

4. Let $\omega(G)$ denote the size of the largest clique in graph G. Assume that there is a polynomial time reduction A that takes as input a SAT instance ϕ and outputs a graph G on n vertices such that

- If ϕ is satisfiable, $\omega(G) \geq \alpha n$.
- If ϕ is unsatisfiable, $\omega(G) \leq \beta n$.

Here α, β are constants such that $0<\beta<\alpha<1$. Use this to show that, for any constant C, there is no polynomial time algorithm that approximates $\omega(G)$ within a factor C unless $\mathrm{P}=\mathrm{NP}$.
5. Assume that there is an unknown Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ which is 1 at exactly K inputs. Give an algorithm to find (some) input x with $f(x)=1$ which asks $O(\sqrt{N / K})$ queries in the Quantum Query Model $\left(N=2^{n}\right)$. A single query Q is defined as the unitary operator:

$$
Q|x\rangle=(-1)^{f(x)}|x\rangle \quad \forall x \in\{0,1\}^{n}
$$

6. The set-disjointess function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ is defined as

$$
f(x, y)=1 \quad \Longleftrightarrow \quad x_{i} \wedge y_{i}=0 \quad \forall i=1, \cdots, n
$$

In other words, think of x and y as incidence vectors of sets $S(x)$ and $S(y)$ respectively. Then $f(x, y)=1$ iff the sets $S(x)$ and $S(y)$ are disjoint. Let M_{f} denote the matrix of values of f.

- Show that any 1-monochromatic rectangle in M_{f} has size at most 2^{n}.
- Show that the deterministic communication complexity of f is $\Omega(n)$.

Hints

1. A CNF formula in variables $x_{1}, x_{2}, \ldots, x_{n}$ is of the form

$$
\begin{aligned}
& \phi=C_{1} \wedge C_{2} \cdots \wedge C_{m} \\
& C_{i}=y_{i_{1}} \vee y_{i_{2}} \cdots \vee y_{i_{k}}
\end{aligned}
$$

First show that counting the number of solution to CNF formula is \#P-complete.
2. Define the non-deterministic machine N as follows

- At an AND gate, evaluate all the inputs (recursively). Accept only if all the computations accept.
- At a PARITY gates, non-deterministically select an input and evaulate it. Accept if that computation accepts.
- At a NOT gate, non-deterministically do one of the following (i) Accept (ii) Evaluate the input to the NOT gate and accept if that computation accepts.

3. To write PARITY as a polynomial over \mathbb{Z}_{3}, note that it is easy to write in $\{+1,-1\}$ notation. Then convert it into $\{0,1\}$-notation.
4. Consider the following graph product. Given a graph $G(V, E)$ the graph G^{2} has vertex set $V^{2}=V \times V$. The edges are defined as

$$
\left(v_{1}, v_{2}\right) \sim\left(w_{1}, w_{2}\right) \text { if }\left\{\begin{array}{l}
v_{1} \sim w_{1} \quad \text { and } \quad v_{2} \sim w_{2} \\
v_{1}=w_{1} \quad \text { and } \quad v_{2} \sim w_{2} \\
v_{1} \sim w_{1} \quad \text { and } \quad v_{2}=w_{2}
\end{array}\right.
$$

Use this product to boost the gap between $\omega(G)$ in the given reduction.
5. Show that a modification to Grover's Algorithm works. Choose an appropriate pair of mutually orthogonal vectors in the plane.

