GA.3520: Honors Analysis of Algorithms

Problem Set 1

Collaboration is allowed, but you must write your own solutions. Not all problems need divide-and-conquer approach.

Problem 1

Design an $O(n)$ time algorithm that given a sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n distinct integers and an integer $k, 1 \leq k \leq n$, finds the $k^{t h}$ smallest integer in the sequence (i.e. $k^{t h}$ element from the beginning if the n integers were sorted in increasing order). Clearly state and analyze the recurrence relation that you may use.
Note: In particular when $k=\left\lfloor\frac{n}{2}\right\rfloor$, the algorithm finds the median.

Problem 2

Assuming that only equality checks are allowed, design an $O(n)$ time algorithm to check if there is an element which occurs more than $\frac{n}{2}$ times in an array containing n elements. Note that the elements are not necessarily integers and the only operation allowed is checking whether two elements are equal.

Problem 3

Suppose $a>b>1$ and $c>0$ are constants and $T(n)$ is a function (taking non-negative values) that satisfies:

$$
T(n) \leq a \cdot T\left(\frac{n}{b}\right)+c n, \quad T(1) \leq c
$$

Show that $T(n)=O\left(n^{\log _{b} a}\right)$. Hint: Unroll the recursion in terms of $T\left(\frac{n}{b}\right), T\left(\frac{n}{b^{2}}\right), T\left(\frac{n}{b^{3}}\right), \ldots$.

Problem 4

An interval $[a, b]$ is the set of all real numbers between (and including) a and b. Given n intervals,

$$
\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{n}, b_{n}\right]
$$

design an $O(n \log n)$ time algorithm to decide whether there exists a pair of intervals that overlap (i.e. share a point).

Problem 5

Given a $m \times n$ matrix of integers such that every row is strictly increasing (from left to right), and every column is strictly increasing (from top to bottom), design an $O(m+n)$ time algorithm to test if a given integer b is contained in the matrix.

Problem 6

Given a sequence of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, design an $O(n)$ time algorithm to find a shortest sub-sequence of consecutive integers $\left(a_{i}, a_{i+1}, \ldots, a_{j}\right)$ whose sum is at least a given integer M. In other words, you want to find indices $1 \leq i \leq j \leq n$ so as to minimize $j-i+1$ subject to the condition that $\sum_{k=i}^{j} a_{k} \geq M$.

(Optional, do not submit) Problem 7

A rectangle in plane is a set of the form $[a, b] \times[c, d]$. Given n rectangles, design an $O(n \log n)$ time algorithm to decide whether there exists a pair of rectangles that overlap (i.e. share a point).

