GA.3520: Honors Analysis of Algorithms

Problem Set 1

Collaboration is allowed, but you must write your own solutions. Not all problems need divideand-conquer approach.

Problem 1

Design an O(n) time algorithm that given a sequence (a_1, a_2, \ldots, a_n) of n distinct integers and an integer $k, 1 \leq k \leq n$, finds the k^{th} smallest integer in the sequence (i.e. k^{th} element from the beginning if the n integers were sorted in increasing order). Clearly state and analyze the recurrence relation that you may use.

Note: In particular when $k = \lfloor \frac{n}{2} \rfloor$, the algorithm finds the median.

Problem 2

Assuming that only equality checks are allowed, design an O(n) time algorithm to check if there is an element which occurs more than $\frac{n}{2}$ times in an array containing *n* elements. Note that the elements are not necessarily integers and the only operation allowed is checking whether two elements are equal.

Problem 3

Suppose a > b > 1 and c > 0 are constants and T(n) is a function (taking non-negative values) that satisfies:

$$T(n) \le a \cdot T\left(\frac{n}{b}\right) + cn, \qquad T(1) \le c.$$

Show that $T(n) = O(n^{\log_b a})$. Hint: Unroll the recursion in terms of $T\left(\frac{n}{b}\right), T\left(\frac{n}{b^2}\right), T\left(\frac{n}{b^3}\right), \ldots$

Problem 4

An interval [a, b] is the set of all real numbers between (and including) a and b. Given n intervals,

$$[a_1, b_1], [a_2, b_2], \ldots, [a_n, b_n],$$

design an $O(n \log n)$ time algorithm to decide whether there exists a pair of intervals that overlap (i.e. share a point).

Problem 5

Given a $m \times n$ matrix of integers such that every row is strictly increasing (from left to right), and every column is strictly increasing (from top to bottom), design an O(m + n) time algorithm to test if a given integer b is contained in the matrix.

Problem 6

Given a sequence of positive integers (a_1, a_2, \ldots, a_n) , design an O(n) time algorithm to find a shortest sub-sequence of consecutive integers $(a_i, a_{i+1}, \ldots, a_j)$ whose sum is at least a given integer M. In other words, you want to find indices $1 \le i \le j \le n$ so as to minimize j - i + 1 subject to the condition that $\sum_{k=i}^{j} a_k \ge M$.

(Optional, do not submit) Problem 7

A rectangle in plane is a set of the form $[a, b] \times [c, d]$. Given *n* rectangles, design an $O(n \log n)$ time algorithm to decide whether there exists a pair of rectangles that overlap (i.e. share a point).