## GA.3520: Honors Analysis of Algorithms

## Practice Problems

Some of these problems could be quite difficult and do not necessarily represent the difficulty level of the final exam.

## Problem

The Fibonacci sequence $\left\{F_{k} \mid k=0,1,2, \ldots\right\}$ is defined as follows:

$$
F_{0}=0, F_{1}=1, \quad \text { and } \quad \forall k \geq 2, \quad F_{k}=F_{k-1}+F_{k-2}
$$

1. Prove that $\forall k \geq 2, \quad 2 F_{k}=F_{k+1}+F_{k-2}$.
2. Let $\phi>0, \psi<0$ be the roots of the quadratic equation $1+x=x^{2}$. Prove that

$$
\forall k \geq 0, \quad F_{k}=\frac{1}{\sqrt{5}}\left(\phi^{k}-\psi^{k}\right)=\left\lfloor\frac{\phi^{k}}{\sqrt{5}}\right\rceil
$$

where $\lfloor z\rceil$ denotes the nearest integer to $z$.
3. We want to express a given positive integer $n$ as a sum of Fibonacci numbers using the minimum number of terms. Consider a recursive greedy algorithm that finds the largest index $k$ such that $F_{k} \leq n$, writes $n=F_{k}+n^{\prime}$ and then recursively expresses $n^{\prime}$ as a sum of Fibonacci numbers (the algorithm stops if $n^{\prime}=0$ ). Prove that this algorithm finds an expression for a given positive integer as a sum of Fibonacci numbers using the minimum number of terms.

## Problem

Given a set of intervals on a line, design a polynomial time greedy algorithm to select minimum number of intervals such that every interval overlaps with at least one of the selected intervals.

## Problem

You are given $k$ sorted lists with $n$ elements each. Design an algorithm, as efficient as possible, to merge all of them together into a single sorted list.

## Problem

Suppose there is a collection of $n$ intervals $\left\{\left[a_{i}, b_{i}\right] \mid i=1, \ldots, n\right\}$ such that every two intervals in this collection overlap. Prove that all the intervals in the collection overlap, i.e. there is a point on the real line that belongs to all these intervals.

## Problem

Given a sequence of distinct integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, design an $O(n)$ time algorithm to find for each number $a_{i}$ the smallest $j$ such that $a_{j}>a_{i}$ and $i<j \leq n$, if such a $j$ exists. That is, for each $a_{i}$, find the first integer to its right which is larger than it.

## Problem

Consider a chess-board of size $2^{k} \times 2^{k}$ and remove any one its squares. Prove that the remaining board can be tiled with $L$-shaped tiles of size 3 (i.e. a tile with 3 squares arranged in $L$-shape). Use induction on $k$ and a strategy based on Divide and Conquer paradigm.

## Problem

Given a sequence of integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, each integer either positive or negative, give an $O(n \log n)$ time algorithm to find a shortest sub-sequence of consecutive integers $a_{i}, a_{i+1}, \ldots, a_{j}$ whose sum is at least a given integer $M$.

