
Computer Vision
CSCI-GA.2271-001

Assignment 1.

October 2, 2012

1 Introduction

This assignment works through various concepts in extracting features in
images before using them to align a pair of images.

Essentially there are three main parts to the assignment.

1. Harris corner detector - Implement the Harris corner detector and eval-
uate it on select images, demonstrating its invariance properties.

2. Scale-invariance - Explore scale-selection using Laplacian and Differ-
ence of Gaussian operators.

3. RANSAC - Solve for an affine transformation between a pair of images
using the RANSAC fitting algorithm.

2 Requirements

You should perform this assignment in Matlab. Please turn in all code and
result figures/images. The code should be clearly commented, explaining
what each line is doing.

The TA for the class is Bowen Zhang (bz465@nyu.edu). Please email him
for help and assistance.

If you are not familiar with Matlab, I suggest you go through some of the
tutorials posted on the course web page.

1

CSCI-GA.2271-001 2

3 Harris corner detector [30%]

In this part, the objective is to write a function that implements the Harris
corner detector, as described in Lectures 1 and 2. The function should take
as input:

1. im - A gray-scale image (2D array).

2. threshold - “cornerness” threshold.

3. sigma - Standard deviation of the Gaussian used to smooth the 2nd
moment matrix (typical values: 2–4).

4. radius - Radius of non-maximal suppression.

The function should output a 2 × N matrix of corner locations on the
image, as well as displaying the image with these corner locations superim-
posed.

There are two key equations involved in the corner detector. The first
computes the second moments at each point in the image, smoothed by a
function w(u, v), which in our case will be a Gaussian:

A =
∑
u

∑
v

w(u, v)

(
I2
x Ixy

Ixy I2
y

)
(1)

I2
x, I2

y are the square of x and y derivatives, while Ixy is IxIy. Note that for
each pixel in im, there will be a 2nd moment matrix A. The second computes
the “cornerness” measure:

M = det(A)− κ trace2(A) (2)

where κ is 0.04. To help you, please implement the function in the following
step-by-step manner:

1. First, define the filters used to compute the image derivatives:
dx = [-1 0 1 ; -1 0 1 ; -1 0 1]; and dy = dx’;.

2. Next, compute the image derivatives Ix,Iy of im using the conv2 func-
tion, with the ’same’ option. [To get help on the conv2 function and
its syntax, type help conv2].

CSCI-GA.2271-001 3

3. Generate a Gaussian smoothing filter (the w(u, v) function above), us-
ing the fspecial function, with the ’gaussian’ filter type. The stan-
dard deviation should be sigma, while the size of the filter should be
6sigma.

4. Compute I2
x, I2

y , Ixy using Ix,Iy and .∧2 and .*.

5. Compute the smoothed versions of I2
x, I2

y , Ixy by using the conv2 func-
tion, with the ’same’ option.

6. Compute the cornerness measure M. Recall that det([a, b; b, c]) = ac−b2
and trace([a, b; b, c]) = a+ c. M should be map of cornerness, the same
size as im.

7. Perform non-maximal suppression using the ordfilt2 function and the
radius and threshold input parameters. [To see an example of how
to use it, type help ordfilt2].

8. Find the coordinates of the corner points using find.

9. Display the image and superimpose the corners.

Apply this function to the einstein.jpg image with threshold=1000;,
sigma=3 and radius=3. Save the output figure.

Rotate the einstein.jpg image by 45 degrees using imrotate image and
apply the function again. Save the output figure.

Turn in the code for your function along with the two output figures.

4 Scale-invariance [30%]

In the previous part we looked at selecting certain locations in the image but
this was only done at a fixed scale. In this section we manually fix a location
in the image and exhaustively search over scale-scape to show how certain
operators can reliably discover an intrinsic scale to blobs in the image.

First, load in einstein.jpg. The fixed location we will be examining is
at row 186, column 148, corresponding to the center of the tie. Note that
this is a distinct dark blob, surrounded by the white of his shirt.

The basic idea is to plot the value of the Laplacian operator:

∇2I = (
∂2I

∂x2
+
∂2I

∂y2
) (3)

CSCI-GA.2271-001 4

and its scale-normalized version:

∇2In = σ2(
∂2I

∂x2
+
∂2I

∂y2
) (4)

at the fixed location as we vary the scale of the Laplacian.
To compute the Laplacian we need to first generate ∂2I

∂x2 and ∂2I
∂y2 at different

scales and then combine them.

• We first need to generate a Laplacian filter of standard deviation σ.
Do this by: (a) creating a 2-D Gaussian filter using fspecial. (b)
computing ∂xx and ∂yy by convolving with dxx = [1 -2 1]; and dyy

= [1 -2 1]’; respectively. Be careful to avoid edge artifacts by using
the ’valid’ option in conv2. This will mean that the equivalent y
operator is of a different size to the x operator, so some cropping may
be needed. (c) Add the two filters together. Visualize it with the mesh

command. It should look like the plot in the slide title “Blob detection
in 2D” from the 1st lecture.

• Load in the Einstein image and then make a copy of it at half the scale
with the imresize command. The idea is to apply the same Laplacian
filter to both images and check the response in the center of the tie for
both the functions above.

• So loop over a range of scales, varying σ from 3 to 15 in increments of
0.4. For each scale, convolve the filter with the Einstein image. Then
look up the row and column (halving them for the smaller image) and
in each of the two functions above (∇2I and ∇2In), recording their
value. Hence for each scale you should have 4 numbers (full-size image,
half-size image for each of the two functions above).

• Now make 2 plots. One for ∇2I and the other for ∇2In. Plot the
responses of both the full-size image and the half-size one against σ.
Note that for the half-size image, the effective scale is double.

• You should find that the scale-normalized operator, as expected, yields
two fairly overlapping curves, unlike the unnormalized operator.

Plot the full size image and superimpose a circle (using imellipse) at the
fixed location, with a radius corresponding to the peak of the scale-selection

CSCI-GA.2271-001 5

curve from the ∇2In. Turn the image and circle; both plots showing the
scale-selection curves and the source code.

In practice, it is quicker to successively down-sample the image and keep
the Laplacian at a fixed (small) scale. For bonus points, implement this down-
sampling scheme and use tic; toc; to time its speedup over the scheme
above.

5 Image alignment [40%]

In this part of the assignment you will write a function that takes two images
as input and computes the affine transformation between them. The overall
scheme, as outlined in Lecture 2, is as follows:

• Find local image regions in each image

• Characterize the local appearance of the regions

• Get set of putative matches between region descriptors in each image

• Perform RANSAC to discover best transformation between images

To help you, the first two stages can be performed using David Lowe’s
SIFT code which can be downloaded from:
http://www.cs.ubc.ca/spider/lowe/keypoints/siftDemoV4.zip. If you
are using a Mac, then you will need to use these libraries instead:
http://www.vlfeat.org/overview/sift.html.

The sift.m function takes an image filename as input, loads the image
and runs the Difference of Gaussians blob detector to find a set of regions. It
then computes SIFT descriptors for each region. The output of the function is
the image, a set of 128D image descriptors and their location (x,y,scale,angle)
in the image.

The two images you should match are also contained in the ZIP file:
scene.pgm and book.pgm, henceforth called image 1 and 2 respectively.

The third stage, obtaining a set of putative matches T, should be done
as follows: for each descriptor in image 1, compute the closest neighbor
amongst the descriptors from image 2 using Euclidean distance. Spurious
matches can be removed by then computing the ratio of distances between
the closest and second-closest neighbor and rejecting any matches that are
above a certain threshold. To test the functioning of RANSAC, we want to

CSCI-GA.2271-001 6

have some erroneous matches in our set, thus this threshold should be set to a
fairly slack value of 0.9. To check that your code is functioning correctly, plot
out the two images side-by-side with lines showing the potential matches.

The final stage, running RANSAC, should be performed as follows:

• Repeat N times:

• Pick P matches at random from the total set of matches T. Since we
are solving for an affine transformation which has 6 degrees of freedom,
we only need to select P=3 matches.

• Construct a matrix A and vector b using the 3 pairs of points as per
slide 78-79 of Lecture 4

• Solve for the unknown transformation parameters q using Matlab’s
pinv command.

• Using the transformation parameters, transform the locations of all T
points in image 1. If the transformation is correct, they should lie close
to their pairs in image 2.

• Count the number of inliers, inliers being defined as the number of
transformed points from image 1 that lie within a radius of 10 pixels
of their pair in image 2.

• If this count exceeds the best total so far, save the transformation
parameters and the set of inliers.

• End repeat.

• Perform a final refit using the set of inliers belonging to the best trans-
formation you found. This refit should use all inliers, not just 3 points
chosen at random.

• Finally, transform image 1 using this final set of transformation pa-
rameters, q. This can easily be done by first forming a homogra-
phy matrix H = [q(1) q(2) q(5) ; q(3) q(4) q(6) ; 0 0 1];

and then using the imtransform and maketform functions as follows:
transformed image=imtransform(im1,maketform(’affine’,H’));. If
you display this image you should find that the pose of the book in the
scene should correspond to its pose in image 2.

CSCI-GA.2271-001 7

Turn in the transformed image, your value of matrix H and the source
code.

