
5 – Stereo Reconstruction

Slides from A. Zisserman & S. Lazebnik



Overview

• Single camera geometry

• Recap of Homogenous coordinates

• Perspective projection model

• Camera calibration

• Stereo Reconstruction

• Epipolar geometry

• Stereo correspondence 

• Triangulation



Single camera geometry



Projection



Projection



Projective Geometry

• Recovery of structure from one image is inherently 

ambiguous

• Today focus on geometry that maps world to camera 

image

x

X?
X?

X?



Recall: Pinhole camera model

• Principal axis: line from the camera center 

perpendicular to the image plane

• Normalized (camera) coordinate system: camera 

center is at the origin and the principal axis is the z-axis
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Recall: Pinhole camera model
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Recap: Homogeneous coordinates

Slide by Steve Seitz
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Principal point

• Principal point (p): point where principal axis intersects the 

image plane (origin of normalized coordinate system)

• Normalized coordinate system: origin is at the principal point

• Image coordinate system: origin is in the corner

• How to go from normalized coordinate system to image 

coordinate system?
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Principal point offset

principal point: ),( yx pp
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Pixel coordinates

• mx pixels per meter in horizontal direction, 

my pixels per meter in vertical direction

Pixel size: 
yx mm
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Camera rotation and translation

• In general, the camera 

coordinate frame will 

be related to the world 

coordinate frame by a 

rotation and a 

translation

coords. of point 

in camera frame
coords. of camera center 

in world frame
coords. of a point

in world frame (nonhomogeneous)
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Camera rotation and translation

In non-homogeneous

coordinates:

Note: C is the null space of the camera projection matrix (PC=0)



Camera parameters

• Intrinsic parameters

• Principal point coordinates

• Focal length

• Pixel magnification factors

• Skew (non-rectangular pixels)

• Radial distortion
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Camera parameters

• Intrinsic parameters

• Principal point coordinates

• Focal length

• Pixel magnification factors

• Skew (non-rectangular pixels)

• Radial distortion

• Extrinsic parameters

• Rotation and translation relative to world coordinate 

system



Camera calibration

• Given n points with known 3D coordinates Xi and known 

image projections xi, estimate the camera parameters

? P

Xi

xi
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Camera calibration

• P has 11 degrees of freedom (12 parameters, but 

scale is arbitrary)

• One 2D/3D correspondence gives us two linearly 

independent equations

• Homogeneous least squares

• 6 correspondences needed for a minimal solution
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Camera calibration

• Note: for coplanar points that satisfy ΠTX=0,

we will get degenerate solutions (Π,0,0), (0,Π,0), or 

(0,0,Π)
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Camera calibration

• Once we‟ve recovered the numerical form of the camera 

matrix, we still have to figure out the intrinsic and 

extrinsic parameters

• This is a matrix decomposition problem, not an 

estimation problem (see F&P sec. 3.2, 3.3) 
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Alternative:  multi-plane calibration  

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane

• Don‟t have to know positions/orientations

• Good code available online!

– Intel‟s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean-Yves Bouget:  

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

– Zhengyou Zhang‟s web site:  http://research.microsoft.com/~zhang/Calib/

http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/


Stereo Reconstruction

known

camera

viewpoints

Shape (3D) from two (or more) images



Example

images

shape

surface 

reflectance

Rachel.init.wrl
Rachel.fill.wrl


Scenarios

The two images can arise from

• A stereo rig consisting of two cameras

• the two images are acquired simultaneously

or 

• A single moving camera (static scene)

• the two images are acquired sequentially

The two scenarios are geometrically equivalent



Stereo head

Camera on a mobile vehicle 



The objective 

Given two images of a scene acquired by known cameras compute the 

3D position of the scene (structure recovery)

Basic principle: triangulate from corresponding  image points

• Determine 3D  point at intersection of two back-projected rays



Corresponding points are images of the same scene point

Triangulation

C C /

The back-projected points generate rays which intersect at the

3D scene point



An algorithm for stereo reconstruction

1. For each point in the first image determine the 

corresponding point in the second image

(this is a search problem)

2. For each pair of matched points determine the 3D 

point by triangulation

(this is an estimation problem)



The correspondence problem

Given a point x in one image find the corresponding point in the other 

image

This appears to be a 2D search problem, but it is reduced to a 1D search 

by the epipolar constraint



1. Epipolar geometry

• the geometry of two cameras

• reduces the correspondence problem to a line search

2. Stereo correspondence algorithms

3. Triangulation

Outline



Notation

x x /

X

C C /

The two cameras are P and P
/
, and a 3D point X is imaged as 

for equations involving homogeneous quantities „=‟ means „equal up to scale‟

P P
/

Warning



Epipolar geometry



Epipolar geometry

Given an image point in one view, where is the corresponding point 

in the other view?

epipolar line

?

baseline

• A point in one view  “generates” an epipolar line in the other view

• The corresponding point lies on this line

epipole C /C



Epipolar line

Epipolar constraint

• Reduces correspondence problem to 1D search along an 

epipolar line



Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera 

centres and scene point

x x /

X

C C /

The camera centres, corresponding points and scene point lie 

in a single plane, known as the epipolar plane



Nomenclature

• The epipolar line l
/

is the image of the ray through x

• The epipole e is the point of intersection of the line joining the camera centres 

with the image plane

this line is the baseline for a stereo rig, and

the translation vector for a moving camera

• The epipole is the image of the centre of the other camera: e = PC/ ,  e/ = P/C

x
x /

X

C C /

e

left epipolar line

right epipolar line

e
/

l
/



The epipolar pencil

e e /

baseline

X

As the position of the 3D point X varies, the epipolar planes “rotate” about 

the baseline. This family of planes is known as an epipolar pencil. All 

epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



The epipolar pencil

e e /

baseline

X

As the position of the 3D point X varies, the epipolar planes “rotate” about 

the baseline. This family of planes is known as an epipolar pencil. All 

epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



Epipolar geometry example I: parallel cameras

Epipolar geometry depends only on the relative pose (position and 

orientation) and internal parameters of the two cameras, i.e. the position of 

the camera centres and image planes. It does not depend on the scene 

structure (3D points external to the camera).



Epipolar geometry example II: converging cameras

Note, epipolar lines are in general not parallel

e e /



Homogeneous notation for lines



• The line l through the two points p and q is  l = p x q

Example: compute the point of intersection of the two lines l and m       

in the figure below

Proof

y

x

1

2

• The intersection of two lines l and m is the point x = l x m

l

m

which is the point (2,1)



Matrix representation of the vector cross product



Example: compute the cross product of l and m



Algebraic representation of epipolar geometry

We know that the epipolar geometry defines a mapping

x                       l
/

point in first 

image
epipolar line in 

second image



P

Derivation of the algebraic expression

Outline

Step 1: for a point x in the first image 

back project a ray with camera P

Step 2: choose two points on the ray and 

project into the second image with camera P
/

Step 3: compute the line through the two 

image points using the relation l
/
= p x q

P
/



• choose camera matrices

internal 

calibration
rotation translation

from world to camera 

coordinate frame

• first camera

world coordinate frame aligned with first camera

• second camera



Step 1: for a point x in the first image 

back project a ray with camera
P

A point x back projects to a ray

where Z is the point‟s depth, since

satisfies



Step 2: choose two points on the ray and 

project into the second image with camera P
/

P
/

Consider two points on the ray

• Z = 0 is the camera centre

• Z = is the point at infinity

Project these two points into the second view



Using the identity

Compute the line through the points

F

F is the fundamental matrix

Step 3: compute the line through the two 

image points using the relation l
/
= p x q



Example I: compute the fundamental matrix for a parallel camera stereo rig

• reduces to y = y/ , i.e. raster correspondence (horizontal scan-lines)
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Geometric interpretation ?



Example II: compute F for a forward translating camera
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X Y
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first image second image







Summary: Properties of the Fundamental matrix



Admin Interlude

• Assignment 1 due next week at start of 

class

• Office hours right after class!

• Meet Hao Li (haoli@cs.nyu.edu) whos is 

the class TA

• Who did not get my class emails?

• Please come and (legibly!) give me your 

email again.

mailto:haoli@cs.nyu.edu


Stereo correspondence 

algorithms



Problem statement

Given: two images and their associated cameras compute

corresponding image points.

Algorithms may be classified into two types:

1. Dense: compute a correspondence at every pixel

2. Sparse: compute correspondences only for features

The methods may be top down or bottom up



Top down matching 

1. Group model (house, windows, etc) independently in 

each image

2. Match points (vertices) between images



Bottom up matching

• epipolar geometry reduces the correspondence search from 2D 

to a 1D search on corresponding epipolar lines

• 1D correspondence problem

b/

a/

b
ca

CBA

c/





Stereograms

• Invented by Sir Charles Wheatstone, 1838



Red/green stereograms



Random dot stereograms





Autostereograms

Autostereograms: www.magiceye.com



Autostereograms

Autostereograms: www.magiceye.com



Correspondence algorithms 

Algorithms may be top down or bottom up – random dot stereograms 

are an existence proof that bottom up algorithms are possible

From here on only consider bottom up algorithms

Algorithms may be classified into two types:

1. Dense: compute a correspondence at every pixel

2. Sparse: compute correspondences only for features



Example image pair – parallel cameras



First image



Second image



Dense correspondence algorithm

Search problem (geometric constraint): for each point in the left image, the 

corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity 

neighbourhood of corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation 

Parallel camera example – epipolar lines are corresponding rasters 

epipolar 

line



Intensity profiles

• Clear correspondence between intensities, but also noise and ambiguity



region A

Normalized Cross Correlation

region B

vector a vector b

write regions as vectors

a

b



Cross-correlation of neighbourhood regions

epipolar 

line

translate so that mean is zero 

(exercise)



left image band

right image band

cross 

correlation

1

0

0.5

x



left image band

right image band

cross 

correlation

1

0

x

0.5

target region



Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a “distinctive” spatial intensity 

distribution

2. Foreshortening effects

fronto-parallel surface

imaged length the same

slanting surface

imaged lengths differ



Limitations of similarity constraint

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities



Results with window search

Window-based matching Ground truth

Data



Sketch of a dense correspondence algorithm

For each pixel in the left image

• compute the neighbourhood cross correlation along the 
corresponding epipolar line in the right image

• the corresponding pixel is the one with the highest cross 
correlation

Parameters

• size (scale) of neighbourhood

• search disparity 

Other constraints

• uniqueness

• ordering

• smoothness of disparity field

Applicability

• textured scene, largely fronto-parallel



Stereo matching as energy minimization

MAP estimate of disparity image D: )()|,(),|( 2121 DPDIIPIIDP
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Stereo matching as energy minimization

I1
I2 D

• Energy functions of this form can be minimized using 

graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization 
via Graph Cuts,  PAMI 2001

W1(i) W2(i+D(i)) D(i)
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2
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http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Graph cuts solution

Graph cuts Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 

Minimization via Graph Cuts,  PAMI 2001

http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Example dense correspondence algorithm

left image right image



right image depth map

3D reconstruction

intensity = depth

anim/fountain.bak.wrl


Texture mapped 3D triangulation



range map

Pentagon example

left image right image



Rectification

e e /

For converging cameras

• epipolar lines are not parallel



Project images onto plane parallel to baseline

epipolar plane



Rectification continued

Convert converging cameras to parallel camera 

geometry by an image mapping

Image mapping is a 2D homography (projective transformation)

(exercise)



Rectification continued

Convert converging cameras to parallel camera 

geometry by an image mapping

Image mapping is a 2D homography (projective transformation)

(exercise)



Example
original stereo pair

rectified stereo pair



Note

• image movement (disparity) is inversely proportional to depth Z

• depth is inversely proportional to disparity

Example: depth and disparity for a parallel camera stereo rig

Then, y/ = y, and the disparity

Derivation

x

x/

d



Triangulation



1. Vector solution

C C /

Compute the mid-point of the shortest line between the 

two rays



2. Linear triangulation (algebraic solution)



Problem: does not minimize anything meaningful

Advantage: extends to more than two views



3. Minimizing a geometric/statistical error



• It can be shown that if the measurement noise is 

Gaussian mean zero,                  , then minimizing 

geometric error is the Maximum Likelihood Estimate of X

• The minimization appears to be over three parameters 

(the position X), but the problem can be reduced to a 

minimization over one parameter



Different formulation of the problem



Minimization method

• Parametrize the pencil of epipolar lines in the first image by t, 

such that the epipolar line is l(t)

• Using F compute the corresponding epipolar line in the second 

image l/ (t)

• Express the distance function                                 explicitly as a 

function of t

• Find the value of t that minimizes the distance function

• Solution is a 6th degree polynomial in t

java/Applets/Triangulation.html


Other approaches 

to obtaining 3D 

structure



Active stereo with structured light

• Project “structured” light patterns onto the object

• simplifies the correspondence problem

• Allows us to use only one camera

camera 

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 

Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/


Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color 

Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/


Microsoft Kinect



Laser scanning

• Optical triangulation

• Project a single stripe of laser light

• Scan it across the surface of the object

• This is a very precise version of structured light scanning

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

Source: S. Seitz

http://graphics.stanford.edu/projects/mich/


Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Aligning range images

• A single range scan is not sufficient to describe a 

complex surface

• Need techniques to register multiple range images

B. Curless and M. Levoy, A Volumetric Method for Building Complex Models from 

Range Images, SIGGRAPH 1996

http://graphics.stanford.edu/papers/volrange/
http://graphics.stanford.edu/papers/volrange/


Aligning range images

• A single range scan is not sufficient to describe a 

complex surface

• Need techniques to register multiple range images

• … which brings us to multi-view stereo


