Fitting \& Matching

Lecture 4 - Prof. Bregler

Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros.

How do we build panorama?

- We need to match (align) images

Matching with Features

- Detect feature points in both images

Matching with Features

- Detect feature points in both images
- Find corresponding pairs

Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Matching with Features

- Detect feature points in both images
- Find corresponding pairs \int Previous lecture
- Use these pairs to align images

Overview

- Fitting techniques
- Least Squares
- Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Fitting

- Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Fitting: Issues

Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Fitting: Issues

- If we know which points belong to the line, how do we find the "optimal" line parameters?
- Least squares
- What if there are outliers?
- Robust fitting, RANSAC
-What if there are many lines?
- Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
- Model selection

Overview

- Fitting techniques
- Least Squares
- Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Least squares line fitting

Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
Line equation: $y_{i}=m x_{i}+b$
Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

Least squares line fitting

Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
Line equation: $y_{i}=m x_{i}+b$
Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$$
\begin{aligned}
& E=\sum_{i=1}^{n}\left(y_{i}-\left[\begin{array}{ll}
x_{i} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]\right)^{2}=\left\|\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]-\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]\right\|^{2}=\|Y-X B\|^{2} \\
&=(Y-X B)^{T}(Y-X B)=Y^{T} Y-2(X B)^{T} Y+(X B)^{T}(X B) \\
& \frac{d E}{d B}=2 X^{T} X B-2 X^{T} Y=0
\end{aligned}
$$

$X^{T} X B=X^{T} Y \quad$ Normal equations: least squares solution to $X B=Y$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Overview

- Fitting techniques
- Least Squares
- Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Total least squares

Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right):\left|a x_{i}+b y_{i}-d\right|$

Total least squares

Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right)$: $\left|a x_{i}+b y_{i}-d\right|$ Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

Total least squares

Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right):\left|a x_{i}+b y_{i}-d\right|$ Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

$\frac{\partial E}{\partial d}=\sum_{i=1}^{n}-2\left(a x_{i}+b y_{i}-d\right)=0$

$$
d=\frac{a}{n} \sum_{i=1}^{n} x_{i}+\frac{b}{n} \sum_{i=1}^{n} x_{i}=a \bar{x}+b \bar{y}
$$

$E=\sum_{i=1}^{n}\left(a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right)^{2}=$
$\frac{d E}{d N}=2\left(U^{T} U\right) N=0$
Solution to $\left(U^{T} U\right) N=0$, subject to $\|N\|^{2}=1$: eigenvector of $U^{T} U$ associated with the smallest eigenvalue (least squares solution to homogeneous linear system $U N=0$)

Total least squares

$$
U=\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right] \quad U^{\tau} U=\left[\begin{array}{cc}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right]
$$

second moment matrix

Total least squares

$$
U=\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right] \quad U^{T} U=\left[\begin{array}{cc}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right]
$$

Least squares: Robustness to noise

Least squares fit to the red points:

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

- General approach: minimize

$$
\sum_{i} \rho\left(r_{i}\left(x_{i}, \theta\right) ; \sigma\right)
$$

$r_{i}\left(x_{i}, \theta\right)$ - residual of ith point w.r.t. model parameters θ ρ - robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

Overview

- Fitting techniques
- Least Squares
- Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
- Choose a small subset of points uniformly at random
- Fit a model to that subset
- Find all remaining points that are "close" to the model and reject the rest as outliers
- Do this many times and choose the best model
M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for line fitting

Repeat \boldsymbol{N} times:

- Draw \boldsymbol{s} points uniformly at random
- Fit line to these spoints
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $t^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. $\sigma: \mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$
\begin{aligned}
& \left(1-(1-e)^{s}\right)^{N}=1-p \\
& N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
\end{aligned}
$$

proportion of outliers e							
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. $\sigma: \mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$
\begin{aligned}
& \left(1-(1-e)^{s}\right)^{N}=1-p \\
& N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
\end{aligned}
$$

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. $\sigma: t^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Consensus set size d
- Should match expected inlier ratio

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80\% would yield e=0.2
- Adaptive procedure:
- $N=\infty$, sample_count $=0$
- While N >sample_count
- Choose a sample and count the number of inliers
- Set e=1-(number of inliers)/(total number of points)
- Recompute N from e:

$$
N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

- Increment the sample_count by 1

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Lots of parameters to tune
- Can't always get a good initialization of the model based on the minimum number of samples
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Overview

- Fitting techniques
- Least Squares
- Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Hough transform

- An early type of voting scheme
- General outline:
- Discretize parameter space into bins
- For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
- Find bins that have the most votes

Image space

Hough parameter space
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Parameter space representation

- A line in the image corresponds to a point in Hough space

Image space

Hough parameter space

Parameter space representation

- What does a point $\left(x_{0}, y_{0}\right)$ in the image space map to in the Hough space?

Hough parameter space

Parameter space representation

- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to in the Hough space?
- Answer: the solutions of $b=-x_{0} m+y_{0}$
- This is a line in Hough space

Image space

Hough parameter space

Parameter space representation

- Where is the line that contains both $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$?

Image space

Hough parameter space

Parameter space representation

- Where is the line that contains both $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$?
- It is the intersection of the lines $b=-x_{0} m+y_{0}$ and $\mathrm{b}=-\mathrm{x}_{1} \mathrm{~m}+\mathrm{y}_{1}$

Image space

Hough parameter space

Parameter space representation

- Problems with the (m,b) space:
- Unbounded parameter domain
- Vertical lines require infinite m

Parameter space representation

- Problems with the (m, b) space:
- Unbounded parameter domain
- Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x, y) in the image

For $\theta=0$ to 180
$\rho=x \cos \theta+y \sin \theta$
$H(\theta, \rho)=H(\theta, \rho)+1$


```
    end
end
```

- Find the value(s) of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
- The detected line in the image is given by

$$
\rho=x \cos \theta+y \sin \theta
$$

Basic illustration

features
votes

Other shapes

Square
Circle

Several lines

A more complicated image

Effect of noise

features

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise

- Number of votes for a line of 20 points with increasing noise:

Noise level

Random points

features
votes
Uniform noise can lead to spurious peaks in the array

Random points

- As the level of uniform noise increases, the maximum number of votes increases too:

Number of noise points

Dealing with noise

- Choose a good grid / discretization
- Too coarse: large votes obtained when too many different lines correspond to a single bucket
- Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
- Take only edge points with significant gradient magnitude

Hough transform for circles

- How many dimensions will the parameter space have?
- Given an oriented edge point, what are all possible bins that it can vote for?

Hough transform for circles

image space

Hough parameter space

Generalized Hough transform

- We want to find a shape defined by its boundary points and a reference point

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13(2), 1981, pp. 111-122.

Generalized Hough transform

- We want to find a shape defined by its boundary points and a reference point
- For every boundary point p, we can compute the displacement vector $r=a-p$ as a function of gradient orientation θ

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13(2), 1981, pp. 111-122.

Generalized Hough transform

- For model shape: construct a table indexed by θ storing displacement vectors r as function of gradient direction
- Detection: For each edge point p with gradient orientation θ :
- Retrieve all r indexed with θ
- For each $r(\theta)$, put a vote in the Hough space at $p+r(\theta)$
- Peak in this Hough space is reference point with most supporting edges
- Assumption: translation is the only transformation here, i.e., orientation and scale are fixed

Example

Example

Example

range of voting locations for test point

Example

Example

Example

Example

Example

Application in recognition

- Instead of indexing displacements by gradient orientation, index by "visual codeword"

visual codeword with displacement vectors
training image
B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Application in recognition

- Instead of indexing displacements by gradient orientation, index by "visual codeword"

test image
B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Overview

- Fitting techniques
- Least Squares
- Total Least Squares
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Image alignment

- Two broad approaches:
- Direct (pixel-based) alignment
- Search for alignment where most pixels agree
- Feature-based alignment
- Search for alignment where extracted features agree
- Can be verified using pixel-based alignment

Alignment as fitting

- Previously: fitting a model to features in one image

Find model M that minimizes
$\sum_{i} \operatorname{residual}\left(x_{i}, M\right)$

Alignment as fitting

- Previously: fitting a model to features in one image

Find model M that minimizes

$$
\sum_{i} \operatorname{residual}\left(x_{i}, M\right)
$$

- Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Find transformation T that minimizes $\sum_{i} \operatorname{residual}\left(T\left(x_{i}\right), x_{i}^{\prime}\right)$

2D transformation models

- Similarity
(translation,
scale, rotation)

- Affine

- Projective (homography)

Let's start with affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an affine transformation

- Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

$$
\left[\begin{array}{cccccc}
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& \cdots & & &
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{c}
\cdots \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\cdots
\end{array}\right]
$$

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Feature-based alignment outline

Feature-based alignment outline

- Extract features

Feature-based alignment outline

- Extract features
- Compute putative matches

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T
- Verify transformation (search for other matches consistent with T)

Dealing with outliers

- The set of putative matches contains a very high percentage of outliers
- Geometric fitting strategies:
- RANSAC
- Hough transform

RANSAC

RANSAC loop:

1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

