
Fitting & Matching

Lecture 4 – Prof. Bregler

Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros.

How do we build panorama?

• We need to match (align) images

Matching with Features

•Detect feature points in both images

Matching with Features

•Detect feature points in both images

•Find corresponding pairs

Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images

Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images

Previous lecture

Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem

Source: K. Grauman

Fitting

• Choose a parametric model to represent a

set of features

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

• Noise in the measured feature locations

• Extraneous data: clutter (outliers), multiple lines

• Missing data: occlusions

Case study: Line detection

Slide: S. Lazebnik

Fitting: Issues

• If we know which points belong to the line,
how do we find the “optimal” line parameters?
• Least squares

• What if there are outliers?
• Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
• Model selection

Slide: S. Lazebnik

Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem

Least squares line fitting

Data: (x1, y1), …, (xn, yn)

Line equation: yi = m xi + b

Find (m, b) to minimize

 


n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

Slide: S. Lazebnik

Least squares line fitting

Data: (x1, y1), …, (xn, yn)

Line equation: yi = m xi + b

Find (m, b) to minimize

022  YXXBX
dB

dE TT

 

)()()(2)()(

1

1

1
2

2

11

1

2

XBXBYXBYYXBYXBY

XBY
b

m

x

x

y

y

b

m
xyE

TTTT

nn

n

i ii



































































 



Normal equations: least squares solution to

XB=Y

 


n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

YXXBX TT 

Slide: S. Lazebnik

Problem with “vertical” least squares

• Not rotation-invariant

• Fails completely for vertical lines

Slide: S. Lazebnik

Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem

Total least squares

Distance between point (xi, yi) and

line ax+by=d (a2+b2=1): |axi + byi – d|

 


n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

Unit normal:

N=(a, b)

Slide: S. Lazebnik

Total least squares

Distance between point (xi, yi) and

line ax+by=d (a2+b2=1): |axi + byi – d|

Find (a, b, d) to minimize the sum of

squared perpendicular distances  


n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

 


n

i ii dybxaE
1

2)(

Unit normal:

N=(a, b)

Total least squares

Distance between point (xi, yi) and

line ax+by=d (a2+b2=1): |axi + byi – d|

Find (a, b, d) to minimize the sum of

squared perpendicular distances  


n

i ii dybxaE
1

2)((xi, yi)

ax+by=d

 


n

i ii dybxaE
1

2)(

Unit normal:

N=(a, b)

0)(2
1





 

n

i ii dybxa
d

E
ybxax

n

b
x

n

a
d

n

i i

n

i i    11

)()())()((

2

11

1

2 UNUN
b

a

yyxx

yyxx

yybxxaE T

nn

n

i ii 




























 


0)(2  NUU
dN

dE T

Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU

associated with the smallest eigenvalue (least squares solution

to homogeneous linear system UN = 0)
Slide: S. Lazebnik

Total least squares























yyxx

yyxx

U

nn


11
































n

i

i

n

i

ii

n

i

ii

n

i

i
T

yyyyxx

yyxxxx

UU

1

2

1

11

2

)())((

))(()(

second moment matrix

Slide: S. Lazebnik

Total least squares























yyxx

yyxx

U

nn


11
































n

i

i

n

i

ii

n

i

ii

n

i

i
T

yyyyxx

yyxxxx

UU

1

2

1

11

2

)())((

))(()(

),(yx

N = (a, b)

second moment matrix

),(yyxx ii 

Slide: S. Lazebnik

Least squares: Robustness to noise

Least squares fit to the red points:

Slide: S. Lazebnik

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Slide: S. Lazebnik

Robust estimators

• General approach: minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ

ρ – robust function with scale parameter σ

   ;,ii

i

xr

The robust function

ρ behaves like

squared distance for

small values of the

residual u but

saturates for larger

values of u

Slide: S. Lazebnik

Choosing the scale: Just right

The effect of the outlier is minimized
Slide: S. Lazebnik

The error value is almost the same for every

point and the fit is very poor

Choosing the scale: Too small

Slide: S. Lazebnik

Choosing the scale: Too large

Behaves much the same as least squares

Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem

RANSAC

• Robust fitting can deal with a few outliers –
what if we have very many?

• Random sample consensus (RANSAC):
Very general framework for model fitting in
the presence of outliers

• Outline
• Choose a small subset of points uniformly at random

• Fit a model to that subset

• Find all remaining points that are “close” to the model and
reject the rest as outliers

• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography. Comm. of

the ACM, Vol 24, pp 381-395, 1981.
Slide: S. Lazebnik

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf

RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining

points (i.e., points whose distance from the

line is less than t)

• If there are d or more inliers, accept the line

and refit using all inliers

Source: M. Pollefeys

Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95)

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95)

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

    s
epN  11log/1log

   pe
Ns

 111

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

Source: M. Pollefeys

Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95)

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

   pe
Ns

 111

Source: M. Pollefeys

    s
epN  11log/1log

Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95)

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d
• Should match expected inlier ratio

Source: M. Pollefeys

Adaptively determining the number of samples

• Inlier ratio e is often unknown a priori, so pick

worst case, e.g. 50%, and adapt if more

inliers are found, e.g. 80% would yield e=0.2

• Adaptive procedure:
• N=∞, sample_count =0

• While N >sample_count

– Choose a sample and count the number of inliers

– Set e = 1 – (number of inliers)/(total number of points)

– Recompute N from e:

– Increment the sample_count by 1

    s
epN  11log/1log

Source: M. Pollefeys

RANSAC pros and cons

• Pros
• Simple and general

• Applicable to many different problems

• Often works well in practice

• Cons
• Lots of parameters to tune

• Can’t always get a good initialization of the model based on

the minimum number of samples

• Sometimes too many iterations are required

• Can fail for extremely low inlier ratios

• We can often do better than brute-force sampling

Source: M. Pollefeys

Voting schemes

• Let each feature vote for all the models that

are compatible with it

• Hopefully the noise features will not vote

consistently for any single model

• Missing data doesn’t matter as long as there

are enough features remaining to agree on a

good model

Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem

Hough transform

• An early type of voting scheme

• General outline:
• Discretize parameter space into bins

• For each feature point in the image, put a vote in every bin in

the parameter space that could have generated this point

• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.

Int. Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

Parameter space representation

• A line in the image corresponds to a point in

Hough space

Image space Hough parameter space

Source: S. Seitz

Parameter space representation

• What does a point (x0, y0) in the image space

map to in the Hough space?

Image space Hough parameter space

Source: S. Seitz

Parameter space representation

• What does a point (x0, y0) in the image space

map to in the Hough space?
• Answer: the solutions of b = –x0m + y0

• This is a line in Hough space

Image space Hough parameter space

Source: S. Seitz

Parameter space representation

• Where is the line that contains both (x0, y0)

and (x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz

Parameter space representation

• Where is the line that contains both (x0, y0)

and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and

b = –x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz

• Problems with the (m,b) space:
• Unbounded parameter domain

• Vertical lines require infinite m

Parameter space representation

• Problems with the (m,b) space:
• Unbounded parameter domain

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

  sincos yx

Each point will add a sinusoid in the (,) parameter space

Algorithm outline

• Initialize accumulator H
to all zeros

• For each edge point (x,y)
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a
local maximum

• The detected line in the image is given by
ρ = x cos θ + y sin θ

ρ

θ

features votes

Basic illustration

Square Circle

Other shapes

Several lines

A more complicated image

http://ostatic.com/files/images/ss_hough.jpg

features votes

Effect of noise

features votes

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise

• Number of votes for a line of 20 points with

increasing noise:

Random points

Uniform noise can lead to spurious peaks in the array
features votes

Random points

• As the level of uniform noise increases, the

maximum number of votes increases too:

Dealing with noise

• Choose a good grid / discretization
• Too coarse: large votes obtained when too many different

lines correspond to a single bucket

• Too fine: miss lines because some points that are not

exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in

accumulator array)

• Try to get rid of irrelevant features
• Take only edge points with significant gradient magnitude

Hough transform for circles

• How many dimensions will the parameter

space have?

• Given an oriented edge point, what are all

possible bins that it can vote for?

Hough transform for circles

),(),(yxIryx 

x

y

(x,y)

x

y

r

),(),(yxIryx 

image space Hough parameter space

Generalized Hough transform

• We want to find a shape defined by its boundary
points and a reference point

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes,

Pattern Recognition 13(2), 1981, pp. 111-122.

a

http://www.cs.rochester.edu/~dana/HoughT.pdf

p

Generalized Hough transform

• We want to find a shape defined by its boundary
points and a reference point

• For every boundary point p, we can compute
the displacement vector r = a – p as a function
of gradient orientation θ

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes,

Pattern Recognition 13(2), 1981, pp. 111-122.

a

θ r(θ)

http://www.cs.rochester.edu/~dana/HoughT.pdf

Generalized Hough transform

• For model shape: construct a table indexed

by θ storing displacement vectors r as

function of gradient direction

• Detection: For each edge point p with

gradient orientation θ:
• Retrieve all r indexed with θ

• For each r(θ), put a vote in the Hough space at p + r(θ)

• Peak in this Hough space is reference point

with most supporting edges

• Assumption: translation is the only

transformation here, i.e., orientation and

scale are fixed

Source: K. Grauman

Example

model shape

Example

displacement vectors for model points

Example

range of voting locations for test point

Example

range of voting locations for test point

Example

votes for points with θ =

Example

displacement vectors for model points

Example

range of voting locations for test point

votes for points with θ =

Example

Application in recognition

• Instead of indexing displacements by gradient

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical

Learning in Computer Vision 2004

training image

visual codeword with

displacement vectors

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Application in recognition

• Instead of indexing displacements by gradient

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical

Learning in Computer Vision 2004

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem

Image alignment

• Two broad approaches:

• Direct (pixel-based) alignment

– Search for alignment where most pixels agree

• Feature-based alignment

– Search for alignment where extracted features agree

– Can be verified using pixel-based alignment

Source: S. Lazebnik

Alignment as fitting

• Previously: fitting a model to features in one image


i

i Mx),(residual

Find model M that minimizes

M

xi

Source: S. Lazebnik

Alignment as fitting

• Previously: fitting a model to features in one image

• Alignment: fitting a model to a transformation between

pairs of features (matches) in two images


i

i Mx),(residual

 
i

ii xxT)),((residual

Find model M that minimizes

Find transformation T

that minimizes

M

xi

T

xi
xi

'

Source: S. Lazebnik

2D transformation models

• Similarity

(translation,

scale, rotation)

• Affine

• Projective

(homography)

Source: S. Lazebnik

Let’s start with affine transformations

• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly planar

objects and roughly orthographic cameras

• Can be used to initialize fitting for more complex

models

Source: S. Lazebnik

Fitting an affine transformation

• Assume we know the correspondences, how do we

get the transformation?

),(ii yx 
),(ii yx








































2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Source: S. Lazebnik

Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly independent

equations: need at least three to solve for the

transformation parameters












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Source: S. Lazebnik

Feature-based alignment outline

Feature-based alignment outline

• Extract features

Feature-based alignment outline

• Extract features

• Compute putative matches

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T

• Verify transformation (search for other matches consistent

with T)

Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T

• Verify transformation (search for other matches consistent

with T)

Dealing with outliers

• The set of putative matches contains a very high

percentage of outliers

• Geometric fitting strategies:

• RANSAC

• Hough transform

RANSAC

RANSAC loop:

1. Randomly select a seed group of matches

2. Compute transformation from seed group

3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-compute

least-squares estimate of transformation on all of the

inliers

Keep the transformation with the largest number of inliers

RANSAC example: Translation

Putative matches

Source: A. Efros

RANSAC example: Translation

Select one match, count inliers

Source: A. Efros

RANSAC example: Translation

Select one match, count inliers

Source: A. Efros

RANSAC example: Translation

Select translation with the most inliers

Source: A. Efros

