
Fitting & Matching

Lecture 4 – Prof. Bregler

Slides  from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros. 



How do we build panorama?

• We need to match (align) images



Matching with Features

•Detect feature points in both images



Matching with Features

•Detect feature points in both images

•Find corresponding pairs



Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images



Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images

Previous lecture



Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem



Source: K. Grauman

Fitting

• Choose a parametric model to represent a 

set of features

simple model: lines simple model: circles

complicated model: car



Fitting: Issues

• Noise in the measured feature locations

• Extraneous data: clutter (outliers), multiple lines

• Missing data: occlusions

Case study: Line detection

Slide: S. Lazebnik



Fitting: Issues

• If we know which points belong to the line, 
how do we find the “optimal” line parameters?
• Least squares

• What if there are outliers?
• Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
• Model selection

Slide: S. Lazebnik



Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem



Least squares line fitting

Data: (x1, y1), …, (xn, yn)

Line equation: yi = m xi + b

Find (m, b) to minimize 
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Least squares line fitting

Data: (x1, y1), …, (xn, yn)

Line equation: yi = m xi + b

Find (m, b) to minimize 
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Problem with “vertical” least squares

• Not rotation-invariant

• Fails completely for vertical lines

Slide: S. Lazebnik



Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem



Total least squares

Distance between point (xi, yi) and 

line ax+by=d (a2+b2=1): |axi + byi – d|
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Unit normal: 

N=(a, b)
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Total least squares

Distance between point (xi, yi) and 

line ax+by=d (a2+b2=1): |axi + byi – d|

Find (a, b, d) to minimize the sum of 

squared perpendicular distances  
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Total least squares

Distance between point (xi, yi) and 

line ax+by=d (a2+b2=1): |axi + byi – d|

Find (a, b, d) to minimize the sum of 
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Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU

associated with the smallest eigenvalue (least squares solution 

to homogeneous linear system UN = 0)
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Total least squares
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Total least squares
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Least squares: Robustness to noise

Least squares fit to the red points:

Slide: S. Lazebnik



Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Slide: S. Lazebnik



Robust estimators

• General approach: minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ

ρ – robust function with scale parameter σ
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The robust function 

ρ behaves like 

squared distance for 

small values of the 

residual u but 

saturates for larger 

values of u

Slide: S. Lazebnik



Choosing the scale: Just right

The effect of the outlier is minimized
Slide: S. Lazebnik



The error value is almost the same for every

point and the fit is very poor

Choosing the scale: Too small

Slide: S. Lazebnik



Choosing the scale: Too large

Behaves much the same as least squares



Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem



RANSAC

• Robust fitting can deal with a few outliers –
what if we have very many?

• Random sample consensus (RANSAC): 
Very general framework for model fitting in 
the presence of outliers

• Outline
• Choose a small subset of points uniformly at random

• Fit a model to that subset

• Find all remaining points that are “close” to the model and 
reject the rest as outliers

• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model 

Fitting with Applications to Image Analysis and Automated Cartography. Comm. of 

the ACM, Vol 24, pp 381-395, 1981.
Slide: S. Lazebnik

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf


RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 

points (i.e., points whose distance from the 

line is less than t)

• If there are d or more inliers, accept the line 

and refit using all inliers

Source: M. Pollefeys



Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys



Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
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Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
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Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d
• Should match expected inlier ratio

Source: M. Pollefeys



Adaptively determining the number of samples

• Inlier ratio e is often unknown a priori, so pick 

worst case, e.g. 50%, and adapt if more 

inliers are found, e.g. 80% would yield e=0.2 

• Adaptive procedure:
• N=∞, sample_count =0

• While N >sample_count

– Choose a sample and count the number of inliers

– Set e = 1 – (number of inliers)/(total number of points)

– Recompute N from e:

– Increment the sample_count by 1

    s
epN  11log/1log

Source: M. Pollefeys



RANSAC pros and cons

• Pros
• Simple and general

• Applicable to many different problems

• Often works well in practice

• Cons
• Lots of parameters to tune

• Can’t always get a good initialization of the model based on 

the minimum number of samples

• Sometimes too many iterations are required

• Can fail for extremely low inlier ratios

• We can often do better than brute-force sampling

Source: M. Pollefeys



Voting schemes

• Let each feature vote for all the models that 

are compatible with it

• Hopefully the noise features will not vote 

consistently for any single model

• Missing data doesn’t matter as long as there 

are enough features remaining to agree on a 

good model



Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem



Hough transform

• An early type of voting scheme

• General outline: 
• Discretize parameter space into bins

• For each feature point in the image, put a vote in every bin in 

the parameter space that could have generated this point

• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 

Int. Conf. High Energy Accelerators and Instrumentation, 1959 

Image space Hough parameter space



Parameter space representation

• A line in the image corresponds to a point in 

Hough space

Image space Hough parameter space

Source: S. Seitz



Parameter space representation

• What does a point (x0, y0) in the image space 

map to in the Hough space?

Image space Hough parameter space

Source: S. Seitz



Parameter space representation

• What does a point (x0, y0) in the image space 

map to in the Hough space?
• Answer: the solutions of b = –x0m + y0

• This is a line in Hough space

Image space Hough parameter space

Source: S. Seitz



Parameter space representation

• Where is the line that contains both (x0, y0) 

and (x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz



Parameter space representation

• Where is the line that contains both (x0, y0) 

and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz



• Problems with the (m,b) space:
• Unbounded parameter domain

• Vertical lines require infinite m

Parameter space representation



• Problems with the (m,b) space:
• Unbounded parameter domain

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

  sincos yx

Each point will add a sinusoid in the (,) parameter space 



Algorithm outline

• Initialize accumulator H 
to all zeros

• For each edge point (x,y) 
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a 
local maximum

• The detected line in the image is given by 
ρ = x cos θ + y sin θ

ρ

θ



features votes

Basic illustration



Square Circle 

Other shapes



Several lines



A more complicated image

http://ostatic.com/files/images/ss_hough.jpg



features votes

Effect of noise



features votes

Effect of noise

Peak gets fuzzy and hard to locate



Effect of noise

• Number of votes for a line of 20 points with 

increasing noise:



Random points

Uniform noise can lead to spurious peaks in the array
features votes



Random points

• As the level of uniform noise increases, the 

maximum number of votes increases too:



Dealing with noise

• Choose a good grid / discretization
• Too coarse: large votes obtained when too many different 

lines correspond to a single bucket

• Too fine: miss lines because some points that are not 

exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in 

accumulator array)

• Try to get rid of irrelevant features 
• Take only edge points with significant gradient magnitude



Hough transform for circles

• How many dimensions will the parameter 

space have?

• Given an oriented edge point, what are all 

possible bins that it can vote for?



Hough transform for circles 
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Generalized Hough transform

• We want to find a shape defined by its boundary 
points and a reference point

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 

Pattern Recognition 13(2), 1981, pp. 111-122.

a

http://www.cs.rochester.edu/~dana/HoughT.pdf


p

Generalized Hough transform

• We want to find a shape defined by its boundary 
points and a reference point

• For every boundary point p, we can compute 
the displacement vector r = a – p as a function 
of gradient orientation θ

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 

Pattern Recognition 13(2), 1981, pp. 111-122.

a

θ r(θ)

http://www.cs.rochester.edu/~dana/HoughT.pdf


Generalized Hough transform

• For model shape: construct a table indexed 

by θ storing displacement vectors r as 

function of gradient direction

• Detection: For each edge point p with 

gradient orientation θ:
• Retrieve all r indexed with θ

• For each r(θ), put a vote in the Hough space at p + r(θ)

• Peak in this Hough space is reference point 

with most supporting edges

• Assumption: translation is the only 

transformation here, i.e., orientation and 

scale are fixed

Source: K. Grauman



Example

model shape



Example

displacement vectors for model points



Example

range of voting locations for test point



Example

range of voting locations for test point



Example

votes for points with θ =



Example

displacement vectors for model points



Example

range of voting locations for test point



votes for points with θ =

Example



Application in recognition

• Instead of indexing displacements by gradient 

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 

Learning in Computer Vision 2004

training image

visual codeword with

displacement vectors

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Application in recognition

• Instead of indexing displacements by gradient 

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 

Learning in Computer Vision 2004

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Overview

• Fitting techniques

– Least Squares

– Total Least Squares

• RANSAC

• Hough Voting

• Alignment as a fitting problem



Image alignment

• Two broad approaches:

• Direct (pixel-based) alignment

– Search for alignment where most pixels agree

• Feature-based alignment

– Search for alignment where extracted features agree

– Can be verified using pixel-based alignment

Source: S. Lazebnik



Alignment as fitting

• Previously: fitting a model to features in one image


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M
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Source: S. Lazebnik



Alignment as fitting

• Previously: fitting a model to features in one image

• Alignment: fitting a model to a transformation between 

pairs of features (matches) in two images


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i Mx ),(residual
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ii xxT )),((residual

Find model M that minimizes

Find transformation T

that minimizes

M

xi

T

xi
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Source: S. Lazebnik



2D transformation models

• Similarity

(translation, 

scale, rotation)

• Affine

• Projective

(homography)

Source: S. Lazebnik



Let’s start with affine transformations

• Simple fitting procedure (linear least squares)

• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras

• Can be used to initialize fitting for more complex 

models

Source: S. Lazebnik



Fitting an affine transformation

• Assume we know the correspondences, how do we 

get the transformation?
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Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly independent 

equations: need at least three to solve for the 

transformation parameters
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Feature-based alignment outline



Feature-based alignment outline

• Extract features



Feature-based alignment outline

• Extract features

• Compute putative matches



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T

• Verify transformation (search for other matches consistent 

with T)



Feature-based alignment outline

• Extract features

• Compute putative matches

• Loop:

• Hypothesize transformation T

• Verify transformation (search for other matches consistent 

with T)



Dealing with outliers

• The set of putative matches contains a very high 

percentage of outliers

• Geometric fitting strategies:

• RANSAC

• Hough transform



RANSAC

RANSAC loop:

1. Randomly select a seed group of matches

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute 

least-squares estimate of transformation on all of the 

inliers

Keep the transformation with the largest number of inliers



RANSAC example: Translation

Putative matches

Source: A. Efros



RANSAC example: Translation

Select one match, count inliers

Source: A. Efros



RANSAC example: Translation

Select one match, count inliers

Source: A. Efros



RANSAC example: Translation

Select translation with the most inliers

Source: A. Efros


