
Lecture 2:

Color, Filtering & Edges

Slides: S. Lazebnik, S. Seitz, W. Freeman, F. Durand, D. Forsyth, D. Lowe, B. Wandell, S.Palmer, K. Grauman



Color



What is color?

•

•



Color Camera Sensor

http://www.photoaxe.com/wp-content/uploads/2007/04/camera-sensor.jpg



Overview of Color

•

•

•

•



Electromagnetic Spectrum

http://www.yorku.ca/eye/photopik.htm



Why do we see light of these wavelengths?

© Stephen E. Palmer, 2002

…because that’s where the

Sun radiates EM energy

Visible Light



The Physics of Light

Any source of light can be completely described

physically by its spectrum: the amount of energy emitted 

(per time unit) at each wavelength 400 - 700 nm.

© Stephen E. Palmer, 2002
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The Physics of Light
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Some examples of the spectra of light sources

© Stephen E. Palmer, 2002
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The Physics of Light

Some examples of the reflectance spectra of surfaces
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© Stephen E. Palmer, 2002



Interaction of light and surfaces

•

•

–

–

From Foundation of Vision by Brian Wandell, Sinauer Associates, 1995



Interaction of light and surfaces

•

Olafur Eliasson, Room for one color
Slide by S. Lazebnik

http://www.olafureliasson.net/works/room_for_one_colour.html
http://www.olafureliasson.net/works/room_for_one_colour.html


Overview of Color

•

•

•

•



The Eye

The human eye is a camera!
• Iris - colored annulus with radial muscles

• Pupil - the hole (aperture) whose size is controlled by the iris

• What‟s the “film”?
– photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz



The Retina

Cross-section of eye

Ganglion cell layer

Bipolar cell layer

Receptor layer

Pigmented
epithelium

Ganglion axons

Cross section of retina



Retina up-close

Light



© Stephen E. Palmer, 2002

Cones

cone-shaped 

less sensitive

operate in high light

color vision

Two types of light-sensitive receptors

Rods

rod-shaped

highly sensitive

operate at night

gray-scale vision



Rod / Cone sensitivity

The famous sock-matching problem…



© Stephen E. Palmer, 2002

.

400        450      500    550    600  650

R
E

L
A

T
IV

E
 A

B
S

O
R

B
A

N
C

E
 (

%
)

WAVELENGTH (nm.)

100

50

440

S

530 560  nm.

M L

Three kinds of cones:

Physiology of Color Vision

• Why are M and L cones so close?

• Are are there 3?



Color perception

Rods and cones act as filters on the spectrum
• To get the output of a filter, multiply its response curve by the 

spectrum, integrate over all wavelengths

– Each cone yields one number

S

M L

Wavelength

Power        

• Q:  How can we represent an entire spectrum with 3 numbers?

• A:  We can‟t!  Most of the information is lost.

– As a result, two different spectra may appear indistinguishable

» such spectra are known as metamers
Slide by Steve Seitz



Spectra of some real-world surfaces

metamers



Standardizing color experience

• We would like to understand which spectra 

produce the same color sensation in people 

under similar viewing conditions

• Color matching experiments

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995



Color matching experiment 1

Source: W. Freeman



Color matching experiment 1

p1    p2     p3

Source: W. Freeman



Color matching experiment 1

p1    p2     p3

Source: W. Freeman



Color matching experiment 1

p1    p2     p3

The primary color 

amounts needed for a 

match

Source: W. Freeman



Color matching experiment 2

Source: W. Freeman



Color matching experiment 2

p1    p2     p3

Source: W. Freeman



Color matching experiment 2

p1    p2     p3

Source: W. Freeman



Color matching experiment 2

p1    p2     p3p1    p2     p3

We say a “negative” 

amount of p2 was 

needed to make the 

match, because we 

added it to the test 

color’s side.

The primary color 

amounts needed for a 

match:

p1    p2     p3

Source: W. Freeman



Trichromacy

•

–

•

–

•

–

–



Grassman’s Laws

•

•

–

•

–

•

–



Overview of Color

•

•

•

•



Linear color spaces

•

•

mixing two lights produces
colors that lie along a straight

line in color space

mixing three lights produces 
colors that lie within the triangle 

they define in color space



How to compute the weights of the primaries 

to match any spectral signal

• Matching functions: the amount of each primary 

needed to match a monochromatic light source at 

each wavelength

p1    p2     p3

Source: W. Freeman



RGB space

• Primaries are monochromatic lights (for monitors, 
they correspond to the three types of phosphors)

• Subtractive matching required for some 
wavelengths

RGB matching functionsRGB primaries



How to compute the weights of the primaries 

to match any spectral signal

• Let c(λ) be one of the matching functions, and let t(λ) be 

the spectrum of the signal. Then the weight of the 

corresponding primary needed to match t is 




 dtcw )()(

λ

Matching functions, c(λ)

Signal to be matched, t(λ)



Linear color spaces: CIE XYZ

• Primaries are imaginary, but matching 
functions are everywhere positive

• The Y parameter corresponds to brightness or 
luminance of a color

• 2D visualization: draw (x,y), where     
x = X/(X+Y+Z), y = Y/(X+Y+Z) 

Matching functions

http://en.wikipedia.org/wiki/CIE_1931_color_space

http://en.wikipedia.org/wiki/CIE_1931_color_space


Nonlinear color spaces: HSV

• Perceptually meaningful dimensions: 

Hue, Saturation, Value (Intensity)

• RGB cube on its vertex



Useful reference

Stephen E. Palmer, Vision Science: Photons 

to Phenomenology, MIT Press, 1999



Overview of Color

•

•

•

•



White balance

• When looking at a picture on screen or print, we adapt to 

the illuminant of the room, not to that of the scene in the 

picture

• When the white balance is not correct, the picture will 

have an unnatural color “cast”

http://www.cambridgeincolour.com/tutorials/white-balance.htm

incorrect white balance correct white balance

http://www.cambridgeincolour.com/tutorials/white-balance.htm
http://www.cambridgeincolour.com/tutorials/white-balance.htm
http://www.cambridgeincolour.com/tutorials/white-balance.htm


White balance

• Film cameras: 
• Different types of film or different filters for different 

illumination conditions

• Digital cameras: 
• Automatic white balance

• White balance settings corresponding to 

several common illuminants

• Custom white balance using a reference 

object

http://www.cambridgeincolour.com/tutorials/white-balance.htm Slide: F. Durand

http://www.cambridgeincolour.com/tutorials/white-balance.htm
http://www.cambridgeincolour.com/tutorials/white-balance.htm
http://www.cambridgeincolour.com/tutorials/white-balance.htm


White balance

• Von Kries adaptation
• Multiply each channel by a gain factor

• A more general transformation would correspond to an arbitrary 3x3 

matrix

Slide: F. Durand



White balance

• Von Kries adaptation
• Multiply each channel by a gain factor

• A more general transformation would correspond to an arbitrary 3x3 

matrix

• Best way: gray card
• Take a picture of a neutral object  (white or gray)

• Deduce the weight of each channel

– If the object is recoded as rw, gw, bw

use weights 1/rw, 1/gw, 1/bw

Slide: F. Durand



White balance

• Without gray cards: we need to “guess” which 
pixels correspond to white objects

• Gray world assumption
• The image average rave, gave, bave is gray

• Use weights 1/rave, 1/gave, 1/bave

• Brightest pixel assumption (non-staurated)
• Highlights usually have the color of the light source 

• Use weights inversely proportional to the values of the 
brightest pixels

• Gamut mapping
• Gamut: convex hull of all pixel colors in an image

• Find the transformation that matches the gamut of the image 
to the gamut of a “typical” image under white light

• Use image statistics, learning techniques

Slide: F. Durand



Uses of color in computer vision

Color histograms for indexing and retrieval

Swain and Ballard, Color Indexing, IJCV 1991.

http://www.inf.ed.ac.uk/teaching/courses/av/LECTURE_NOTES/swainballard91.pdf


Uses of color in computer vision

Skin detection

M. Jones and J. Rehg, Statistical Color Models with 

Application to Skin Detection, IJCV 2002.
Source: S. Lazebnik

http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf


Uses of color in computer vision

Nude people detection

Forsyth, D.A. and Fleck, M. M., ``Automatic Detection of Human 

Nudes,'' International Journal of Computer Vision , 32 , 1, 63-77, 

August, 1999

http://luthuli.cs.uiuc.edu/~daf/papers/ko5.pdf
http://luthuli.cs.uiuc.edu/~daf/papers/ko5.pdf


Uses of color in computer vision

Image segmentation and retrieval

C. Carson, S. Belongie, H. Greenspan, and Ji. Malik, Blobworld: 

Image segmentation using Expectation-Maximization and its 

application to image querying, ICVIS 1999. Source: S. Lazebnik



Uses of color in computer vision

Robot soccer

M. Sridharan and P. Stone, Towards Eliminating Manual 

Color Calibration at RoboCup. RoboCup-2005: Robot 

Soccer World Cup IX, Springer Verlag, 2006

Source: K. Grauman

http://www.cs.utexas.edu/users/AustinVilla/?p=research/auto_vis
http://www.cs.utexas.edu/users/AustinVilla/?p=research/auto_vis


Uses of color in computer vision

Building appearance models for tracking

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 

Appearance. PAMI 2007.
Source: S. Lazebnik

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Interlude

•

•

–

•



Image Filtering



Overview of Filtering

•

•

•



Overview of Filtering

•

•

•



Motivation: Noise reduction

•

Take lots of images and average them! 

What’s the next best thing?

Source: S. Seitz



Moving average

111

111

111

“box filter”

Source: D. Lowe



Defining Convolution
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Source: F. Durand

• Convention: kernel is “flipped”
• MATLAB: conv2 (also imfilter)



Key properties



Properties in more detail

–

–

–



Annoying details

•

–

–

–

f

gg

gg

f

gg

gg

f

gg

gg

full same valid



Annoying details

•

–

–

–

•

•

•

•

Source: S. Marschner



Annoying details

•

–

–

–

•

•

•

•

Source: S. Marschner



Practice with linear filters

000

010

000

Original

?

Source: D. Lowe



Practice with linear filters

000

010

000

Original Filtered 

(no change)

Source: D. Lowe



Practice with linear filters

000

100

000

Original

?

Source: D. Lowe



Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe



Practice with linear filters

Original

?
111

111

111

Source: D. Lowe



Practice with linear filters

Original

111

111

111

Blur (with a

box filter)

Source: D. Lowe



Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter
- Accentuates differences with local 
average

Source: D. Lowe



Sharpening

before after

Slide credit: Bill Freeman



Spatial resolution and color

R

G

B

original

Slide credit: Bill Freeman



Blurring the G component

R

G

B

original processed

Slide credit: Bill Freeman



Blurring the R component

original processed

R

G

B

Slide credit: Bill Freeman



Blurring the B component

original

R

G

B
processed

Slide credit: Bill Freeman



From W. E. 

Glenn, in 

Digital 

Images and 

Human 

Vision, MIT 

Press, 

edited by 

Watson, 

1993

Slide credit: Bill Freeman



Lab color components

L

a

b

A rotation of the 

color 

coordinates into 

directions that 

are more 

perceptually 

meaningful:  

L: luminance, 

a: red-green, 

b: blue-yellow

Slide credit: Bill Freeman



Blurring the L Lab component

L

a

b

original processed

Slide credit: Bill Freeman



original

Blurring the a Lab component

L

a

b

processed

Slide credit: Bill Freeman



Blurring the b Lab component

original

L

a

b
processed

Slide credit: Bill Freeman



Overview of Filtering

•

•

•



Smoothing with box filter revisited

• Smoothing with an average actually doesn‟t compare 

at all well with a defocused lens

• Most obvious difference is that a single point of light 

viewed in a defocused lens looks like a fuzzy blob; but 

the averaging process would give a little square

Source: D. Forsyth



Smoothing with box filter revisited

• Smoothing with an average actually doesn‟t compare 

at all well with a defocused lens

• Most obvious difference is that a single point of light 

viewed in a defocused lens looks like a fuzzy blob; but 

the averaging process would give a little square

• Better idea: to eliminate edge effects, weight 

contribution of neighborhood pixels according to their 

closeness to the center, like so:

“fuzzy blob”
Source: D. Forsyth



Gaussian Kernel

• Constant factor at front makes volume sum to 1 (can be 

ignored, as we should re-normalize weights to sum to 1 in 
any case)

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Source: C. Rasmussen



Choosing kernel width

• Gaussian filters have infinite support, but 

discrete filters use finite kernels

Source: K. Grauman



Choosing kernel width

• Rule of thumb: set filter half-width to about 

3 σ



Example: Smoothing with a Gaussian



Mean vs. Gaussian filtering



Gaussian filters

• Remove “high-frequency” components from 

the image (low-pass filter)

• Convolution with self is another Gaussian
• So can smooth with small-width kernel, repeat, and get 

same result as larger-width kernel would have

• Convolving two times with Gaussian kernel of width σ is 

same as convolving once with kernel of width  σ√2 

• Separable kernel
• Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:

For MN image, PQ filter:  2D takes MNPQ add/times, 

while 1D takes MN(P + Q)



Overview of Filtering

•

•

•



Alternative idea: Median filtering

• A median filter operates over a window by 

selecting the median intensity in the window

• Is median filtering linear?
Source: K. Grauman



Median filter

Replace each pixel by the median over N pixels (5 pixels, 
for these examples).  Generalizes to “rank order” filters.

5-pixel 
neighborhood

In: Out:

In: Out:

Spike noise is 
removed

Monotonic 
edges remain 
unchanged

Median([1 7 1 5 1]) = 1
Mean([1 7 1 5 1]) = 2.8



Median filtering results

http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm#guidelines



Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median



Edges

http://todayinart.com/files/2009/12/500x388xblind-contour-line-drawing.png.pagespeed.ic.DOli66Ckz1.png



Edge detection

• Goal:  Identify sudden 

changes (discontinuities) in 

an image
• Intuitively, most semantic and shape 

information from the image can be 

encoded in the edges

• More compact than pixels

• Ideal: artist‟s line drawing 

(but artist is also using 

object-level knowledge)

Source: D. Lowe



Origin of edges

Edges are caused by a variety of factors:

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz



Edges in the Visual Cortex

Extract compact, generic, representation of image 

that carries sufficient information for higher-level 

processing tasks

Essentially what area 

V1 does in our visual 

cortex. 

http://www.usc.edu/programs/vpl/private/photos/research/retinal_circuits/figure_2.jpg



The gradient points in the direction of most rapid increase 

in intensity

Image gradient

The gradient of an image: 

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?



Differentiation and convolution

Recall, for 2D function, 

f(x,y):

This is linear and shift 

invariant, so must be 

the result of a 

convolution.

We could approximate 

this as

(which is obviously a 

convolution)



f

x
 lim

0

f x  , y 



f x,y 














f

x

f xn1,y  f xn , y 

x

-1 1

Source: D. Forsyth, D. Lowe



Finite difference filters

Other approximations of derivative filters exist:

Source: K. Grauman



Finite differences: example

Which one is the gradient in the x-direction (resp. y-direction)?



Effects of noise

Consider a single row or column of the image
• Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz



Effects of noise

• Finite difference filters respond strongly to 

noise
• Image noise results in pixels that look very different from 

their neighbors

• Generally, the larger the noise the stronger the response

• What is to be done?
• Smoothing the image should help, by forcing pixels different 

from their neighbors (=noise pixels?) to look more like 

neighbors

Source: D. Forsyth



Solution: smooth first

• To find edges, look for peaks in )( gf
dx

d


f

g

f * g

)( gf
dx

d


Source: S. Seitz



• Differentiation is convolution, and convolution 

is associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
 )(

Derivative theorem of convolution

g
dx

d
f 

f

g
dx

d

Source: S. Seitz



Derivative of Gaussian filter

Which one finds horizontal/vertical edges?

x-direction y-direction



Smoothed derivative removes noise, but blurs 

edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

Source: D. Forsyth



• The gradient magnitude is large along a thick 

“trail” or “ridge,” so how do we identify the actual 

edge points?

• How do we link the edge points to form curves?

Implementation issues

Source: D. Forsyth



Designing an edge detector

• Criteria for an “optimal” edge detector:
• Good detection: the optimal detector must minimize the 

probability of false positives (detecting spurious edges caused by 

noise), as well as that of false negatives (missing real edges)

• Good localization: the edges detected must be as close as 

possible to the true edges

• Single response: the detector must return one point only for each 

true edge point; that is, minimize the number of local maxima 

around the true edge

Source: L. Fei-Fei



Canny edge detector

• This is probably the most widely used edge 

detector in computer vision

• Theoretical model: step-edges corrupted by 

additive Gaussian noise

• Canny has shown that the first derivative of 

the Gaussian closely approximates the 

operator that optimizes the product of signal-

to-noise ratio and localization

• MATLAB: edge(image, „canny‟)

J. Canny, A Computational Approach To Edge Detection, IEEE 

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Canny edge detector

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
• Thin multi-pixel wide “ridges” down to single pixel width

Source: D. Lowe, L. Fei-Fei



Non-maximum suppression

At q, we have a 

maximum if the 

value is larger 

than those at 

both p and at r. 

Interpolate to 

get these 

values.

Source: D. Forsyth



Example

original image (Lena)



Example

norm of the gradient



Example

thresholding



Example

Non-maximum suppression



Canny edge detector

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression
• Thin multi-pixel wide “ridges” down to single pixel width

4. Linking of edge points

Source: D. Lowe, L. Fei-Fei



Assume the marked 

point is an edge point.  

Then we construct the 

tangent to the edge 

curve (which is normal 

to the gradient at that 

point) and use this to 

predict the next points 

(here either r or s). 

Edge linking

Source: D. Forsyth



Canny edge detector

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression
• Thin multi-pixel wide “ridges” down to single pixel width

4. Linking of edge points
• Hysteresis thresholding: use a higher threshold to start 

edge curves and a lower threshold to continue them

Source: D. Lowe, L. Fei-Fei



Hysteresis thresholding

• Use a high threshold to start edge curves and 

a low threshold to continue them
• Reduces drop-outs

Source: S. Seitz



Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold

Source: L. Fei-Fei



Effect of  (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

Source: S. Seitz



Edge detection is just the beginning…

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

