
Computational Photography - Assignment 3.

March 30, 2008

1 Introduction

The objective of this assignment is to implement that texture synthesis
paper of Efros and Leung that we covered in class. The paper can be
downloaded from the course web-page. Pseudo-code for this algorithm can
be found at http://graphics.cs.cmu.edu/people/efros/research/NPS/
alg.html. Print this out and read through it very carefully. It contains all
the details you need to implement the algorithm.

You can perform this assignment in whatever language you prefer. The
algorithm is somewhat slow in when implemented in Matlab, hence alter-
native languages may offer speed benefits. However, it is perfectly possible
to do the whole assignment in Matlab, with the code running in reasonable
time on the examples provided.

2 Objectives

Download the file assign3.zip from the course webpage. It contains two
small images, D20.png and fill-bread.png. The objective of this assign-
ment is to implement the texture synthesis algorithm so that you can:

1. Extend D20.png by 11 pixels all around. I.e. it is currently 53x49
pixels and you need to add pixels to make it up to 75x71 pixels.

2. Fill in the hole in fill-bread.png.

To make things easier (and faster), you can convert the images to grayscale
if you prefer. Bonus marks will be awarded for a color version, however.

1



G22.3033-006 2

Please submit filled in versions of the two images along with the source
code for your algorithm. Submissions lacking either the images or the code
will be penalized.

3 Hints’n’tips

Here are a number of hints to help you implement the code in Matlab:

• Use the parameter settings suggested in the pseudo-code, but set ErrThreshold=0.3.

• Window sizes in the range 7 – 19 pixels should work well. The smaller
the window, the faster the algorithm will run.

• Use the im2col function to get all synthesis patches in the image.

• Make sure that no pixels to be filled in are present in any of the synthesis
patches.

• Use fspecial(’gaussian’,WINDOW SIZE,SIGMA) to create GaussMask.

• Use se=strel(’square’,3); and border mask=imdilate(mask,se)-mask;

to get PixelList.

• For speed, try to code the inner loop (for ii,jj in pseudo-code) in a
single line, i.e. there is no need to loop over all possible patches. You
can do this by forming a matrix of size number pixels in patch by
number synthesis patches and then replicating the vectorized masks
(ValidMask(:) and GaussMask(:)) number synthesis patches times.

• Use the ind2sub command to map the index of BestMatch within
the vector of all SSD scores (for all synthesis patches) back to image
coordinates. Remember to account for the patch size when doing this.

• To debug the code, it may help to plot the current pixel being filled in
and a also rectangle showing the patch chosen on top of the image.

In case of difficulty, first try asking the TA for the class, Denis Kovacs
(den.kovacs@gmail.com).


