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Matting

Anat Levin, MIT CSAIL

With some slides from Alexei Efros & Fredo Durand

How does Superman fly?

Super-human powers?
OR
Image Matting?



2

Matting and compositing

The matting equations
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Replace background
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Review: alpha channel
Add one more channel:

• Image(R,G,B,alpha)            Sprite!

Encodes transparency (or pixel coverage):
• Alpha = 1: opaque object (complete coverage)
• Alpha = 0: transparent object (no coverage)
• 0<Alpha<1: semi-transparent (partial coverage)

E l l h 0 7Example: alpha = 0.7

Partial coverage       or     semi-transparency

Why is matting hard?

Why is matting hard? Why is matting hard?

How many equations? How many unknowns?
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Matting is ill posed: 7 unknowns but 3 constraints per 
pixel
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“Pulling a Matte”
Problem Definition:

• The separation of an image I into
– A foreground object image F, 
– a background image B, 
– and an alpha matte α

• F and α can then be used to composite the foreground object 
into a different image

Hard problem
• Even if alpha is binary, this is hard to do automatically 

(background subtraction problem)
• For movies/TV, manual segmentation of each frame is 

infeasible 
• Need to make a simplifying assumption…

Blue Screen

Blue Screen matting
Most common form of matting in TV studios & movies

Petros Vlahos invented blue screen matting in the 50s.  
His Ultimatte® is still the most popular equipment.  He 
won an Oscar for lifetime achievement.

A form of background subtraction:
• Need a known background
• Compute alpha as SSD(C,Bb) > threshold

– Or use Vlahos’ formula: α = 1-p1(Cb-p2Cg)
• Hope that foreground object doesn’t look like background 

– no blue ties!
• Why blue?
• Why uniform?

The Ultimatte

p1 and p2

Blue screen for superman? Solution #1: No Blue!

0=BF

Background is known: 1,0,0 === BGR BBB

Assumption:  
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Now only 3 unknowns!  
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Triangulation Matting (Smith & Blinn)

Instead of reducing the number of unknowns, we could attempt 
increase the number of equations

One way to do this is to photograph the object of interest in front 
of 2 known and distinct backgrounds

How many equations?
How many unknowns?
Does the background need to be constant color?

+

The Algorithm
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For every pixel:

Solve a system of 6
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Solve a system of 6 
equations in 4 unknowns

Triangulation Matting Examples

More Examples More examples



6

Natural image matting

The rules: 
Only 1 input image is given (e.g. downloaded from the 

web), we have no control over the background 
User can help, but want to minimize user work

User interfaces

The trimap interface:
•Bayesian Matting (Chuang et al, CVPR01)

•Poisson Matting (Sun et al SIGGRAPH 04)

0=α

1=α

]1,0[∈α

•Random Walk (Grady et al 05)

Scribbles interface:
•Wang&Cohen ICCV05

•Levin et al CVPR06

0=α

1=α

Trimap based algorithms
Assumptions: the trimap is narrow.

Thus we could guess F,B values in the mixed 
region by copying colors from neighboring F,B 
pixels

Given F B solve for αGiven F,B solve for 

Use     to refine F,B estimate

Use F,B estimate to refine     estimate

and so on

α

α

α

Problems with trimap based approaches

Input Scribbles Bayesian matting 
from scribbles

Good matting

•Iterate between solving for F,B and solving for 

•Accurate trimap required
α

(Replotted from Wang&Cohen)

A closed form solution to natural images 
matting

Anat Levin, Dani Lischinski and Yair Weiss

Presented at CVPR 2006

iiiii BFI )1( αα −+=

•Analytically eliminate F,B. Obtain quadratic cost in 

•Provable correctness result

•Quantitative evaluation of results

iiiii BFI )1( αα +
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The matte as a linear function of intensity
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Color Line:

1C

2C
(Omer&Werman 04)

Color lines
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Linear model from color lines

If the F,B colors in a local window lie on a color line, then 

Observation:

baaa BGR
i +++=             α wi ∈∀iR iG iB

= 2− 1+

Linear relation- 1 channel case
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Examples for linear relations

( )

(         ) 1+0+0+0  =

1+0+0+2

(         )

(         ) 1+0+0+2−=

0+0+2+1−=

Linear model from color lines

If the F,B colors in a local window lie on a color line, then 

Observation:

baaa BGR
i +++=             α wi ∈∀iR iG iB

= 2− 1+

Result: F,B can be eliminated from the matting cost

Evaluating  an     -matteα

?

Evaluating  an     -matteα

?

?

Evaluating  an     -matteα

?
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Evaluating  an     -matte,  1 channel caseα
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Evaluating  an     -matte,  1 channel caseα

2)(∑ ∑∈ ∈
−+

Ij wi ijij
j

bIa α
Minimize:

Theorem
F,B locally on color lines
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Solving for     using linear algebra
Input:

Image+ user scribbles
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Solving for     using linear algebra
Input:

Image+ user scribbles

ααα LTminarg=
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Advantages:

•Quadratic cost- global optimum

•Solve efficiently using linear algebra

•Provable correctness

•Insight from eigenvectors

• locally on color lines

Given:

If:

**** )1( BFI αα −+=

Cost minimization and the true solution

Theorem:

**,BF
•Constraints consistent with
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Matting and spectral segmentation
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Spectral segmentation: Analyzing smallest eigenvectors of 
a graph Laplacian L (E.g. Normalized Cuts, Shi&Malik 97) 
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Comparing eigenvectors

Input image Matting 
Eigenvectors

Global-
Eigenvectors

σ

Eigenvectors as guides

Input Image Eigenvectors
analyzing

Scribbling Matte

Matting results

+

Comparing results

Peacock and fire

Peacock and fire

Comparing results Quantitative results

Experiment Setup:

•Randomize 1000 windows from a real image

•Create 2000 test images by compositing with a 
constant foreground using 2 different alpha mattes

•Use a trimap to estimate mattes from the 2000 test 
images, using the different algorithms

•Compare errors against ground truth 
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Quantitative Results

Input Trimap Ground 
Truth 
Alpha

Poisson Random 
Walk

Wang& 
Cohen

Ours

Quantitative results
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•Analytically eliminate F,B and obtain quadratic cost               .   

Solve efficiently using linear algebra.

•Provable correctness result.

Conclusions

αα LT

•Connection to spectral segmentation. 

•Quantitative evaluation. 

Code available:
http://www.cs.huji.ac.il/~alevin/matting.tar.gz

Environment Matting and Compositing

slides by Jay Hetler

Douglas E. Zongker ~ Dawn M. Werner ~ Brian Curless ~ David H. Salsin 

Environment Matting Equation
C = F + (1- α)B + Φ

C ~ Color
F ~ Foreground color
B ~ Background color
α ~ Amount of light that passes through the 

foreground
Φ Contribution of light from Environment that travelsΦ ~ Contribution of light from Environment that travels 

through the object

Explanation of Φ

R – reflectance image
T – Texture image
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Environment Mattes

Performance
Calibration
Matting: 10-20 minutes extraction time for each texture 

map (Pentium II 400Mhz)
Compositing: 4-40 frames per second
Real-Time?

How much better is Environment Matting?

Alpha Matte             Environment Matte               Photograph

How much better is Environment Matting?

Alpha Matte             Environment Matte               Photograph

Movies!


