

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images! This tells us which pixels are easy to track, which are hard

 very useful later on when we do feature tracking...

Errors in Lukas-Kanade

- What are the potential causes of errors in this procedure? • Suppose A^TA is easily invertible
- Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is not satisfied
 - The motion is not small
 - A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Iterative Refinement

- Iterative Lukas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field
 - use image warping techniques
 - 3. Repeat until convergence

Recap: Classes of Techniques

Feature-based methods (e.g. SIFT+Ransac+regression)

- Extract visual features (corners, textured areas) and track them over multiple frames
- Sparse motion fields, but possibly robust tracking
 Suitable especially when image motion is large (10-s of pixels)
- Direct-methods (e.g. optical flow)

 Directly recover image motion from spatio-temporal image brightness variations
 - Global motion parameters directly recovered without an intermediate feature motion calculation .
 - · Dense motion fields, but more sensitive to appearance variations
 - Suitable for video and when image motion is small (< 10 pixels)

Overview

- Optical flow
- Motion Magnification
- Colorization

Naïve Approach SIGGR H2005 • Magnify the estimated optical flow field Rendering by warping Original sequence Magnified by naïve approach

SIGGRAPH2005

ideo Reg	istration		SIGGRAPH2
Input raw video sequence	Video Registration	Feature point tracking	➡ Trajectory clustering
Output magnified video sequence	Magnification, texture fill-in, rendering	Layer segmentation	Dense optical flow interpolation
	User interaction	Layer-based m	

Robust Video Registration

- Find feature points with Harris corner detector on the reference frame
- Brute force tracking feature points
- Select a set of robust feature points with inlier and outlier estimation (most from the rigid background)
- Warp each frame to the reference frame with a global affine transform

Normalized Complex Correlation

- The similarity metric should be independent of phase and magnitude
- Normalized complex correlation

SIGGRAPH2005

Motion Ma	ignification	n Pipeline	SIGGRAPH2005
Dense Opt	tical Flow	<mark>Field</mark>	
Input raw video	Video	Feature point tracking	Trajectory
sequence	Registration		clustering
Output magnified video sequence	Magnification, texture fill-in, rendering	Layer segmentation	Dense optical flow interpolation
	User interaction	Layer-based n	

Conclusion

- Motion magnification
 - A motion microscopy technique
- Layer-based motion processing system
 - Robust feature point tracking
 - Reliable trajectory clustering
 - Dense optical flow field interpolation
 - Layer segmentation combining multiple cues

Thank you!Correction</td

Massachusetts Institute of Technology

Overview

- Optical flow
- Motion Magnification
- Colorization

Colorization Using Optimization

Anat Levin Dani Lischinski Yair Weiss

School of Computer Science and Engineering The Hebrew University of Jerusalem, Israel

Typical Colorization Process

- Delineate region boundary
- Choose region color from palette.

Images from: "Yet Another Colorization Tutorial" http://www.worth1000.com/tutorial.asp ?sid=161018

- Delineate region boundary
- Choose region color from palette.
- Track regions across video frames

Colorization by Analogy - Discussion

- Indirect artistic control
- No spatial continuity constraint

Summary

• Interface: User scribbles color on a small number of pixels

Colors propagate in space-time volume respecting intensity boundaries

Convincing colorization with a small amount of user
 effort

Code & examples available: www.cs.huji.ac.i/~yweiss/Colorization/