Data-driven methods

Lecture 8
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Admin

¢ Office hours straight after class today
¢ Assignment 3 out, due in 2 weeks

* Projects.....

Overview

¢ Texture synthesis

Pixels
e Quilting

* Image Analogies

Patches

e Super-resolution
¢ Scene completion

Objects/Scenes

Overview

¢ Texture synthesis [Efros & Leung, ICCV’99]
¢ Quilting [Efros & Freeman 2001]

¢ Image Analogies [Hertzmann et al. 2001]
¢ Super-resolution [Freeman et al. 2002]

¢ Scene completion [Hays & Efros 2007]

Slides from: Alyosha Efros, Bill
Freeman, James Hayes
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Texture

Overview

 Texture depicts spatially repeating patterns

e Texture synthesis
» Many natural phenomena are textures

¢ Quilting
¢ Image Analogies
e Super-resolution

* Scene completion

radishes yogurt

Texture Synthesis The Challenge

¢ Goal of Texture Synthesis: create new samples of
a given texture

» Many applications: virtual environments, hole-
filling, texturing surfaces
repeate
P N 5 * Need to model the whole
. £ 4 spectrum: from repeated to

stochastic texture

Efros & Leung Algorithm Some Details

I » Growing is in “onion skin” order
" eampling L — Within each “layer”, pixels with most neighbors are
synthesized first
— If no close match can be found, the pixel is not
Input image synthesized until the end

Synthesizing a pixel
» Assuming Markov property, compute P(p|N(p))
— Building explicit probability tables infeasible

— Instead, we search the input image for all similar
neighborhoods — that’s our pdf for p

— To sample from this pdf, just pick one match at
random

Using Gaussian-weighted SSD is very important

— to make sure the new pixel agrees with its closest
neighbors

— Approximates reduction to a smaller neighborhood
window if data is too sparse
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Varying Window Size

R A
b o i e

Increasing window size

Synthesis Results More Results

white bread brick wall
french canvas rafia weave
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Extrapolation Summary

» The Efros & Leung algorithm
— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!

— ...but very slow

Overview Image Quilting [Efros & Freeman]

* Texture synthesis J—.......,........J_ nonparametric T T—L i

sampling
* Quilting
* Image Analogies

Input image

o Super—resolution Synthesizing a block

¢ Scene completion » Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
* Exactly the same but now we want P(B|N(B))

* Much faster: synthesize all pixels in a block at once

* Not the same as multi-scale!

Minimal error boundary

a4
Input texture overlapping blocks vertical boundary

‘o e
| | =\
N

Random placement Neighboring blocks Minimal error

of blocks constrained by overlap boundary cut
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overlap error min. error boundary
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Our Philosophy

* The “Corrupt Professor’s Algorithm”:
— Plagiarize as much of the source image as you can
— Then try to cover up the evidence

 Rationale:

— Texture blocks are by definition correct samples of
texture so problem only connecting them together
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Failures
(Chernobyl :
Harvest)

L e el -

illa & Simoncelli Xu, Guo & Shum

i o s ——

input image

Wei & Levoy Our algorithm

Bush campaign digitally altered TV ad
President Bush's campaign acknowledged Thursday that it had

figitally photo that in . telavision
‘commercial. In the photo, a handful of soidiers were muliplied
many times.

Original photograph




Fill Order

« In what order should we fill the pixels?

Exemplar-based Inpainting demo

Texture Transfer

Constraint

3/31/2008

Fill Order

 In what order should we fill the pixels?
— choose pixels that have more neighbors filled
Criminisi, Peﬁezgng%%gixe'S that are continuations of ,” Proc. CVPR, 2003.

Application: Texture Transfer

 Try to explain one object with bits and
pieces of another object:

Texture Transfer

* Take the texture from one
image and “paint” it onto
another object

Same as texture synthesis, except an additional constraint:
1. Consistency of texture
2. Similarity to the image being “explained”



Overview

¢ Texture synthesis
e Quilting

¢ Image Analogies
e Super-resolution

¢ Scene completion

Image analogies

FHVLI Maelia Hesearch Lab | Prejects | image Analogies | Mazilla | ieles
R

Q“rr"'l image analogies
home

people
ressarch

Applications

Image Analogies

Aaron Hertzmannt?

Chuck Jacobs?

Nuria Oliver?

Brian Curless? INew York University

David Salesinz2 2Microsoft Research

SUniversity of Washington

Image Analogies

3/31/2008



Blur Filter Edge Filter

Unfiltered source ()

Unfiltered ta r'.'r ()

Filtered source (1)

;jﬁgrrp#

Filtered target (11') Unfiltered target (8) Filtered target (8')

Colorization

Unfiltered source (A) Filtered source (A')

iﬁi I iﬁi |

Unfiltered target (B) Filtered target (B')
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Texture-by-numbers

_ﬂ

Super-resolution
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Overview

Texture synthesis
Quilting

Image Analogies
Super-resolution
Scene completion

Super-resolution

* Image: low resolution image
e Scene: high resolution image

Slides from Bill Freeman

ultimate goal...

Pixel-based images a
are not resolution sl
independent

Pixel replication

Cubic spline,
sharpened

Training-based
super-resolution

10



3/31/2008

3 approaches to perceptual
sharpening Super-resolution: other approaches

(1) Sharpening; boost existing high
frequencies.

amplitude

spatial frequency

(2) Use multiple frames to obtain %

Schultz and Stevenson, 1994
Pentland and Horowitz, 1993

fractal image compression (Polvere, 1998;
Iterated Systems)

« astronomical image processing (eg. Gull
and Daniell, 1978; “pixons”
http://casswww.ucsd.edu/puetter.html)

higher sampling rate in a still
frame.

(3) Estimate high frequencies not
present in image, although
implicitly defined.

In this talk, we focus on (3), which spatial frequency
we’ll call “super-resolution”.

amplitude

Training images, ~100,000 image/scene patch pairs DO a fIrSt InterPOIatlon

Images from two Corel database categories:
“giraffes” and “urban skyline”.

Low-resolution

Zoomed low-freq. Full freq. original

Representation

- - e

Pl =

Full frqency original

Low-resolution

11



Zoomed low-freg. Representatl on

Full freq. original

. True high fregs

Low-band input \ 9 4

(contrast normalized, (to minimize the ity of the relationships we have to learn,
PCA fitted) we remove the lowest frequencies from the input image,

and normalize the local contrast level).
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Gather ~100,000 patches

H N B @ W B B B ® N highfregs.

..'IE.. --...Iowfreqs."'

Training data samples (magnified)

Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

m @ W ® m ®m ®m ™ highfregs.

.ll.. .....Iowfreqs e

Training data samples (magnified)

Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

H @ EH B E E @ N highfregs.

.ll... .....Iowfreqs e

Training data samples (magnified)

Example: input image patch, and closest
matches from database

Input patch s
s

=
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Closest image e T Endias 7 Snfiady T findeke = e 37T il ST el bl )

patches from database 5 E E = = = —
Y-

SISl st izt ey Segp sy m b oy

Corresponding
high-resolution
patches from database

—
e T e e TP g

Image patch

Underlying candidate
scene patches. Each
renders to the image
patch.

f
f
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Scene-scene compatibility function, ¥(x;, x;) Image-scene compatibility function,
= <—>= D(x;, )

Assume overlapped regions, d, of hi-res. ‘:
patches differ by Gaussian observation X
noise: Assume Gaussian noise takes you from

—ldi—d; 12 /20 observed image patch to synthetic sample:

(@, 2;) = exp

B(z;,y;) = exp 1Wi—y(@) /207
Uniqueness constraint,

k not smoothness.
d
Markov network VISTA--
Vision by Image-Scene TrAining
image

patches image

scene
ches ;
(%, yi) : 2 O(x;, ;) \EI T
o X patches o %
scene

Be I Ief P ropag atl on After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Super-resolution application

image
patches

Iter. 0

Iter. 1

patches Iter. 3

13



Zooming 2 octaves

We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

- e 4

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204

3/31/2008

Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

Original
50x58

(cubic spline implies thin
plate prior)

True
200x232

Next, train the Markov network
algorithm on a world of random noise
images.

Original
50x58

Training images

True

Original (cubic spline implies thin
50x58 plate prior)
. . True
Cubic spline 200x232
The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.
Original
50x58
Training images
Markov
network True

Next, train on a world of vertically
oriented rectangles.

Training images

Original
50x58

True

14
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The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Now train on a generic collection of
images.

Original
50x58

True

Original
50x58
Training images
Markov
True
network
The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.
Original
50x58
Markov
network

Generic training images

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
arandom collection of
photographs.

Original Cubic
70x70 Spline
Markov
?rztiynin : True
9: 280x280
generic

Kodak Imaging Science Technology Lab test.
7 o

3 test images, 640x480, to be
zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.

15
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Algorithms compared

* Bicubic Interpolation

« Mitra's Directional Filter
* Fuzzy Logic Filter
*\ector Quantization

* VISTA

=\

Bicubic spline Altamira

Bicubic spline Altamira VISTA

User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”

Conclusions

» Exemplars (local, non-parametric image
representations) are useful, fun, easy-to-
use.

* Requirement: find ways to get by with too
few exemplars.

Overview

e Texture synthesis
¢ Quilting

* Image Analogies
e Super-resolution
e Scene completion

16



3/31/2008

Scene Completion Using
Millions of Photographs

James Hays and Alexei A. Efros

Carnegie Mellon University

Efros and Leung result

Criminisi et al. result Criminisi et al. result

17
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Scene Matching for Image Completion

B

|
Guache Alley ey
B2 0 430~ 7% - g

The Algorithm

Scene Descriptor Image Collection

I i ... ‘_’.‘ r’_r '. o
EETrSE

20 completions + blending 200 matches

Scene Completion Result Context matching

18
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Data Scene Matching

We downloaded 2.3 Million unique images
from Flickr groups and keyword searches.

Scene Descriptor Scene Descriptor
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Edge Crientation Edge Orientation

Gist scene descriptor
(Oliva and Torralba 2001)

Scene Descriptor Scene Descriptor

Frequency

Edge Orientation Edge Orientation

Gist scene descriptor

Gist scene descriptor
(Oliva and Torralba 2001)

(Oliva and Torralba 2001)
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Context Matching

... 200 total

Result Ranking

We assign each of the 200 results a score
which is the sum of:

The scene matching distance

The context matching distance
(color + texture)

The graph cut cost

3/31/2008
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Top 20 Results

21
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200 scene matches

26
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... 200 scene matches

Failures

Failures Failures

27



3/31/2008

Failures

Failures

3

28
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Failures

Evaluation

Original Images Criminisi et al. Scene Completion

Single result Each result
selected from 20

29
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Original Images Criminisi et al. Scene Completion

Single result Each result
selected from 20

Real Image. This image has not
been manipulated

or

Fake Image. This image has been
manipulated

User Study Results - 20 Participants

Criminisi el al

QOur algorithm

Why does it work?

Real Photographs

Percentage of images marked fake

20 30 40 50 B0 70 80 90
Maximum response time (seconds)

30
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10 nearest neighbors from a
collection of 20,000 images

Database of 70 Million 32x32 images

10 nearest neighbors from a Torralba, Fergus, and Freeman. Tiny Images.
collection of 2 million images MIT-CSAIL-TR-2007-024. 2007.

31



