Math review

Lecture 3

Projects

¢ Removing JPEG artifcats: “The Duck Caper”

“

Projects

¢ David Hockney’s Joiners
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Overview

Projects

HOT I?I'_NOT

* Hot or Not covsincms

8.4

Projects

¢ 2-D Panorama creation




Projects

¢ Image Analogies
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* Seam carving

Projects

Overview of today

Linear Algebra review
Least Squares Optimization
Linear Systems

Fourier domain

Projects
¢ Spectral

response —
curve
estimtation
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http://www.cs.princeton.edu/~cdecoro/eigenfaces/
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PCA - Faces

http://www.cs.princeton.edu/~cdecoro/eigenfaces/
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PCA - Faces
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http://www.cs.princeton.edu/~cdecoro/eigenfaces/

Overview of today

Linear Algebra review
Least Squares Optimization
Linear Systems

Fourier domain

Whiteboard

Convolution

fimn]=1®g="3 I[m-k n-I]g[kI]

Slide credit: Bill Freeman

Linear filtering (warm-up slide)
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Slide credit: Bill Freeman
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Linear filtering (warm-up slide) Linear filtering
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Filtered original
(no change)

original

Slide credit: Bill Freeman

Slide credit: Bill Freeman

shift Linear filtering
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original shifted original
Slide credit: Bill Freeman Slide credit: Bill Freeman
Blurring Blur examples
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Pixel offset
original Blurred (filter
applied in both
dimensions).
Slide credit: Bill Freeman Slide credit: Bill Freeman
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Blur examples Linear filtering (warm-up slide)
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Slide credit: Bill Freeman Slide credit: Bill Freeman
Linear filtering (no change) Linear filtering
2.0
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0 0
original Filtered original
(no change)
Slide credit: Bill Freeman Slide credit: Bill Freeman
(remember blurring) Sharpening
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original Blurred (filter original orizriﬁg?e
applied in both
dimensions).
Slide credit: Bill Freeman Slide credit: Bill Freeman




Sharpening example
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03 -0.25
original ' Sharpened
(differences are

accentuated; constant
areas are left untouched).

Slide credit: Bill Freeman

Spatial resolution and color

original

Slide credit: Bill Freeman

Blurring the R component

&
original processed

Slide credit: Bill Freeman
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before

Sharpening

after

Slide credit: Bill Freeman

original

Blurring the G component

processed

Slide credit: Bill Freeman

Blurring the B component

original

o
processed

Slide credit: Bill Freeman




From W. E.

Glenn, in E

Digital
Images and
Human
Vision, MIT |
Press, |
edited by TR
Watson, SPATIAL FREQUENCY (C/DEG)
1993 .

\Contrast sensitivity threshold functions for static luminance gratings

¥} aed isolurminance chromaticity gratings (R/Y.B/Y) averaged over
seven observers.

EARDINAL —— ™,
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Slide credit: Bill Freeman
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Lab color components

L A rotation of the
color
coordinates into
directions that

a are more

perceptually

meaningful:

L: luminance,

a: red-green,

b: blue-yellow

Slide credit: Bill Freeman

Blurring the L Lab component

original processed

Slide credit: Bill Freeman

Blurring the a Lab component

original

processed

Slide credit: Bill Freeman

Blurring the b Lab component

original

Slide credit: Bill Freeman

Overview of today

Linear Algebra review

¢ Least Squares Optimization
¢ Linear Systems

» Fourier domain
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Linear image transformations

« In analyzing images, it's often useful to
make a change of basis.

transformed image
F = Uf <—— \Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

Slide credit: Bill Freeman

Self-inverting transforms

Same basis functions are used for the inverse transform
f=U"F
=U*F

U transpose and complex conjugate

Slide credit: Bill Freeman

An example of such a transform:
the Fourier transform

discrete domain
Forward transform

Fimnl=>'S fk, |]e*”i[ﬁm+ﬁn]

Inverse transform

[ EE M(%JW”)
flk,1]=—=>"> F[m,n]e
MN iS5 12
Slide credit: Bill Freeman
Here uand v
are larger than
in the previous
slide.
efzri\( X+vy)
.
u
‘eni(Jx+vy)
Slide credit: Bill Freeman

To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---

as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
is constant. The magnitude of
the vector (u, V) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the
directi

V|

Slide credit: Bill Freeman

And larger still...

Slide credit: Bill Freeman




Phase and Magnitude

» Fourier transform of a * Curious fact
real function is complex - all natural images have
— difficult to plot, visualize about the same magnitude
— instead, we can think of the transform
phase and magnitude of - hence, phase seems to
the transform matter, but magnitude

largely doesn’t
» Demonstration
— Take two pictures, swap

* Phase is the phase of the
complex transform

° Magn!IUde is the the phase transforms,
magnitude of the complex compute the inverse - what
transform does the result look like?

Slide credit: Bill Freeman

This is the
magnitude
transform
of the
cheetah pic

- Bill Freeman
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- Bill Freeman

This is the
phase
transform
of the
cheetah pic

- Bill Freeman

Bcredit! Bill Freeman

This is the
magnitude
transform
of the zebra
pic

. Bill Freeman




This is the
phase
transform
of the zebra
pic
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Reconstruction
with zebra
phase, cheetah
magnitude

Slide credit: Bill Freeman

Reconstruction
with cheetah
phase, zebra
magnitude

Slide credit: Bill Freeman

Example image synthesis with Fourier basis.

¢ Following are 16 images showing the
reconstruction of an image from a random
selection of Fourier basis functions.

» Note, the selection of basis functions to include
was not made according to basis magnitude.
Doing that would have given us an approximate
version of the image much sooner.

Slide credit: Bill Freeman

2 Finge 0LECO1DA, 06247
Do 144, 256

Slide credit: Bill Freeman

#2 Range 1 35007, 0278
e [256, 256

Slide credit: Bill Freeman
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18

" 1 2 R f.70e-007, 0 80
Do (296, 256 o (148, 2440

Slide credit: Bill Freeman
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50

1 Rarge 1] 2 Range i Sa-008.1.7]
B 288, 298 o 298, 248]

Slide credit: Bill Freeman

82

82

o R 0,1
D (248, 398

Slide credit: Bill Freeman

136

1. e . 1] 2 Range 1 1e-008, 148
D [298, 738 Doem [226, 248

Slide credit: Bill Freeman

282

1 Ranga 0.1} 3 Fange [1 The-00%, 400
Coma 154, 138 oma 54, 258

Slide credit: Bill Freeman

538

1. Raege 0.1} ¥ Fange [8.170.006, 8.4
Do (158, 244) Do 198, 258

Slide credit: Bill Freeman
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1088

1 Range .1} 2 Range 1 #9008, 15
D [238, 7581 - 348,

Slide credit: Bill Freeman
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o R 1]
Do (258, 3481

L]
Coena (146, 580

Slide credit: Bill Freeman

4052.

1 Range .1
Cumns [254, 256

Slide credit: Bill Freeman

"
i [

#

o

E=

8056.

w2 Frange [0 600132, 84 9
D 04, 2560

Slide credit: Bill Freeman

15366

2 Frange QLOSETH, ¥1.1]
Come 256, 250

Slide credit: Bill Freeman

28743

#3 Fange L0010, 108
s 48, 258

Slide credit: Bill Freeman
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93 Range R00TS, 194
Do (148, 298

Slide credit: Bill Freeman

65536.

42 Pange 470015, 198
O 158, 1560

Slide credit: Bill Freeman

Fourier transform magnitude

Masking out the fundamental and
harmonics from periodic pillars

Slide credit: Bill Freeman

Slide credit: Bill Freeman

Linoas Fiters

TABLETA A wariety of hunctions of two dimensions and their Fourier transionms. Tha
ba used in two dmctions (Wit iate substiutions kor i, v and x, ] becksss el
transton of the Fourier transkos

canslul inspection of Bmits, s possisle 1o s
Dbstevint ruacers may alsc have noted Ihal an exprsscn or
combining bag e ol Bis iable

Foutier ranssorm

Forsyth&Ponce

Discrete-time, continuous frequency Fourier transform

Many sequences can be represented hy; Fourier integral 6

x[n] = %fj X(e!*)el ey,

where
o
X(e™) = Z x[n)e=inn (2.134)
oo
Oppenheim,
Schafer and
Buck,

Discrete-time
signal processing,
Prentice Hall,
1999
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Why is the Fourier domain
particularly useful?

« |t tells us the effect of linear convolutions.

» There is a fast algorithm for performing the
DFT, allowing for efficient signal filtering.

» The Fourier domain offers an alternative
domain for understanding and
manipulating the image.

Slide credit: Bill Freeman
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Analysis of our simple filters

Pixel offset

original Filtered
(no change)

coefficient
; o

F[m]= Z f[kle ()
:1 _loconstant

B aaaaansl
0

Slide credit: Bill Freeman

Analysis of our simple filters

Pixel offset -l

original shifted

gcoefﬁcient

%)
F[m]= Z flkle M
Constant
om 10 njagnltude_,
v ——— linearly shifted
=€
phase

Slide credit: Bill Freeman

Analysis of our simple filters

‘©c

. o
S,
.0

o Pixel offset
original blurred

Fm]= Z f[kle (i) { \/\/

Low-pass

_L 1+2005(ﬂmj 10 "
=3 M Y

0

Slide credit: Bill Freeman

Analysis of our simple filters

original sharpened \/

F[m] Z f[k]e ( J high-pass filter

2.3
= 2—;(1+ Zcos(ﬂl\;nj] M

0

Slide credit: Bill Freeman

Convolution versus FFT

e 1-d FFT: O(NlogN) computation time,
where N is number of samples.

e 2-d FFT: 2N(NlogN), where N is number of
pixels on a side

« Convolution: K N2, where K is number of
samples in kernel

» Say N=210, K=100. 2-d FFT: 20 220, while
convolution gives 100 220

Slide credit: Bill Freeman
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Sampling and Reconstruction
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Sampling and Reconstruction

¢ Simple example: a sign wave

Undersampling

¢ What if we “missed” things between the
samples?

¢ Simple example: undersampling a sine wave
— unsurprising result: information is lost

Undersampling

¢ What if we “missed” things between the
samples?

¢ Simple example: undersampling a sine wave
— unsurprising result: information is lost

— surprising result: indistinguishable from lower

Undersampling

¢ What if we “missed” things between the
samples?

* Simple example: undersampling a sine wave
— unsurprising result: information is lost

— surprising result: indistinguishable from lower
frequency

Aliasing in images

Disintegrating textures
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The Fourier transform of a sampled
signal

F(Sampleo (f(x,)))= F[f(x. N Y Sx-iy- j)]

i=—o0i=-o0

R0 3 S oty

o ®

=_Z Fu-iv-j)

i=—o0 j=—

Slide credit: Bill Freeman

Fowrier

i Transtorm Magnitude
Signal — Spectrum
- v—A—.
Samplo Copy and
shill

Samplad

(XY

Magnitule
Spetrum

Cut cut by

muiplication
Inaceurately [T— witls oy Blicr
Reconstructed  Fourier

Sigmal lransdorm
p— Magnitude
Spertrum

Image sub-sampling

v =i j

Throw away every other row and

column to create a 1/2 size image
- called image sub-sampling

Slide by Steve Seitz

2/12/2008

Fourier

Magaituse

Trasmloam
Sigrial _— ] Spectrum
Sareple Copy asd
1 l il

Sampled  Tousier
Signal Transform Magaitude
—_— Spectrum
Cut ou by
muliplication
Ascurately Iaverse with b filter

HRexonsrusiod Fourier

Signal Transform
-— Magnitude
Spectrum

Image half-sizing

This image is too big to
fit on the screen. How
can we reduce it?

How to generate a half-
sized version?

Image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?

Slide by Steve Seitz
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Gaussian (lowpass) pre-filtering Subsampling with Gaussian pre-filtering

Gaussian 1/2 Gaussian 1/2 G 1/4 G 1/8

Solution: filter the image, then subsample
« Filter size should double for each %2 size reduction. Why?

Slide by Steve Seitz Slide by Steve Seitz

Compare with...

. s Fi D :_ .
1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz
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