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Figure 1. Our camera and flash system offers dazzle-free photograpthyding the flash in the non-visible spectrum. A pair of ins&age
are captured at a blur-free shutter speed, one using a nspkietral flash (F), the other using ambient illumination @)ich in this case
is 1/100th of that required for a correct exposure. The pa@ eombined to give an output image (R) which is of comparghlgity to a
reference long exposure shot (L). The figures in this papebast viewed on screen, rather than in print.

Abstract

Camera flashes produce intrusive bursts of light that distuidaz-
zle. We present a prototype camera and flash that uses edrand
ultra-violet light mostly outside the visible range to oagt pictures
in low-light conditions. This “dark” flash is at least two @nc
of magnitude dimmer than conventional flashes for a comparab
exposure. Building on ideas from flash/no-flash photograprey
capture a pair of images, one using the dark flash, other ubing
dim ambient illumination alone. We then exploit the cortielas
between images recorded at different wavelengths to dertbis
ambient image and restore fine details to give a high quadsylt,
even in very weak illumination. The processing techniquesalso
be used to denoise images captured with conventional camera
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1 Introduction

The introduction of digital camera sensors has transforpieat
tography, permitting new levels of control and flexibilityer the
imaging process. Coupled with cheap computation, this resp
itated a wide range of novel photographic techniques, ctliely
known as Computational Photography. Modern camera serisors
they in a cellphone or a high-end DSLR, use eithera CCD or CMOS
sensor based on silicon. The raw sensor material resporiigto
over a wide range of wavelengths, typically 350—1200nm.ofzal
dyes are deposited onto the sensor pixels in a Bayer patésui}-
ing in 3 groups of pixels (red, green and blue). Each respomds
a limited range of wavelengths, approximating the serigéa of
the three types of cone cell in our retina. However, silicohighly
sensitive to infra-red (IR) wavelengths and it is difficudtmanu-
facture dyes that have sufficient attenuation in this regibns an
extra filter is placed on top of most sensors to block IR ligftiis
gives a sensor that records only over the range 400-700ntchma
ing our own color perception, but a considerable resticod the
intrinsic range of the device.

One solution to capturing photographs in low light conditas to
use a flash unit to add light to the scene. Although it provithes
light to capture otherwise unrecordable scenes, the flalesrthe
photographic process intrusive. The sudden burst of lightomly
alters the illumination but disturbs any people presenkingathem
aware that a photo has just been taken and possibly dazibngit
they happen to be looking toward the camera. For exampleygpgr
photo in a dark restaurant or bar using a bright camera flasrete
the subjects unable to see clearly for some moments aftérwar



In this paper we introduce a camera/flash system that is basedand night-vision.

around off-the-shelf consumer equipment, with a number bf m
nor modifications. First, the camera is a standard DSLR wiéh t
IR-block filter removed, thus restoring much of the origispéctral
range of the sensor. Second, we use a modified flash that éghits |
over a wider spectral range than normal, which we filter toceen
visible wavelengths. Thidark flashallows us to add light to the

In consumer photography the most prontine
use has been the Sony Nightshot where the IR-block filter ean b
switched out to use the near-IR part of the spectrum. The émag
are monochrome (with a greenish tint) and no attempt is nade t
store natural colors to them. Other imaging approaches asé~-
wavelengths to record the thermal signature of people oiclesh
However, this requires specialized optics and sensorstarglhtas

scene in such a way that it can be recorded by the camera, but no limited relevance to consumer photography. Ultra-violé¥} pho-

by our own visual system. Using the dark flash we can illun@nat
a dimly lit scene without dazzling people present, or sigatiitly
disturbing those around. Furthermore, it allows a fasttehspeed
to be used, thus avoiding camera shake. However, the difficl
that people want images with colors that match their visugke
rience and this will not be the case for images captured usiag
dark flash.

To overcome this, we acquire a pair of images in the man-

ner of flash/no-flash photography [Eisemann and Durand 2004;

Petschnigg et al. 2004], one using the dark flash and the dawsn
ing ambient illumination alone. For the latter to be bluedra fast
shutter speed must be used, resulting in high noise levednin
light. A key observation is that if the non-visible and visilthan-
nels are close in wavelength, strong correlations will ebétween
them. We introduce a novel type of constraint that expldiesdor-
relations between spectral bands. Using this constrdietetige
structure of the dark flash image can be used to remove the nois
from the ambient image, yielding a high quality result tizeds the
shadow and specularity artifacts present in the flash image.

tography has received little attention, other than from #opwho-
tography enthusiasts [Rorslett 2008]. Many flowers thak Ipkain
to humans have vibrant patterns under UV light to attractdts
sensitive to these wavelengths.

Multi-spectral recording using visible wavelengths hagrbex-
plored by several authors. [Park et al. 2007] used multgatu-

mination via arrays of colored LEDs to recover spectral ctélace
functions of the scene at video frame rates. Our system casdxu
in a similar manner for still scenes, being able to estimaeere-
flectance functions beyond the visible range. [Mohan et @082
use a diffraction grating in conjunction with an LCD mask toeg
control over the color spectrum for applications includingtamer
detection and adaptive color primaries.

Our processing of the flash/no-flash pair exploits the cati@hs
betweemearby spectral bands. Most work on image priors has fo-
cused on capturing spatial correlatiomghin a band. For example,
priors based on the heavy tailed distributions of image igrad
have proven highly effective in a wide range of problems sash
denoising [Portilla et al. 2003], deblurring [Fergus et20106], sep-

We also show how our camera/flash hardware and spectral con-arating reflections [Levin and Weiss 2007]. However, modied

straints can be used in a range of additional applicatioedyding:
inferring spectral reflectance functions of materials im $sene and
denoising individual color channels of images capturedhwian-
dard cameras.

1.1 Related work

exploit dependencies between color channels are less conithe
K-SVD denoising approach of [Aharon et al. 2006] does so icapl
itly by vector quantizing color patches. The fields-of-estpeap-
proach of [Roth and Black 2005] has also been extended tolmode
color images [McAuley et al. 2006] and uses color marginted.
However, neither of these approaches explicitly model titeri

Our approach can be regarded as a multi-spectral version of channel correlations, unlike our method. Explicit spdatnadels

the flash/no-flash technique introduced by [Agrawal et a0520
[Petschnigg et al. 2004] and [Eisemann and Durand 2004].
[Agrawal et al. 2005] focused on the removal of flash artddmat

did not apply their method to ambient images containing ifiign
cant noise, unlike [Petschnigg et al. 2004] and [EisemaihCar
rand 2004]. The two latter approaches are similar in that tise a
cross-bilateral (also known as joint-bilateral) filter adetail trans-

fer. However, [Petschnigg et al. 2004] attempt to denoigseatin-
bient, adding detail from the flash, while [Eisemann and bdra
2004] alter the flash image using ambient tones.

The closest work to ours is that of [Bennett et al. 2007], whows
how video captured in low-light conditions can be denoissithg
continuous IR illumination. However, they make use of terapo
smoothing to achieve high quality results, something nafsjie
in our photography setting. [Wang et al. 2008a] show how IR il
mination can be used to relight faces in well-lit scenes hBbese
works differ from ours in a number of ways: (i) they use comple
optical bench based setups with twin cameras and beanesphit
we use a single portable DSLR camera and temporally muktiple
instead; (ii) both use IR alone rather than the near-UV anthdR
we use (both being necessary for high quality reconstraos}idiii)
both rely on cross-bilateral filtering to combine the IR ansibhle
signals, an approach which we demonstrate to have seriaut sh
comings. In contrast, we propose a principled mechanismrigp-
agating information between spectral bands. We integhasarito

a unified cost function that combines the denoising and Idetais-
fer mechanisms, treated separately in cross-bilateratifig and
related methods, such as [Farbman et al. 2008].

Infra-red imaging has a long history in areas such as astngno

are used in color constancy problems and joint spatialtsgenod-
els have been proposed [Singh et al. 2003; Chakrabarti 20@8]
for this task, but these assume a noise-free image. [Morréd. e
2007] measured the spatial gradients of far IR images gadheith
a specialized camera, demonstrating their similarity ts¢hof vis-
ible light images.

Flash-based methods are not the only solution to takingiygst
in low-light levels. Wide aperture lenses gather more light are
heavy and expensive, making them impractical for most girato
phers. Anti-shake hardware can be used to capture bluriinee
ages at slow shutter speeds. These techniques can be cdmbine
with our approach to extend performance to even lower light |
els. Software-based deblurring techniques [Fergus e0@b;2iaya
2007] can only cope with modest levels of blur and typicakyé
artifacts in their output. Denoising techniques [Tomasi aan-
duchi 1998; Portilla et al. 2003] have similar performanssues,
and cannot cope with the noise levels we address in this papiet
denoising/deblurring techniques, such as that of YuanifYetzal.
2007], provide better performance but still require a peoivhtic
deconvolution operation, which can introduce artifactsetivbds
that register and combine a stack of noisy images, such #iséfe
et al. 2007], have the inconvenience of needing to captureadae
than two images. Finally, a visible flash can be made nonlitazz
by using a diffuser and aiming at the ceiling. This methodskao
well but is limited to indoors settings with a fairly low ceify of
neutral color.

2 Dark flash hardware

In our approach we capture a pair of images, one with the dark
flash (") and another using ambient lighting alon&)( The pixel



valuep in channel; of imageF' depends on three terms: the spec-
tral response of each camera chanfig{\) at wavelength\; the
illumination spectrum of the dark flash (\); and the surface re-
flectance functiort'(p, \) at the point in the scene. These combine
in a linear fashion:

)= [ GO NSE) i &
with j = {1, 2, 3} being the index of the camera channel. Note we
assume even illumination (i.¢7 (\) does not depend op). The
ambient imageA is formed in a similar fashion, using illumina-
tion I*(\) which scales with the exposure intervall;, 4> and

As record red, green and blue wavelengths respectively ugger t
ical illumination. Through the choice of flash and camera,cae
control I7 ()\) and the channel sensitiviti€s; ().

A primary design constraint is that off-the-shelf consuimardware
should be used where possible, making the system cheap sihd ea
reproducible. Our camera is a Fuji IS Pro, which is marketad f
applications involving UV and IR work since it lacks an IR sen
filter. The flash is a Nikon SB-14UV. Both the camera and thénflas
are equipped with carefully chosen filters, detailed in Apfie A,
that shape both/(\) and C;()) for our application. These fil-
ters remain in place for both shots, thus the pair of imagesbea
taken in quick succession, limited only by the 3 frames/s¢e of
the camera. The flash is used at full power for all shots, tluéecy
time being sufficiently long that it does not fire for the sedshot,
giving an image with ambient illumination alone. The sysismo
more complex to operate than a standard DSLR (see Fig. 3top |
for a picture of the system).

We now describe the form di (\) and how it can be recorded by
the camera while remaining largely invisible to humans. $pec-
tral response of each camera chanfig{\) is shown in Fig. 2(a).
Note that with no IR sensor filter, the responses extend densi
ably beyond the visible range (400-700nm). The spectrunhef t
dark flashI” () is shown in Fig. 2(b). It has two distinct emission
lobes, both just outside the visible range. The first, caimgjsof
UV light, couples with the small part of channgl= 3's response
extending below 400nm. The second lobe in the IR region batwe
700 and 800nm is picked up by chanpgel= 1 which responds
strongly. Thus, the dark flash allows the recording of twoeind
pendent measurements at each location in a scene withirgke sin
image: one in UV recorded if5, the other in IR recorded if;.

The flash/no-flash image pair captures the scene at 5 diffeper-
tral bands, assuming the ambient illumination is dim coragan
the output of the flash: 1. UV (370—-400nm)f#; 2. Blue (~ 400—
500nm) inAs; 3. Green £ 500-600nm) inAs; 4. Red ¢ 600-
700nm) inA; and 5. IR (700nm-800nm), recordedAh. In Fig. 3,
we show a Macbeth color chart in each of these five bands.

For comparison purposes, we also use a standard visible flash
whose power is adjusted to give comparable camera exposure t
the dark flash. In Fig. 3(top) we attempt to show the relatiee p
ceived brightness of the dark and visible flashes by camguhiam
using a standard DSLR whose spectral response is closettoftha
our eyes (thus the brightness in the image should corresfoomar
perception). See Section 4.3 for a quantitative analystheif rel-

ative brightness.

Safety issues. As shown in Fig. 2(b), our dark flash emits energy
just outside visible wavelengths, centered around 380nim mag-
ligible energy below 360nm or above 400nm (until the IR lobe a
700nm). The health hazard posed by UV light depends strongly
on the wavelength, those close to visible (400nm) beingrerdé
magnitude safer than the shorter wavelength componentaref s
light. Our flash is very close to visible, even closer thanckla

lights found in bars and nightclubs, which have a broadectsake
width centered at 360nm. In the USA, the acknowledged regula
tions regarding the safe daily exposure to UV light are giiren
the Threshold Limit Values (TLV) booklet, published by thevg
ernment body ACGIH [TLVs 2001]. We carefully measured the
absolute spectral irradiance of our flash using a spectemels-

ing the TLV tables, the maximum safe number of flashes per day
can be computed, which is 130,000 at 1m from the flash. Put an-
other way, if we assume that 30 minutes outside in the surltsesu
in the maximum permissible UV dose on a bright summer day the
each flash is equivalent to being outside for 1/100th secdedce

our dark flash poses no significant safety hazard. Detailbade
calculations can be found in Appendix B.

3 Dark flash processing

The pair of imagesF and A are captured using a shutter speed
sufficient to avoid camera shake. We assume that the ambient i
mination is weak, thusl will typically be very noisy and the illu-
mination in F" will be dominated by the dark flasi (\). We seek
an imageR whose edges are close to thoseflrand whose inten-
sities are close to a denoised versiondfhopefully being similar
to a long-exposure shot of the scehe

Standard approaches to denoising use spatial priors ttiatcen
sparsity on image gradients [Portilla et al. 2003]. In thstilao-
flash scenarioF’ contains high-frequency details that can assist the
denoising process. But unlike conventional flash/no-flasttqm-
raphy, our flash and ambient illuminatiofi§(\) and () are by
design almost non-overlapping, thus the colorginvill be quite
different to those in the ambient imageor the long-exposurd..

We propose a solution that uses the strong correlationsdegtw
color channels as a constraint in an optimization schemetwhi
computesk from A and .
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Figure 2: (a) Spectral response curvés; (), 5 = {1,2,3} for
each of the camera’s three color channels. (b) Absolutediaace
1m from the dark flasiif (). (c) Spectrum received by the camera
sensor when imaging a perfect white surfacgy, A)=1) illumi-
nated by the dark flash. The curves are the product of thosgrsho
in (@) and (b). The recorded pixel values for the three chéne
are the integrals of these curves (see Eqn. 1). Note undetatie
flash: no channel records in the visible range (black dasliees);
channelj=3 measures in the UV and channet1 responds to IR.



Visible flash with 220x attenuation

Dark flash

Visible

UV wiblock

Figure 3: Top left: Our camera and dark flash system. Top right:
The perceived brightness of the dark flash and a visible flagh t
gives a comparable camera exposure. To capture them in &esing
image, it was necessary to attenuate the visible flash bytarfat
220 using neutral density filters. Without these, the dagbfisould
not be visible in a non-saturated 8-bit image. Bottom: A calwart
captured with a pair of flash images (visible and dark), seped
out into five spectral bands. The bottom right subplot shdwes t
UV band with a UV-block filter attached to the camera that has a
sharp cut-off at 400nm. The low intensities in this band stiwat
our camera is genuinely recording UV light, not blue lighorfr
fluorescence caused by the UV part of the flash. See Sectitor4.2
further discussion.

3.1 Spectral constraints

Consider the 1-D example in Fig. 4 which shows a scanlinesacro
3 squares in the color chart from Fig. 3. Fig. 4(a) shows the in
tensities from the red channel of a long exposure sHat, (n
magenta) and IR from the dark flasliy( in black). Although
the intensities are quite different, the edges are aligeete the
spectral reflectance at red and IR wavelengths are cordelaité
one another. The alignment of the edges is apparent in Hx. 4(
where the gradients along the scanl¥ié’; and VL, are shown
(VFi(p) = Fi(p) — Fi(p — 1), the difference between adjacent
pixels p). As is widely known, this gradient signal is sparse, be-
ing close to zero everywhere but a few locations. Now, if we-co
sider thedifferencebetween the two gradient signa&laF'y — VL,
(Fig. 4(c)) then this too will be sparse, as shown by shapéef t
histogram in Fig. 4(d). Now consider a dark flash and noisy am-
bient image pair, shown in Fig. 4(e)—(h). The differencentssn
gradientsVF; — VA, (in Fig. 4(g)) is now no longer sparse, as
shown by it's Gaussian-shaped histogram in Fig. 4(h).

Reflecting the sparse distribution ®F; — V L, in Fig. 4(d), our
spectral constraints take the form of a sparse norm on ttdiegra
difference between channels in the reconstructed infaged the
flash imagef, i.e.[VR; — VF1|* wherea < 1. This encourages
the edge structures iR; to align spatially with those i while
allowing their magnitudes to differ. Thus, when transitianbe-
tween two materials, it does not matter if the spectral rédiemes
are different in visible and IR/UV bands, provided that thés an
significant edge in IR/UV. If a2 norm were used, this would not
be the case, antf R; andV F; would have to closely match, even
at material transitions, so causing artifactdin(see Fig. 9). While
a conventional spatial prior, such @&8R;|*, o < 1, would also re-
duce noise, it would not encourage the edges to align witbetlod
F which are close to those of the desired solution

We also impose a similar constraint to the UV chann&R; —

V F3|¢, recalling thatF; records UV andF; records IR. ForRs
(the blue channel), this will be a strong constraint sinogterms

of wavelength, blue is much closer to UV than to IR. In thisraxa
ple, we have only considered 1-D gradients but in the redilpro
we use bothe andy gradients, with separate terms for each. For
brevity, we useV to refer to bothv, andV,,.
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Figure 4. 1-D example of the spectral constraints in our model,
using a a scan line across 3 squares in the color chart of Fige&e
text for explanation.

3.2 Spatial-spectral cost function

Our cost function consists of three main terms:L(ikelihood: the
intensities of the reconstructiaR; should be close to those of the
noisy ambient imaged under ané> norm, assuming a Gaussian
noise model. (ii)Spatial prior: VR; should be small under a
sparse norm, reflecting the heavy-tailed nature of imagdignés.
The spatial prior term helps to give a further boost to imagality.
(iii) Spectral constraint: VR; should be close to botiv F; (IR)
andV F3 (UV) under a sparse norm, as explained above.

As with existing flash/no-flash techniques, we use a shada an
specularity maskn(p) which removes artifacts from the flash im-
age. Details of the mask construction are given in Secti8rba-
low. The overall cost function for each chanpesk:

argmin Y | 13 m(p) (R(p) — A;(0))° + 5 m(®)| VR (0)|" +

Likelihood Spatial
VR, () = VR ()| + |V, (p) - VE)I* | (2)
IR Spectral UV Spectral

In our experiments, unless otherwise stated, werise 1, a =
0.7. We solve for each each chanpedeparatelym(p) has the ef-
fect of increasing the weight on the likelihood and spagairts in
regions of shadows or specularities. We also assumed thendV a
IR spectral terms to have equal weight for all channeldHence
the weighting on the reconstruction term for each chappés the
only important parameter in the model and strongly dependfe
noise level of the ambient imagé. Since the blue channel is often
significantly noisier than the others, we use a differenaedbr 1.3
than foru, andus (which are set to be the same). Intuitivelyyif

is set to a large value then the colorsRfwill be close to those of
A at the expense of increased noise. Conversely; i small then
the noise inR is reduced, but the colors will deviate from those in
A. Choosing the value gi; can be done semi-automatically from



the level of under-exposure of (given by the camera’s exposure
meter) and the camera’s ISO setting. If needed, the valuelraay
fine-tuned on a small image patch, before processing theeenti
age. Typical values range from; = 5 (high noise) tou; = 40
(low noise).

Returning to our 1-D example in Fig. 4, we show the scanlimess
the color chart for our reconstructed imagein Fig. 4(i)—(l). De-
spite the spectral reflectances of the squares being qtiiézedit,
the intensities ofR; shown in orange in Fig. 4(i) closely match
those of the desired solutiab; in Fig. 4(a). Note thaR; is kept
close toA; (shown in Fig. 4(e)) by the likelihood term, while the
sparse norm on the spectral terms removes the noise.

We optimize Eqgn. 2 (which is non-convex df = 0.7) using It-
erative Re-weighted Least Squares [Levin et al. 2007]ializtng
with R; = F};. Due to poor conditioning of the least-squares sys-
tems, we use an incomplete Cholesky preconditioner to spaed
vergence. For a 1.3 megapixel image, our unoptimized Méathab
plementation takes approximately 25 minutes for all 3 clatg)n
with 5 iterations/channel. As this may be unacceptably somw
some practical situations, a considerable speedup canhieved

by settingae = 1. This makes the problem convex and fast numer-
ical schemes can be used (e.g. [Wang et al. 2008b]), reguiitia
processing time of 3 minutes, comparable to efficient imeleta-
tions of the cross-bilateral filter. However, some imageligués

lost in usinga = 1 and we explore this issue further in Fig. 9.

3.3 Pre & post-processing

Pre-processing. All images were captured in RAW mode. They

were then demosaiced and manually white-balanced using som

neutral-colored object (e.g. a wall or calibration target)the
scene. The mask:(p) was built using the same methods used in
[Petschnigg et al. 2004], namely the shadows were detegtidd
ing areas wher¢F" — A| is very small. Specularities were found
by looking for pixels saturated i#; (IR channel). In areas of
shadow/specularityn(p) = 5 andm(p) = 1 in all other areas,
smoothly varying between the two at the boundaries. In highen
conditions, we apply a small Gaussian smoothing fdo break up
any spurious image structure formed by the noise. The opéimi
tion is then performed on the linear tonescale images (iithowt
gamma correction).

Post-processing. If the ambient light levels are very low, the colors
in the ambient image can become imbalanced, particulatly ai
blue tint due to excessive noise levels in the blue channehcH
the output of the optimization will also have a similar catasst and
will not look similar to a long-exposure shét To compensate for
this, we use an additional color correction operation tipgiias a
global color mapping ta?. To generate this mapping function, we
determined the tone response curve of our camera for each col

channel using a stack of images taken over a wide range of expo

sures [Debevec and Malik 1997]. Particular care was takeenwh
fitting the parametric model to the low intensity part of thee.

In this regime, the sensor noise causes the curve to be near/i
in turn giving rise to the color casts observed in very noispges
(e.q. Fig. 5). By passing eadh; through its appropriate mapping
function, we can infer the true value of each pixel, yieldoajors
close to those in a long-exposure shot-inally, we gamma-correct
the images for display, using= 1.8.

4 Results

For the dark flash system to be practical it must achieve higt-q
ity reconstructions in low levels of ambient illuminatiom Fig. 5
and Fig. 6 we show 4 test examples: two portrait shots andtiio s
scenes. The test images were captured using two differpastyf

ambient illumination (tungsten and compact fluorescent) @m-
tain a wide range of materials and colors. The images in Fand
Fig. 6 are high resolution so are best viewed under magriticat
in order that fine details and noise may be seen. To show how the
noise levels vary across color channel we show a small reigion
two of the images, separated out into its constituent cdianes.
This typically reveals the blue channel to be far noisiemtlize
others.

To make comparisons straightforward, the shutter speed tse
capture the flash/no-flash pair is varied, thus simulatirffipidint
levels of ambient illumination. In practice however, theutar
speed would be set to the slowest level that avoids cameke sha
irrespective of the level of ambient light. As the light I&verop,
the ambient image becomes noisier (the dark flash infagtays
constant, however) thus making the reconstruction hardiaree
different noise scenarios are explored: (i) Low, where ipdssi-
ble to achieve reconstructions close to a long exposureemte
shot; (ii) Medium, where the reconstruction is acceptableerms
of quality and (iii) High, where a significant degradationojmality
is visible and the failure modes of the algorithm are evideft
each noise level, the degree of under-exposure of the atibien
ageA, relative to the long exposure referenteis quoted. These
range from 1/32nd of ambient illumination (Fig. 6(top))wdoto
1/256th for the portrait shots. Assuming 1/30th of a secanigki
quired to avoid camera shake, the results are equivalerakiog
pictures in conditions where exposures ranging from 1 se:tor8
seconds would otherwise be required. Techniques that pbhani
free photography at slow shutter speeds, such as imagéiztedi
would extend the range of operation of the dark flash systeswdn
longer equivalent exposures.

Ensuring accurate alignment betwel8mandA is an important prac-
tical issue since the spectral constraints require thisilé\#hrange
of software approaches for image registration exist (eBgkgr
et al. 2004]), any commercial implementation of the systeonla/
use a hardware approach based on sensors that can captsre pai
of images with virtually no delay between them (e.g. Fujidfix
Z10fd), guaranteeing good alignment. Thus with our prgietywe
sidestep this issue and capture the shots using a tripaadifficult
to draw comparisons with Petschnigg et al.[2004] since tieegot
specify the exposures used to capture their images, butafixaly
the majority of their examples correspond to our low noisseca
with a single case being equivalent to our medium noise level

At high noise levels, some color deviations and loss of tetai
be observed. This is a consequence of jgywalues which give
the likelihood term little weight in the optimization. Atlatoise
levels, our reconstructions contain some artifacts thstiltdrom
the dark flash illumination. If a material absorbs both UV aRd
strongly, thenF" will contain no gradients to guide the reconstruc-
tion. Examples of this include: the freckles on the man in Ei§
Fig. 5(lower) and the red lips of the doll in Fig. 6. Forturigt¢his
is relatively uncommon, as demonstrated by the range of€aiad
materials in our shots, the vast majority of which are acalyae-
covered. In particular, human skin and hair, two materialsvant
to the dark flash application, are plausibly reproduced.

4.1 Comparison experiments

We compare our method to a range of different hardware arte sof
ware approaches. In Fig. 7 we explore in turn the importarice o
having UV and IR in our dark flash by removing the correspond-
ing spectral term in the cost function of Eqn. 2. The figureveho
the need for both the UV and IR components, since if eithegis r
moved, the adjacent spectral bands (blue and red, resplygtia

R become degraded.



A - Low noise A - Med. noise A - High noise

R - Med. noise - R - High noise

A - Low noise A - Med. noise A - High noise

R - Low noise R - Med. noise R - High noise

Figure5: Two portrait shots captured with our camera/flash under giag illumination. Within each group, column 1 shows thekdkash
shot (F) and long exposure reference (L). Our results arenshim Columns 2,3 & 4. For each ambient image (A) of decreasixgpsure
(vielding increased noise), we show the reconstructedudy(fp). Column 5 shows a visible flash image (V), along withsibié flash shot
(D) attenuated with neutral density filters so that it is camgbly dazzling to F. The Low, Medium and High noise levetsespond to 6, 7
and 8 stops of underexposure respectively (correspondirigedth, 1/128th and 1/256th of ambient long exposure)héndwer group, we
show a zoomed-in section, separated into red, green, bliee clbannels.



A - Low noise = A - Med. noise == N A - High noise

Figure 6: Two different scenes captured with our camera/flash underdficent illumination. Within each group, rows 1 & 2 showtsho
under ambient illumination (A) of decreasing exposureliig increased noise) and our reconstructed output (RWwRashows, from left
to right: Long exposure reference (L), Visible flash shot&wgl dark flash shot (F). In the top group, Low, Medium and Higisa levels
correspond to 5, 6 and 7 stops of underexposure respectiigglyating to 1/32nd, 1/64th and 1/128th of ambient long sxp). In the
bottom, Low = 5.5, Medium = 6.5 and High = 7.5 stops undereggo&orresponding to 1/45th, 1/90th and 1/180th of ambient)




UV + IR (blue channel) UV + IR (red channel)

UV only (red channel)

(

Figure 7: Closeup of Fig. 6 (bottom group), showing the need for
both spectral terms in Egn. 2. Top left: Blue channel of recon
structed imageR using both UV and IR spectral terms. Bottom left:
Blue channel using only IR spectral term. Top right: Red cleiof
reconstructed imagé using both UV and IR spectral terms. Bot-
tom right: Red channel using only UV spectral term. Note that
removal of the flash in the adjacent band causes a degradeit.res

In Fig. 8 we compare our algorithm to alternate methods, gusin
the mid-noise case. First, we use the processing pipelisecha
on the cross-bilateral filter and detail enhancement, asritbesl in
[Petschnigg et al. 2004]. Using the dark flash/ambient imzaie
with their system, the results obtained are inferior to qupraach.
The range term in the cross-bilateral filter causes the etigegth

in the flash imagé to directly influence the smoothing of the am-
bient imageA. Thus it will only operate correctly if the edges in
and A are closely matched in magnitude, an unrealistic assumptio
since spectral reflectances typically differ between bahds<on-
trast, our model permits the edge magnitudes to differ wien 1

in Eqn. 2, giving a reconstruction of superior quality. Sedowe
tried two approaches that attempt to directly denoise thbieam
image: (i) bilateral filtering [Tomasi and Manduchi 19981da{ii)

a commercial denoising tool, Noise Ninja [Christian and &ap
2008]. Both methods perform poorly compared to the flasfilesh
approaches.

In Fig. 9 we explore how the value afin Egn. 2 effects the recon-
struction. When a non-sparse norm is used=f 2), the ambient
colors bleed. This can be prevented by using< 1, with some
improvement in quality forx = 0.7.

4.2 Fluorescence

Certain materials fluoresce when illuminated by the UV congrt
of our flash, the most common instances being white itemsotifi€l
ing such as the stripes in Fig. 5(top). Fluorescence maaife®l|f
as visible blue light that gives an unnaturally bright irgignin F3
in that part of the scene. Experimentally, we find the phenane
to be relatively rare: our test scenes contain a wide rangeadéri-
als, natural and man-made, yet it only occurs in a few loaatidt is
certainly not the dominant source of signalfip, as demonstrated
by Fig. 3(bottom). Where it does occur, it can produce sonmemi

UV/IR flash

!

Ambient only
NN

=

g

gl

Figure 8. Comparison of our approach to different processing
methods, showing two crops from Fig. 6 (top group), alondhwit
the blue channel of the first crop. The top set uses a dark flash /
ambient image pair, while the bottom uses the ambient imabe o
Key. R: Our reconstruction using spectral constraints. ®ieline
from [Petschnigg et al. 2004] based on cross-bilateral fitiad de-
tail enhancement. B: Bilateral filter of ambient image [Taihand
Manduchi 1998]. NN: Noise Ninja commercial denoising plugi
for Photoshop [Christian and Zapata 2008]. Our reconstiaot
approach produces superior results to the cross-bilataggdroach
and the standard denoising methods.
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Figure 9: Effect of varying in Eqn. 2. For values< 1, R con-
tains crisp edges, even if the spectral reflectances of theriaks

in visible and non-visible wavelengths differ somewhatisagpi-
cally the case. Setting = 2 has the undesirable effect of causing
the colors to bleed between regions. When= 2 the spectral
constraints force the edges in the UV/IR flash and ambientto b
the same, an unrealistic assumption given that they areucagtat
different wavelengths.

purple artifacts. Another drawback is that other peopleeoliag
the subjects during the photograph may see a glow from thh-clo
ing, thus making the flash not so invisible to them, althouug t
subjects themselves, if looking at the camera, will notg®othis.

4.3 Photometric flash measurements

One of the main objectives of our dark flash is that it shouldbe
unnoticeable as possible to human subjects. We measureidithe
flash output with a spectrometer to determine the spectealisince
(shown in Fig. 2(b)) 1m from the flash. This was then convetted
photometric units, using the photopic luminosity functiohVos
[1978]. The luminous exposure for the dark flash was 1.6 lux se
onds. A visible flash set to produce an imdgef similar intensity
to a dark flash imagé’ had luminous exposure of 362 lux seconds,
a factor of 226 times brighter. This ratio agrees closelyhvtite
experiment of Fig. 3(top right) where an attenuation of 2ies
was required to make the visible flash of comparable brigigne
the dark flash. In Fig. 5, we show imagBscaptured with a visible
flash attenuated by this factor. The resulting images areaamd-
ably noisy.

Subjectively, people report that when looking directly tze flash
they see a weak purple light that does not dazzle, or leavétemn a
image. They also report that if not looking directly at thelkdiéash,

the burst of light is very easy to miss. By contrast, when gigin
visible flash that gives a comparable scene exposure, tis ot
light is highly dazzling and leaves a strong after-image.

5 Other applications

Although our main focus has been the dark flash applicatioth b
the hardware and software elements of our system can bemised i
variety of other ways.

5.1 Estimation of spectral reflectance

By taking two images, one with the dark flash, the other witlisa v
ible flash, we can obtain 5 different spectral measuremerdgach
point in the scene: UV,B,G,R,IR as opposed to 3 obtained &vith
conventional camera. The spectral reflectances of realdwuod-
terials can be accurately modeled in a low-dimensional [zades
using PCA with relatively few components [Wandell 1995].itds

a spectrometer and reflectance probe, we measured 255ediffer
materials in the real world and computed a set of 5 PCA basis-fu
tions for the range 360-800nm. We then used the constragad |
squares formulation introduced in [Park et al. 2007] to edbtw the
spectral reflectance functions for all points in the scefig(\) in
Eqgn. 1). In Fig. 10(left), we show the estimated spectraéotéince
for four squares from the color chart in Fig. 6 (top groupprg
with ground truth. Note that we are able to accurately infer t
spectrum beyond the visible range. In Fig. 10(right) we carap
the RMS error between our spectra and the ground truth oeer th
visible range. We achieve very similar total error to the rapgh

of Park et al.[2007]: 0.82 and 0.79 respectively, compacetl. 19
when using R,G,B channels alone.
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Figure10: Using a dark/visible flash pair we are able to accurately
infer the spectral reflectance of objects. Left: Spectraoaf dif-
ferent squares from the color chart in Fig. 6. Solid line ifeimed
spectrum, dashed line is ground truth. Line colors corregpto
square color. Right: RMS estimation errors for all 24 squamne
color chart over 400-700nm range, compared to results oftimul
spectral illumination approach of Park et al.[2007].

5.2 Color-band denoising

The spectral constraints used in our dark flash approacheapb
plied to images captured by standard cameras. One exangle, a
shown in Fig. 11, is for conventional flash/no-flash proaegsus-

ing a visible flash/ambient pair. When using our algorithnttiis
configuration, the spectral constraint reduces to a sirggha tink-

ing each channel in the flash image to its corresponding @ann
in the ambient, hence the term no longer links between differ
spectral bands. Our algorithm yields better results thanctioss-
bilateral based method.

Another application is where one color channel is much eot$ian
the others. For example, candle-light is very weak in the fgart
of the spectrum, compared to red and green. Hence when trying



Figure 11: The model in Egn. 2 being used in a visible flash/no-
flash setting. The two crops are taken from Fig. 6 (top growjith

the center row showing the the blue channel of the first row.

R - Vis: reconstruction with our model using spectral coastis.
CB - Vis: Pipeline from [Petschnigg et al. 2004] based on sros
bilateral filter and detail enhancement.

to white balance a candle-lit image, the blue channel mustile
tiplied by a large factor, increasing the noise levels. gsspec-
tral constraints, the blue channel can be denoised usingthand
green channels (in place @ and F5 in Egn. 2). This gives a su-
perior result to denoising the blue channel using spatiakpand
likelihood alone. See Fig. 12 for this technique applied ¢awadle-
litimage captured with an unmodified Canon 40D.

6 Discussion

We have demonstrated a camera and flash system that candake pi
tures in low light conditions using a flash that is far lesdcezble

and disruptive than a conventional one. The system usedastan
hardware for the most part, combined with novel image preiogs
techniques. The spectral constraints are a powerful wayof-c
bining the images, yielding good quality results in low liglondi-
tions. In addition, we have shown that the hardware and soéw
techniques introduced in this paper can be used in a numiotherf
applications.

Our hardware is a prototype and can be improved in a number of
ways. An obvious limitation is the need to take two imageshef t
scene. This precludes the capture of fast moving scenesiaisda

the overall complexity of the system. However, by modifyihg
Bayer pattern on the sensor to include UV-only and IR-onke|si

(for a total of 5 channels), we would be able to implement thek d
flash concept using a single image. Additionally, our largstflunit
could be replaced with compact UV and IR LEDs giving a more
controllable pulse duration and a more precise spectrassom,
perhaps further reducing the visibility of the flash. Thisulgbalso
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Figure 12: Close up of scene in Fig. 6 (top group) illuminated by
candlelight. Left: Blue channel of white-balanced ambighot,
showing high noise due to lack of blue wavelengths in caliglhe-
Middle: Denoising of ambient using likelihood and spatiaiops
only. Right: Denoising of ambient using spectral constisiflom
the red and green channels, in addition to the likelihood apdtial
priors. The spectral constraints significantly improvefpemance.

permit the dark flash concept to be implemented in small @laté
such as cell-phones, where a flash is often needed due toquoor |
light performance on account of the small sensor size.

Appendix A

We now give hardware details of our camera and flash systeim. Al
experiments used a standard Nikon 50mm /1.8 lens, whicfsira
mits light down to 350nm, hence is not the limiting factor fret
camera’s UV response. A MaxMax CC3 filter was attached to the
lens at all times. The purpose of this filter is to block IR tighove
850nm, which would otherwise distort the colors of the ambien-

age (as the naked sensor’s response extends out to 1100him). T
filter does not block either visible light or the dark flash. eTte-
sponse function€’; (A) in Fig. 2(a) include the filter and lens. The
flash is a clone of the Nikon SB-14UV, adapted from a standard
SB-14 by removing the UV absorbent coating on the Xenon flash
tube. A Hoya U360 filter was attached to the flash at all timé#-to
ter out visible light. The standard visible flash used in cangons
was equipped with a MaxMax CC1 filter to block its significaRt |
output.

Appendix B

We now detail the safety calculations summarized in Se@idrhe
threshold limit values (TLVs) for UV radiation 180—400nntident

on the eye (the most sensitive part of the body) over any 8 hour
period are given by the formula on p.155 of [TLVs 2001], repro
duced in Egn. 3 below. It relates the maximum number of flashes
to the effective irradianc&ex, relative to a monochromatic source
at 270nm.Egg is computed, using Eqn. 4 below, from the spectral
irradiance of the flasti’ () (units: pJ/cn/nm/flash) and a hazard
weighting functionH (\) (which is 1 at 270nm), given on p.157 of
[TLVs 2001]. In Fig. 13, we show/(\) and H()). Integrating
over the product of the two and insertitfigs into Eqn. 3, we arrive

at the value of 130,000 flashes. Note that this number scates w
the inverse square of distance, so at 2m the max safe limitdiszi
520,000 flashes.
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Figure13: I7()\) and H()), see text for details.
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