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Abstract

With the advent of the Internet it is now possible to col-

lect hundreds of millions of images. These images come

with varying degrees of label information. “Clean labels”

can be manually obtained on a small fraction, “noisy la-

bels” may be extracted automatically from surrounding text,

while for most images there are no labels at all. Semi-

supervised learning is a principled framework for combin-

ing these different label sources. However, it scales poly-

nomially with the number of images, making it impractical

for use on gigantic collections with hundreds of millions of

images and thousands of classes.

In this paper we show how to utilize recent results in ma-

chine learning to obtain highly efficient approximations for

semi-supervised learning. Specifically, we use the conver-

gence of the eigenvectors of the normalized graph Lapla-

cian to eigenfunctions of weighted Laplace-Beltrami oper-

ators. We combine this with a label sharing framework

obtained from Wordnet to propagate label information to

classes lacking manual annotations. Our algorithm enables

us to apply semi-supervised learning to a database of 80

million images with 74 thousand classes.

1. Introduction

Gigantic quantities of visual imagery are present on the

web and in off-line databases. Effective techniques for

searching and labeling this ocean of images and video must

address two conflicting problems: (i) the techniques to un-

derstand the visual content of an image and (ii) the ability

to scale to millions of billions of images or video frames.

Both aspects have received significant attention from re-

searchers, the former being addressed by recent work on

object and scene recognition, while the latter is the focus of

the content-based image retrieval community (CBIR) [6].

A key issue pertaining to both aspects of the problem is

the diversity of label information accompanying real world

image data. A variety of collaborative and online annota-

tion efforts have attempted to build large collections of hu-
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Figure 1. Two examples of images from Internet search engines

being re-ranked by our approach, according to the probability of

belonging to the categories “turboprop” and “pony” respectively.

The images are part of a dataset of 80 million [21], for which we

have labels on only 64,185, spread over 386 classes out of 74,569

in the dataset. For the two classes used in this example, no la-

bels exist and our algorithm operates by diffusing the labels from

other classes through the entire 80 million images using both the

density structure of the data and also the semantic relationships be-

tween categories. Our approach is able to do this efficiently, taking

around 1 minute (∼0.75µs/image) on a large PC.

man labeled images, ranging from simple image classifica-

tions, to bounding-boxes and precise pixel-level segmenta-

tion [17, 22, 25]. While impressive, these manual efforts

have no hope of scaling to the many billions of images on

the Internet. However, even though most images on the web

lack human annotation, they often have some kind of noisy
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label gleaned from nearby text or from the image filename

and often this gives a strong cue about the content of the

image. Finally, there are images where we have no informa-

tion beyond the pixels themselves. Semi-supervised learn-

ing (SSL) methods are designed to handle this spectrum of

label information [26, 27]. They rely on the density struc-

ture of the data itself to propagate known labels to areas

lacking annotations, and provide a natural way to incorpo-

rate labeling uncertainty. However, to model the density

of the data, each point must measure its proximity to ev-

ery other. This requires polynomial time – prohibitive for

large-scale problems.

In this paper, we introduce a semi-supervised learning

scheme that is linear in the number of images, enabling us

to tackle very large scale problems. Building on recent re-

sults in spectral graph theory, we efficiently construct ac-

curate numerical approximations to the eigenvectors of the

normalized graph Laplacian. Using these approximations,

we can easily propagate labels through huge collections of

images.

A second contribution is the integration of a method for

sharing labels between classes into the SSL scheme. Many

existing approaches to recognition and learning treat classes

independently from one another. In large-scale problems,

there will be many thousands of label classes, many of

which will be similar to one another. In this regime, be-

ing able to transfer labels between classes is vital, since the

expected number of labels per class will be small. By lever-

aging labels from nearby classes, we can boost the effective

amount of label information available.

Bringing these two contributions together, we are able to

propagate a limited set of manually provided labels through

very large collections of images from the Internet, correct-

ing the noisy labels obtained from non-visual sources such

as surrounding text.

1.1. Related Work

Cleaning up Internet image data has been explored by

several authors: Berg et al. [3], Fergus et al. [8], Li

et al. [14], Vijayanarasimhan et al. [23], amongst others.

Unlike our approach, these methods operate independently

on each class and would be problematic to scale to millions

or billions of images. A related group of techniques use

active labeling, where the user is in the loop, e.g. [11].

Semi-supervised learning is a rapidly growing sub-field

of machine learning, dealing with datasets that have a

large number of unlabeled points and a much smaller num-

ber of labeled points (see [4] for a recent overview). The

most popular approaches are based on the graph Laplacian

(e.g. [26, 27] and there has been much theoretical work de-

voted to the asymptotics of these Laplacians [2, 5, 15].

The learning and use of a class hierarchy has been re-

cently explored by a number of authors [10, 20, 28]. Unlike

(a) (b) (c)

Data Supervised Semi-Supervised

(c)

Figure 2. Comparison of supervised and semi-supervised learn-

ing on toy data. Semi-supervised learning seeks functions that are

smooth with respect to the input density.

these approaches, we use a pre-determined hierarchy for our

class-sharing. Ideally we would also learn the hierarchy, but

it is challenging to do so when operating on gigantic image

collections.

2. Semi-supervised Learning

We start by introducing semi-supervised learning in a

graph setting and then describe an approximation that re-

duces the learning time from polynomial to linear in the

number of images. Fig. 2 illustrates the semi super-

vised learning problem. Following the notations of Zhu

et al. [27], we are given a labeled dataset of input-output

pairs (Xl, Yl) = {(x1, y1), ..., (xl, yl)} and an unlabeled
dataset Xu = {xl+1, ..., xn}. Thus in Fig. 2(a) we are
given two labeled points and 500 unlabeled points. Fig. 2(b)

shows the output of a nearest neighbor classifier on the un-

labeled points. The purely supervised solution ignores the

apparent clustering suggested by the data.

In order to use the unlabeled data, we form a graph G =
(V,E) where the vertices V are the datapoints x1, ..., xn,

and the edges E are represented by an n × n matrix W .
EntryWij is the edge weight between nodes i, j and a com-
mon practice is to setWij = exp(−‖xi − xj‖/2ǫ2). LetD
be a diagonal matrix whose diagonal elements are given by

Dii =
∑

j Wij , the combinatorial graph Laplacian is de-

fined as L = D−W , which is also called the unnormalized
Laplacian. The normalized graph Laplacian is defined as

L = D−1/2LD−1/2 = I − D−1/2WD−1/2.

In graph-based semi-supervised learning, the graph

Laplacian L is used to define a smoothness operator that
takes into account the unlabeled data. Intuitively, the main

idea of semi-supervised learning is to find functions f
which agree with the labeled data but are also smooth with

respect to the graph. The smoothness is measured by the

graph Laplacian:

fT Lf =
1

2

∑
i,j

Wij (f(i) − f(j))
2

Of course simply minimizing smoothness can be achieved

by the trivial solution f = 1, but in semi-supervised learn-
ing, we minimize a combination of the smoothness and the

training loss. For squared error training loss, this is simply:
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J(f) = fT LF +
l∑

i=1

λ(f(i) − yi)
2

= fT Lf + (f − y)T Λ(f − y)

where Λ is a diagonal matrix whose diagonal elements are
Λii = λ if i is a labeled point and Λii = 0 for un-
labeled points. The minimizer is of course a solution to

(L + Λ)f = Λy. Fig. 2(c) shows the semi-supervised solu-
tion. Although the supervised solution is actually smoother

if one ignores the unlabeled data, the semi-supervised so-

lution is much smoother when the unlabeled data is taken

into account. In the semi-supervised solution, neighboring

points in the graph have similar labels, while in the super-

vised solution, neighboring points in the graph can have

very different labels.

Although the solution can be given in closed form for the

squared error loss, note that it requires solving an n×n sys-
tem of linear equations. For large n this poses serious prob-
lems with computation time and robustness. But as sug-

gested in [4, 18, 27], the dimension of the problem can be

reduced dramatically by only working with a small number

of eigenvectors of the Laplacian (see also [13] for the same

idea within the context of matting).

Let Φi, σi be the eigenvectors and eigenvalues of the

graph Laplacian L. Note that the smoothness of an eigen-
vector Φi is simply ΦT

i LΦi = σi so that eigenvectors with

smaller eigenvalues are smoother. Since any vector in Rn

can be written f =
∑

i αiΦi, the smoothness of a vector is

simply
∑

i α2
i σi so that smooth vectors will be linear com-

binations of the eigenvectors with small eigenvalues.

Fig. 3(top) shows the three generalized eigenvectors of

the Laplacian (solutions to Lφ = σDφ) with smallest
eigenvalue, for the toy data. As pointed out by Shi and Ma-

lik [19], eigenvectors of the unnormalized graph Laplacian

have a tendency to cut out isolated points in the data (since

there are very weak edges between an isolated point and its

neighbors in the graph). We therefore use the generalized

eigenvectors henceforth.

Since smooth vectors will be linear combinations of the

eigenvectors with small eigenvalues, we can significantly

reduce the dimension of f by requiring it to be of the form
f = Uα where U is a k × n matrix whose columns are the
k eigenvectors with smallest eigenvalue. We now have:

J(α) = αT Σα + (Uα − y)T Λ(Uα − y)

The minimizing α is now a solution to the k × k system of
equations:

(Σ + UT ΛU)α = UT Λy (1)

2.1. From Eigenvectors to Eigenfunctions

Given the eigenvectors of the graph Laplacian, we can

now solve the semi-supervised problem in a reduced di-

mensional space. But to find the eigenvectors in the first

φ1, σ1 = 0 φ3, σ3 = 0.038φ2, σ2 = 0.0002 

Φ1, σ1 = 0 Φ2, σ2 = 0.0002 Φ3, σ3 = 0.035Density

Data

Figure 3. Top: The three generalized eigenvectors of the graph

Laplacian, for the toy data. Note that the semi-supervised solution

can be written as a linear combination of these eigenvectors (in this

case, the second eigenvector is enough). Using generalized eigen-

vectors (or equivalently normalized Laplacians) increases robust-

ness of the first eigenvectors, compared to using the un-normalized

eigenvectors. Bottom: The 2D density of the toy data, and the as-

sociated smoothness eigenfunctions defined by that density. The

plots use the Matlab jet colormap.

place, we need to diagonalize a n × n matrix. How can
we efficiently calculate the eigenvectors as the number of

unlabeled points increases?

We follow [24] in assuming the data xi ∈ Rd are

samples from a distribution p(x) and analyzing the eigen-
functions of the smoothness operator defined by p(x).
Fig. 3(bottom) shows the density in two dimensions for the

toy data. This density defines a weighted smoothness op-

erator on any function F (x) defined on Rd which we will

denote by Lp(F ):

Lp(F ) =
1

2

∫
(F (x1)−F (x2))

2W (x1, x2)p(x1)p(x2)dx1x2

withW (x1, x2) = exp(−‖x1 − x2‖/2ǫ2).
Just as the graph Laplacian defined eigenvectors of in-

creasing smoothness, the smoothness operator will define

eigenfunctions of increasing smoothness. We define the first

eigenfunction of LP (f) by a minimization problem:

Φ1 = arg min
F :

R

F 2(x)p(x)D(x)dx=1
Lp(F )

where D(x) =
∫

x2

W (x, x2)p(x2)dx2. Note that

the first eigenfunction will always be the trivial func-

tion Φ(x) = 1 since it has maximal smoothness
LP (1) = 0. The second eigenfunction of Lp(f) min-
imizes the same problem, with the additional constraint

that
∫

F (x)Φ1(x)D(x)p(x)dx = 0. More generally, the
kth eigenfunction minimizes Lp(f) under additional con-
straints that

∫
F (x)Φl(x)p(x)D(x)dx = 0 for all l < k.

The eigenvalue of an eigenfunctionΦk is simply its smooth-

ness σk = Lp(Φk). Fig. 3(bottom) shows the first three
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eigenfunctions corresponding to the density of the toy data.

Similar to the eigenvectors of the graph Laplacian, the sec-

ond eigenfunction reveals the natural clustering of the data.

In order to avoid dividing by zero, we add a small constant

to the density. Note that the eigenvalue of the eigenfunc-

tions is similar to the eigenvalue of the discrete generalized

eigenvector.

How are these eigenfunctions related to the eigen-

vectors of the Laplacian? It is easy to see that as

n → ∞, 1
n2 fT Lf = 1

2

∑
i,j Wij (f(i) − f(j))

2
will

approach Lp(F ), and 1
n

∑
i f2(i)D(i, i) will approach∫

F 2(x)D(x)p(x)dx so that the minimization problems
that define the eigenvectors approach the problems that de-

fine the eigenfunctions as n → ∞. Thus under suitable
convergence conditions, the eigenfunctions can be seen as

the limit of the eigenvectors as the number of points goes to

infinity [1, 2, 5, 15].

For certain parametric probability functions (e.g. uni-

form, Gaussian) the eigenfunctions can be calculated ana-

lytically [15, 24]. Thus for these cases, there is a tremen-

dous advantage in estimating p(x) and calculating the
eigenfunctions from p(x) rather than attempting to estimate
the eigenvectors directly. For example, consider a problem

with 80 million datapoints sampled from a 32 dimensional

Gaussian. Instead of diagonalizing an 80 million by 80 mil-

lion matrix, we can simply estimate a 32 × 32 covariance
matrix and get analytical eigenfunctions.

In low dimensions, we can calculate the eigenfunction

numerically by discretizing the density. Let g be the eigen-
function values at a set of discrete points, then g satisfies:

P (D̃ − W̃ )Pg = σPD̂g (2)

where W̃ is the affinity between the discrete points, P is a
diagonal matrix whose diagonal elements give the density at

the discrete points, and D̃ is a diagonal matrix whose diag-
onal elements are the sum of W̃ , and D̂ is a diagonal matrix
whose diagonal elements are the sum of PW̃ . This method
was used to calculate the eigenfunctions in Fig. 3(bottom).

Instead of assuming that p(x) has a simple, parametric
form, we will use a more modest assumption, that p(x) has
a product form. Specifically, we assume that if we rotate

the data s = Rx then p(s) = p(s1)p(s2) · · · p(sd). This
assumption allows us to calculate the eigenfunctions of Lp

using only the marginal distributions p(si).

Observation: Assume p(s) = p(s1)p(s2) · · · p(sd). Let
pk be the marginal distribution of a single coordinate in s.
Let Φi(sk) be an eigenfunction of Lpk

with eigenvalue σi,

then Φi(s) = Φi(sk) is also an eigenfunction of Lp with

the same eigenvalue σi.

Proof: This follows from the observation in [15, 24] that

for separable distributions, the eigenfunctions are also sep-

arable.

This observation motivates the following algorithm:

• Find a rotation of the data R, so that s = Rx are as
independent as possible.

• For each “independent” component sk, use a his-

togram to approximate the density p(sk).

• Given the approximated density p(sk), solve numeri-
cally for eigenfunctions and eigenvalues of Lpk

using

Eqn. 2. As discussed above, this can be done by solv-

ing a generalized eigenvalue problem for a B ×B ma-
trix, where B is the number of bins in the histogram.

• Order the eigenfunctions from all components by in-
creasing eigenvalue.

This algorithm will recover eigenfunctions of Lp, which de-

pend only on a single coordinate. As discussed in [24],

products of these eigenfunctions for different coordinates

are also eigenfunctions, but we will assume the semi-

supervised solution is a linear combination of only the

single-coordinate eigenfunctions.

By choosing the k eigenfunctions with smallest eigen-
value we now have k functions Φk(x) whose value is given
at a set of discrete points for each coordinate. We then use

linear interpolation to interpolate Φ(x) at each of the la-
beled points xl. This allows us to solve Eqn. 1 in time that

is independent of the number of unlabeled points.

Although this algorithm has a number of approximate

steps, it should be noted that if the “independent” compo-

nents are indeed independent, and if the semi-supervised so-

lution is only a linear combination of the single-coordinate

eigenfunctions, then this algorithm will exactly recover the

semi-supervised solution as n → ∞. Consider again a
dataset of 80 million points in 32 dimensions and assume

100 bins per dimension. If the independent components

s = Rx are indeed independent, then this algorithm will
exactly recover the semi-supervised solution by solving 32
100 × 100 generalized eigenvector problems and a single
k×k least squares problem. In contrast, directly estimating
the eigenvectors of the graph Laplacian will require diago-

nalizing an 80 million by 80 million matrix.

3. Semantic Sharing

Extending the algorithm to the multi-class scenario is

straightforward. In a multi-class problem, the labels will

be held in an n × c binary matrix Y , replacing y in Eqn. 1
(c being the number of classes). In the multi-class problem
we solve for the n × c matrix F = [f1, . . . , fc], using the
eigenfunctions and Eqn. 1. This naive extension of the 1-

class algorithm has an important limitation: the labels for

each class are still propagated independently. Therefore,

in order to achieve reasonable performance, we will need

human annotations for a subset of the images for all the

classes. Although providing training data is practical in sit-

uations with few classes, on large-scale problems with thou-

sands of classes, a huge number of human annotations will

4



ICCV 2009 SUBMISSION. CONFIDENITAL REVIEW COPY. DO NOT DISTRIBUTE

entity

physical entity

physical objectanimate
thing

being

fauna

chordate

craniate

mammalian

eutherian mammal

carnivore

canid

Canis familiaris

felid

truecat

Felis
catustoy

Japanese
spaniel

hoofed
mammal

artiodactyl
mammal

ruminant

cervid

unit

artefact

instrumentation

transport

vehicle

craft
aircraft
heavier

air
craft

plane

airliner

airbus

watercraft

boat

attack
aircraft

tabby
cat

wheeled
vehicle

self propelled
vehicle

automobile

Alces

automotive
vehicle

Peke

perissodactyl
mammal

equid

Equus
caballus

mount

quarter
horse

bomber

bird

Maltese

flightless
bird

Emu

stud
mare

compact
car

amphibian

salientian

ranid

mutt

true
toad

fighter
aircraft

fire
truck

motortruck

aerial
ladder
truck

mouser

ship

cargo
vessel

dump
truckpowerboat

speedboat

Appaloosa

toy
spaniel

King

Charles
spaniel

passeriform
bird

bird

Prunella

modularis

jet
propelled

plane

twinjet

English

toy
spaniel

Blenheim
spaniel

coupe

ostrich

jumbo

jet

merchant

ship

moving
van

car

jetliner

container
vessel

wagtail

offspring

young
mammal

puppy

wagon

station
wagon

motorcar

shooting
brake

passenger
ship

patrol
car

tomcat

horse

stealth
fighter

estate
car

true
sparrow

camion

Capreolus

truck

delivery
truck

tipper
truck

garbage
truck

stallion

motorcar

lorry

police
cruiser

tractor
trailer

 
20 40 60 80 100 120

20

40

60

80

100

120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

true cat

gelding

motorcar

camion

cargo ship

lippizaner

patrol car

stealth

bomber

jetliner
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

tru
e

 c
a

t

g
e

ld
in

g

m
o

to
rc

a
r

c
a

m
io

n

c
a

rg
o

 s
h

ip

lip
p

iz
a

n
e

r

p
a

tro
l c

a
r

s
te

a
lth

b
o

m
b

e
r

je
tlin

e
r

1

a)
b)

c)

Figure 4. Wordnet sub-tree for 126 classes used in our experiments. The associated semantic affinity matrix A is shown in (a), along with

a closeup of 10 randomly chosen rows and columns in (b).

be required. In this section we describe how we can mod-

ify the multi-class problem in order to transfer information

across classes.

If we have many thousands of categories, the images in

many of them will be visually similar and thus labeled ex-

amples in one might be expected to help in learning related

classes. This requires some notion of the visual distance

between classes and we use Wordnet [7] for this task. In

doing so, we are approximating visual similarity with se-

mantic similarity, as defined by Wordnet. In order to com-

pute the semantic distance between two classes we use a

tree defined by Wordnet (see Fig. 4(c)). The semantic dis-

tance Sij between classes i and j (which are nodes in the
tree) is defined as the number of nodes shared by their two

parent branches, divided by the length of the longest of the

two branches. We construct a sparse semantic affinity ma-

trix A = exp(−κ(1 − S)), with κ = 10 for all the ex-
periments in this paper. For the class “airbus”, the nearest

semantic classes are: “airliner” (0.49), “monoplane” (0.24),

“dive bomber” (0.24), “twinjet” (0.24), “jumbo jet” (0.24),

and “boat” (0.03). A visualization of A and a closeup are
shown in Fig. 4(a) and (b). We share labels by replacing Y
in our SSL scheme with Y A, noting that this only alters the
positive examples in each class.

4. Experiments

In this section we describe experiments to illustrate the

performance and scalability of our approach. Most of the

results will be reported on a portion of the Tiny Images

database [21], in combination with the CIFAR-10 label set

(beta version)1. This data is diverse and highly variable,

having been collected directly from Internet search engines.

The set of labels allows us to accurately measure the per-

1Collected by Alex Krizhevsky and Vinod Nair.

formance of our algorithm, while using data typical of the

large-scale Internet settings for which our algorithm is de-

signed. We start by describing the image features that

we will use and briefly provide results on the Caltech 256

dataset [9], chosen to enable direct comparisons with other

approaches.

4.1. Image Features

For the experiments in this paper we use global image

descriptors to represent the entire image (there is no attempt

to localize the objects within the images). Global descrip-

tors have been shown to provide state of the art performance

in challenging datasets such as Caltech 256 [9]. Here we il-

lustrate the power of our approach on a standard dataset.

In Fig. 5(a) we show the performance of our SSL scheme

on the Caltech 256 dataset. Our goal is to demonstrate the

performance of our learning approach, compared to exist-

ing methods such as SVMs, once a suitable set of features

have been computed for each image. Thus it is the rela-

tive performance between approaches that matters, rather

than absolute performance which is largely dependent on

the choice of features.

For Caltech 256, our chosen feature representation is a

combination of a Gist descriptor and a Bag-of-Words de-

scriptor, reduced to 1024 dimensions with PCA. The eigen-

function approach requires a matrix R that rotates the fea-
tures so they become maximally independent. In our exper-

iments, we found that the PCA components (which are of

course uncorrelated but not independent) already had very

low mutual information so we did not use an additional ro-

tation. k=2048 eigenfunctions were used in the eigenfunc-
tion approach, while the SVM comparison uses an RBF

kernel, tuned to give best performance. The eigenfunction

approach consistently beats the SVM, and both approaches

give a respectable absolute performance, compared to exist-

5
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Figure 5. (a): Evaluation of the eigenfunction approach on Caltech 256, compared to an SVM trained on the same descriptors and other

published methods: Griffin et al. [9] and Kumar and Sminchisescu [12]. Tiny image data: (b): Performance of different learning schemes

as the number of training examples is increased. -Inf corresponds to the unsupervised case (0 examples). Tiny image data: (c): Performance

for different sharing strategies as the number of training examples is increased, using all 126 classes. Note the improvement in performance

for small numbers of training examples when the Wordnet sharing matrix is used.

ing approaches.

The Caltech 256 dataset is not well adapted to our algo-

rithm: there are relatively few categories (only 256) and the

classes are very distinct, leaving very little room for transfer

learning across classes. Therefore, in the rest of the paper

we will show the power of our approach by deploying it on

the Tiny Images dataset which is many orders of magnitude

larger. For the rest of the experiments in the paper, we sim-

plify our descriptor, using a single 384-dimensional global

gist descriptor [16] to represent each image2.

4.2. Experiments with 126 Categories and 63,000
Images

The CIFAR-10 labels comprise human image-level an-

notations (+ve/-ve) for 10 distinct classes in the Tiny Images

dataset. Each class is made up of a number of keywords

(the query term used to gather the images from the search

engine), subordinate to the class as given by the Wordnet

tree structure. We select the sub-set of 126 keywords from

the CIFAR set which had at least 200 positive labels and

300 negative labels, giving a total of 63,000 images. The

gist descriptor for each image is mapped down to a 64D

space using PCA. For experiments using our eigenfunction

approach, we computed a fixed set of k=256 eigenfunctions
on the entire set of training data in the 64D space3. These

keywords and their semantic relationship to one another are

shown in Fig. 4. For each keyword, we randomly choose

a fixed test-set of 100 positive and 200 negative examples,

reflecting the typical signal-to-noise ratio found in images

from Internet search engines. Note that we do not make use

of any rank information. The training examples consist of

+ve/-ve pairs drawn from the remaining pool of 100 posi-

2The majority of the performance in the Caltech 256 experiments

comes from the Gist descriptor. Furthermore, a bag-of-words represen-

tation is not practical to compute on a tiny image.
3Note that the construction of the eigenfunctions does not make use of

any class label information.

tive/negative images for each keyword.

Each image has a noisy label (the keyword used to query

the search engine). We assume that all true +ve instances of

a class (e.g. “cat”) are contained with those images having

the noisy label cat4. Mixed in with these true +ve examples

will be many non-cat images which also possess the noisy

label cat. We use our scheme to propagate labels from train-

ing examples of cats, and semantically related classes, to the

test examples of cat images. By assigning higher probabil-

ity (values in f ) to the genuine cat images, we are able to
re-rank the images.

For approaches that require explicit formation of the

affinity matrix, we calculated the distance between the 64D

image descriptors using ǫ = 0.2. All approaches used
λ = 1000. To evaluate performance, we chose to measure
the precision at a low recall rate of 15%, this being a sen-

sible operating point when dealing with huge collections of

data. Thus, chance level performance would be a precision

of 33%. For experiments we averaged results over 10 dif-

ferent runs, each with different random train/test draws, and

with different subsets of classes.

In our first set of experiments, shown in Fig. 5(b), we

compare our eigenfunction approach using semantic shar-

ing to a variety of alternative learning schemes. We use 16

different classes drawn randomly from the 126, and vary

the number of training pairs used from 0 up to 100. Our

eigenfunction approach performs well, even with relatively

few training examples, or in an unsupervised setting. We

also use two baseline approaches: (i) Nearest-Neighbor and

(ii) RBF kernel SVM, with kernel width ǫ. Both these re-
quire at least one training pair per class. The SVM approach

badly over-fits the data for small numbers of training exam-

ples, but performs well with sufficient data. We also test a

range of SSL approaches. The exact least-squares approach

(F = (L + Λ)−1ΛY A) and eigenvector approach (Eqn. 1)

4This means that we will not be able to recover a cat image with the

noisy label dog, for example.
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perform less well than our eigenfunction method, and also

have the problem that the affinity matrix W becomes too

big when a large amount of training data is used. Thus re-

sults cannot be computed for these cases. For example, for

the 126 class 100 training pair case, a 63,000 by 63,000 ma-

trix would need to be inverted. In Fig. 6(right) we explore

how the number of eigenfunctions used in the PCA variant

affects performance as the number of training examples is

varied. The performance is fairly stable above 128 eigen-

functions (i.e. on average 2 per dimension), although some

mild over-fitting seems to occur for small numbers of train-

ing examples when a very large number is used.

In Fig. 8 we show results on 10 keywords, whose perfor-

mance ranges from poor to very good. The results were ob-

tained using all 126 classes, 100 training pairs per class and

semantic sharing turned on. Note that the human labeling at

times is somewhat arbitrary and selective. For example, the

Appaloosa horse images show many incorrect labels high in

the cleaned-up results, yet the images are valid horses.
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Figure 6. (a): The effects of using the semantic sharing matrix are

apparent, particularly for few training examples. However, in both

cases, performance improves as the number of classes increases

and the number of training examples increases. (b): Performance

as the number of eigenfunctions and training examples is varied

for 8 classes.

4.2.1 Semantic Sharing

In Fig. 5(c) we explore the effects of semantic sharing with

our eigenfunction approach. The application of the seman-

tic affinity matrix can be seen to help performance when

only a few training examples are present. However, when

sufficient data is available, it does marginally impair perfor-

mance. If the semantic matrix is randomly permuted (but

with the diagonal fixed to be 1), then this hinders perfor-

mance. Hence the semantic matrix must reflect the rela-

tionship between classes if it is to be effective. In Fig. 6,

we perform a more systematic exploration of the effects of

sharing using the eigenfunction approach. Both the number

of classes and number of images are varied, and the per-

formance recorded with and without the semantic affinity

matrix. In both cases, the performance improves as more

data is used (i.e. more classes) and also as more training ex-

amples are available. However, the affinity matrix assists

performance for small numbers of training examples.

The sharing behavior can be used to effectively learn

classes for which we have zero training examples. In Fig. 7,

we explore what happens when we allocate 0 training im-

ages to one particular class (the left-out class) from the set

of 126, while using 100 training pairs for the remaining 125

classes. When the sharing matrix is not used, the perfor-

mance of the left-out class drops significantly, relative to its

performance when training data is available (i.e. the point

for each left-out class falls below the diagonal). But when

sharing is used, the drop in performance is relatively small,

all points being just below the diagonal.
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Figure 7. An exploration of the performance with 0 training ex-

amples for a single class, if all the other classes have 100 train-

ing pairs. (a): By using the sharing matrix A, we can obtain a

good performance by transferring labels from semantically simi-

lar classes. (b): Without it, the performance drops significantly.

4.3. Experiments with 74,569 Categories and
79,302,017 Images

Our final experiment applies the eigenfunction approach

to the whole of the Tiny Images dataset. The gist descriptor

for each image is mapped down to a 32D space using PCA

and k=48 eigenfunctions were used. We use all 445,954
CIFAR labels (64,185 of which are +ve) covering 386 key-

words and propagate them to the rest of the 79,302,017

images using a 74,569 by 74,569 semantic affinity matrix

(there are 74,569 keywords in the Tiny Images dataset). We

use the noisy labels in the same manner as Section 4.2. Hav-

ing precomputed the eigenfunctions, we can re-rank any

chosen keyword by solving Eqn. 1, which takes around 1

minute in Matlab on a large PC (equivalent to ∼0.75µs per
image). Motivated by Fig. 7, we show in Fig. 1 the approach

operating on two classes for which no CIFAR labels exist,

obtaining qualitatively good results. However, this ability

is limited to keywords relatively close to the 386 keywords

for which we have labels – an issue which will be alleviated

with a more diverse set of labels. More examples may be

found in the supplementary material.

5. Discussion
We have proposed a novel semi-supervised learning

scheme that is linear in the number of images, and then
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Figure 8. Test images from 10 keywords drawn from the 126 keyword sub-set with manual annotations. The border of each image indicates

its label (used for evaluation purposes only) with respect to the keyword, green = +ve, red = -ve. The top row shows the initial ranking of

the data, while the bottom row shows the re-ranking of our approach trained on 126 classes with 100 training pairs/classes.

demonstrated it on challenging datasets, including one of

80 million images. The approach can easily be paral-

lelized making it practical for Internet-scale image collec-

tions. Currently the noisy labels are used in a simple way.

Making better use of them, as well as incorporating other

cues such as image rank, might allow our scheme to operate

on classes further from those with labels.
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