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Encryption and signature schemes are fundamental cryptographic tools for providing
privacy and authenticity, respectively, in the public-key setting. Traditionally, these two im-
portant building-blocks of public-key cryptography have been considered as distinct entities
that may be composed in various ways to ensure simultaneous message privacy and authen-
tication. However, in the last few years a new, separate primitive — called signcryption [14]
— has emerged to model a process simultaneously achieving privacy and authenticity. This
emergence was caused by many related reasons. The obvious one is the fact that given that
both privacy and authenticity are simultaneously needed in so many applications, it makes
a lot of sense to invest special effort into designing a tailored, more efficient solution than
a mere composition of signature and encryption. Another reason is that viewing authenti-
cated encryption as a separate primitive may conceptually simplify the design of complex
protocols which require both privacy and authenticity, as signcryption could now be viewed
as an “indivisible” atomic operation. Perhaps most importantly, it was noticed by [3, 2]
(following some previous work in the symmetric-key setting [4, 10]) that proper modeling
of signcryption is not so obvious. For example, a straightforward composition of signature
and encryption might not always work; at least, unless some special care is applied [2]. The
main reason for such difficulties is the fact that signcryption is a complex multi-user primi-
tive, which opens a possibility for some subtle attacks (discussed below), not present in the
settings of stand-alone signature and encryption.

Defining Signcryption. Syntactically, a signcryption scheme consists of the three ef-
ficient algorithms (Gen, SC, DSC). The key generation algorithm Gen(1λ) generates the
key-pair (SDKU , VEKU) for user U , where λ is the security parameter, SDKU is the sign-
ing/decryption key that is kept private, and VEKU is the verification/encryption key that is
made public. The randomized signcryption algorithm SC for user U implicitly takes as input
the user’s secret key SDKU , and explicitly takes as input the message m and the identity
of the recipient IDR, in order to compute and output the signcryptext on Π. For simplicity,
we consider this identity IDR to be a public key VEKR of the recipient R, although ID’s
could generally include more convoluted information (as long as users can easily obtain VEK

from ID). Thus, we write SCSDKU
(m, IDR) as SCSDKU

(m, VEKR), or simply SCU(m, VEKR).
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Similarly, user U ’s deterministic de-signcryption algorithm DSC implicitly takes the user’s
private SDKU , and explicitly takes as input the signcryptext Π̃ and the senders’ identity IDS.
Again, we assume IDS = VEKS, and write DSCSDKU

(Π, VEKS), or simply DSCU(Π, VEKS).
The algorithm outputs some message m̃, or ⊥ if the signcryption does not verify or decrypt
successfully. Correctness property ensures that for any users S, R, and message m, we have
DSCR(SCS(m, VEKR), VEKS) = m.

We also remark that it is often useful to add another optional parameter to both SC and
DSC algorithms: a label L (also termed associated data [11]). This label can be viewed as a
public identifier which is “inseparably bound” to the message m inside the signcryptext. In-
tuitively, de-signcrypting the signcryptext Π of m with the wrong label should be impossible,
as well as changing Π into a valid signcryptext Π̃ of the same m under a different label.

Security of Signcryption. Security of signcryption consists of two distinct compo-
nents: one ensuring privacy, and the other — authenticity. On a high level, privacy is de-
fined somewhat analogously to the privacy of an ordinary encryption, while authenticity —
to that of an ordinary digital signature. For example, one can talk about indistinguishability
of signcryptexts under chosen ciphertext attack, or existential unforgeability of signcryptexts
under chosen message attack, among others. For concreteness, we concentrate on the above
two forms of security too, since they are the strongest.

However, several new issues come up due to the fact that signcryption / de-signcryption
take as an extra argument the identity of the sender / recipient. Below, we semi-formally
introduce some of those issues (see [2] for in-depth technical discussion, as well as formal
definitions of signcryption).

• Simultaneous Attacks. Since the user U utilizes its secret key SDKU to both send and
receive the data, it is reasonable to allow the adversary A oracle access to both the
signcryption and the de-signcryption oracle for user U , irrespective of whether A is
attacking privacy or authenticity of U .

• Two- vs. Multi-user Setting. In the simplistic two-user setting, where there are only
two users S and R in the network, the explicit identities become redundant. This
considerably simplifies the design of secure signcryption schemes (see below), while
providing a very useful intermediate step towards general, multi-user constructions
(which are often obtained by adding a simple twist to the basic two-user construction).
Intuitively, the security in the two-user model already ensures that there are no weak-
nesses in the way the message is encapsulated inside the signcryptext, but does not
ensure that the message is bound to the identities of the sender and/or recipient. In
particular, it might still allow the adversary a large class of so called identity fraud

attacks, where the adversary can “mess up” correct user identities without affecting
the hidden message.

• Public Non-Repudiation? In a regular signature scheme, anybody can verify the va-
lidity of the signature, and unforgeability of the signature ensures that a signer S
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indeed certified the message. Thus, we say that a signcryption scheme provides non-

repudiation if the recipient can extract a regular (publicly verifiable) digital signature
from the corresponding signcryptext. In general, however, it is a-priori only clear that
the recipient R is sure that S sent the message. Indeed, without R’s secret key SDKR

others might not be able to verify the authenticity of the message, and it might not
be possible for R to extract a regular signature of m. Thus, signcryption does not
necessarily provide non-repudiation. In fact, for some applications we might explicitly
want not to have non-repudiation. For example, S might be willing to send some con-
fidential information to R only under the condition that R cannot convince others of
this fact. To summarize, non-repudiation is an optional feature which some schemes
support, others don’t, and others explicitly avoid!

• Insider vs. Outsider Security. In fact, even with R’s secret key SDKR it might be un-
clear to an observer whether S indeed sent the message m to R, as opposed to R “mak-
ing it up” with the help of SDKR. This forms the main basis for distinction between
insider- and outsider-secure signcryption. Intuitively, in an outsider-secure scheme the
adversary must compromise communication between two honest users (whose keys he
does not know). Insider-secure signcryption protects a given user U even if his part-
ner might be malicious. For example, without U ’s key, one cannot forge signcryptext
from U to any other user R, even with R’s secret key. Similarly, if honest S sent
Π = SCS(m, VEKU) to U and later exposed his key SDKS to the adversary, the lat-
ter still cannot decrypt Π. Clearly, insider-security is stronger than outsider-security,
but might not be needed in a given application. In fact, for applications supporting
message repudiation, one typically does not want to have insider-security.

Supporting Long Inputs. Sometimes, it is easier to design natural signcryption schemes
supporting short inputs. Below we give a general method how to create signcryption SC′ sup-
porting arbitrarily long inputs from SC which only supports fixed-length (and much shorter)
inputs. The method was suggested by [8] and uses a new primitive called concealment. A
concealment is a publicly known randomized transformation, which, on input m, outputs
a hider h and a binder b. Together, h and b allow one to recover m, but separately, (1)
the hider h reveals “no information” about m, while (2) the binder b can be “meaningfully
opened” by at most one hider h. Further, we require |b| ≪ |m| (otherwise, one could trivially
set b = m, h = ∅). Now, we let SC′(m) = 〈SC(b), h〉 (and DSC′ is similar). It was shown in
[8] that the above method yields a secure signcryption SC′. Further, a simple construction of
concealment was given: set h = Eτ (m), b = 〈τ,H(h)〉, where E is a symmetric-key one-time
secure encryption (with short key τ) and H is a collision-resistant hash function (with short
output).

Current Signcryption Schemes

We now survey several signcryption schemes achieving various levels of provable security.
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Generic Composition Schemes. The two natural composition paradigms are “encrypt-
then-sign” (EtS) and “sign-then-encrypt” (StE). More specifically, assume Enc is a semanti-
cally secure encryption against chosen ciphertext attack, and Sig is an existentially unforge-
able signature (with message recovery) against chosen message attack. Each user U has a
key for for Sig and Enc. Then the “basic” EtS from S to R outputs SigS(EncR(m)), while
StE — EncR(SigS(m)). Additionally, [2] introduced a novel generic composition paradigm
for parallel signcryption. Namely, assume we have a secure commitment scheme, which on
input m, outputs a commitment c and a decommitment d (where c is both hiding and
binding). Then “commit-then-encrypt-and-sign” (CtE&S) outputs a pair 〈EncR(d), SigS(c)〉.
Intuitively, the scheme is private as public c reveals no information about m (while d is
encrypted), and authentic since c binds one to m. The advantage of the above scheme over
the sequential EtS and StE variants is the fact that expensive signature and encryption
operations are performed in parallel. In fact, by using trapdoor commitments in place or
regular commitments, most computation in CtE&S — including the expensive computation
of both public-key signature and encryption — can be done off-line, even before the message
m is known!

It was shown by [2] that all three basic composition paradigms yield an insider-secure
signcryption in the two-user model. Moreover, EtS is outsider-secure even if Enc is secure
only against the chosen plaintext attack, and StE is outsider-secure even if Sig is only secure
against no message attack. Clearly, all three paradigms are insecure in the multi-user model,
since no effort is made to bind the message m to the identities of the sender / recipient. For
example, intercepting a signcryptext of the form SigS(e) from S to R, an adversary A can
produce SigA(e), which is a valid signcryptext from A to R of the same message m, even
though m is unknown to A. [2] suggest a simple solution: when encrypting, always append
the identity of the sender to the message, and when signing — of the recipient. For example,
a multi-user secure variant of EtS is SigS(EncR(m, VEKS), VEKR). Notice, if Enc and/or Sig

support labels, these identities can be part of the label rather than the message.
Finally, we remark that StE and CtE&S always support non-repudiation, while StE might

or might not.

Schemes from Trapdoor Permutations. The generic schemes above validate the fact
that signcryption can be built from ordinary signature and encryption, but will be inefficient
unless the latter are efficiently implemented. In practice, efficient signature and encryption
schemes, such as OAEP [5], OAEP+ [13], PSS-R [6], are built from trapdoor permutations,
such as RSA, and are analyzed in the random oracle model. Even with these efficient
implementations, however, the generic schemes will have several drawbacks. For example,
users have to store two independent keys, the message bandwidth is suboptimal and the
“exact security” of the scheme is not as good as one might expect. Thus, given that practical
schemes are anyway built from trapdoor permutations, it is natural to have highly optimized
direct signcryption constructions from trapdoor permutations (in the random oracle model).

This is the approach of [9]. In their model, each user U independently picks a trapdoor
permutation fU (together with its trapdoor, denoted f−1

U ) and publishes fU as its public
key. (Notice, only a single key is chosen, unlike what is needed for the generic schemes.)
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Figure 1: Generalized paddings as used by signcryption

Padding Type Encryption Signature Signcryption
Parallel fR(w)‖s w‖f−1

S (s) fR(w)‖f−1

S (s)
Sequential fR(w‖s) f−1

S (w‖s) fR(f−1

S (w‖s))
eXtended sequential fR(w)‖s f−1

S (w)‖s fR(f−1

S (w))‖s

Table 1: Signcryption Schemes Based on Trapdoor Permutations.

Then, [9] considers the following three paradigms termed P-Pad, S-Pad and X-Pad. Each
paradigm proceeds by constructing a padding scheme produces π(m) = w‖s, and then these
composing it with the corresponding permutations of the sender and the recipient as shown
in Figure 1. Table 1 also shows how the corresponding approaches could be used for plain
signature and encryption as well.

The convenience of each padding scheme depends on the application for which it is used.
As was shown in [9], P-Pad signcryption provides parallel application of “signing” f−1

S and
“encrypting” fR, which can result in efficiency improvements on parallel machines. However,
the minimum ciphertext length is twice as large as compared to S-Pad, yet the exact security
offered by S-Pad is not as tight as that of P-Pad. Finally, X-Pad regains the optimal exact
security of P-Pad, while maintaining ciphertext length nearly equal to the length of the
trapdoor permutation (by achieving quite short s).

It remains to describe secure padding schemes π for P-Pad, S-Pad and X-Pad. All
constructions offered by [9] are quite similar. One starts with any extractable commitment

(c, d), where c is the commitment and d is the decommitment. Such schemes are very easy
to construct in the random oracle model. For example, if |m| = n, for any 0 ≤ a ≤ n,
the following scheme is an extractable commitment: split m = m1‖m2, where |m1| = a,
|m2| = n− a, and set

c = G(r)⊕m1‖H(m2‖r)

d = m2‖r

where G and H are random oracles (with appropriate input/output lengths) and r is a
random salt.
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To get a secure padding scheme for the P-Pad paradigm, one should then apply the
Feistel Transform to the resulting pair (d, c), with yet another random oracle F as the round
function. Namely, set w = c, s = F (c)⊕ d. For example, using the extractable commitment
above with a = n, we get nothing else but the OAEP padding, while a = 0 would give
the PSS-R padding! For arbitrary a, [9] call the resulting hybrid between PSS-R and OAEP

Probabilistic Signature-Encryption Padding (PSEP).
To get the padding π sufficient for either S-Pad or P-Pad, one only needs to perform one

more Feistel round to the construction above: w′ = s, s′ = F ′(s)⊕w, and set π(m) = w′‖s′.
Coincidentally, the resulting π also gives a very general construction of the so called universal

padding schemes [7].
As described, the Feistel-based padding schemes above would only give the insider secu-

rity in the two-user setting. To get multi-user security, all one needs to do is to prepend the
pair (VEKS, VEKR) to all the inputs to the random oracles F and F ′: namely, create effec-
tively independent F and F ′ for every sender-recipient pairing! More generally, the paddings
above also provide label support, if one sticks the label L as part of the inputs to F and F ′.

Finally, we remark that P-Pad, S-Pad and X-Pad always support non-repudiation.

Schemes based on Gap Diffie-Hellman. Finally, we present two very specific, but
efficient schemes based on the so called Gap Diffie-Hellman assumption. Given a cyclic group
G of prime order q, and a generator g of G, the assumption states that the computational
Diffie-Hellman problem (CDH) is computationally hard, even if one is given oracle access to
the decisional Diffie-Hellman (DDH) oracle. Specifically, it is hard to compute gab from ga

and gb, even if one can test whether a tuple 〈gx, gy, gz〉 satisfies z = xy mod q.
In both schemes, the user U chooses a random xU ∈ Zq as its secret key VEKU , and

sets its public key SDKU = yU = gxU . The scheme of [1] is based on the following non-
interactive key agreement between users S and R. Namely, both S and R can compute
the quantity QSR = gxRxS = y

xR

S = y
xS

R . They then set the key KSR = H(QSR), where
H is a random oracle, and then always use KSR to perform symmetric-key authenticated
encryption of the message m. For the latter, they can use any secure symmetric-key scheme,
like “encrypt-then-mac” [4] or OCB [12]. The resulting signcryption scheme can be shown
to be outsider-secure for both privacy and authenticity, in the multi-user setting. Clearly, it
is not insider-secure, since both S and R know the key KSR. In fact, the scheme is perfectly
repudiable, since all the signcryptexts from S could have been easily faked by R.

To get insider-security for authenticity under the same assumption, one can instead
consider the following scheme, originally due to [14], but formally analyzed by [3]. Below G

and H are random oracles with appropriate domains, and E is a one-time secure symmetric-
key encryption (e.g., one-time pad will do). To signcrypt a message from S to R, S chooses
a random x ∈ Zq, computes Q = yx

R, makes a symmetric key K = H(Q), sets c ← EK(m),
computes the “validation tag” r = G(m, yA, yB, Q) and finally t = x(r + xS)−1 mod q.
Then S outputs 〈c, r, t〉 as the signcryption of m. To de-signcrypt 〈c, r, t〉, R first recovers
gx via w = (ySgr)t, then recovers the Diffie-Hellman key Q = wxR , the encryption key
K = H(Q) and the message m = DK(c). Before outputting m, however, it double checks
if r = G(m, yA, yB, Q). While this scheme is insider-secure for authenticity, it is still not

6



insider-secure for privacy.
We also mention that the scheme supports public non-repudiation. All that R has to do

is to reveal Q, m and a proof that Q = wxR (which can be done non-interactively using the
Fiat-Shamir heuristics, applied to the three-move proof that 〈g, yR, w,Q〉 form a DDH-tuple).
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