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ABSTRACT
This paper explores what kinds of information two parties
must communicate in order to correct errors which occur in
a shared secret string W . Any bits they communicate must
leak a significant amount of information about W — that
is, from the adversary’s point of view, the entropy of W will
drop significantly. Nevertheless, we construct schemes with
which Alice and Bob can prevent an adversary from learning
any useful information about W . Specifically, if the entropy
of W is sufficiently high, then there is no function f(W )
which the adversary can learn from the error-correction in-
formation with significant probability. This leads to several
new results: (a) the design of noise-tolerant “perfectly one-
way” hash functions in the sense of Canetti et al [7], which
in turn leads to obfuscation of proximity queries for high
entropy secrets W ; (b) private fuzzy extractors [11], which
allow one to extract uniformly random bits from noisy and
nonuniform data W , while also insuring that no sensitive
information about W is leaked; and (c) noise tolerance and
stateless key re-use in the Bounded Storage Model, resolving
the main open problem of Ding [10].

The heart of our constructions is the design of strong ran-
domness extractors with the property that the source W can
be recovered from the extracted randomness and any string
W ′ which is close to W .

Categories and Subject Descriptors
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formation Theory]: Information Theory
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1. INTRODUCTION
This paper investigates what kind of information must

be leaked to an eavesdropper when two cooperating parties
communicate in order to correct errors in a shared secret
string.
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Suppose that Alice and Bob share an n-bit secret string.
Alice’s copy w of the shared string is slightly different from
Bob’s copy w′. Alice would like to send a short message
S(w) to Bob which allows him to correct the errors in w′

(and thus recover w) whenever w and w′ differ in at most
τ bits. The randomized map S() that Alice applies to w to
get the message she sends to Bob is called a non-interactive
information reconciliation scheme, or simply a sketch, cor-
recting τ errors. A typical example of a sketch is

S(w) = synC(w),

where synC is the syndrome of a linear error-correcting code
C with block length n (see below for definitions) [2]. If C
has dimension k, then synC(w) is only n−k bits long. If the
minimum distance of C is at least 2τ+1, then synC(w) allows
Bob to correct any τ errors in w′. Moreover, the process is
efficient if the code can correct τ errors in polynomial time.

Enter Eve, who is tapping the line and trying to learn as
much as possible. From her point of view, Alice and Bob
hold a pair of random variables W, W ′. Suppose that Alice
and Bob do not share any secrets except this pair (this rules
out trivial solutions, such as Alice sending the encryption of
W with Bob’s public key). What kind of guarantees can Al-
ice and Bob obtain on what Eve learns from seeing S(W )?
Standard notions of security do not fit here. The state-
ment “S(W ) leaks no information about W” is normally
formalized by requiring that W and S(W ) be almost statis-
tically independent or, equivalently, that the Shannon mu-
tual information I(W ; S(W )) be very small. Such a strong



requirement is impossible to achieve in our setting: a cod-
ing argument shows that the mutual information must be
large (e.g., larger than τ) in general [4]. Even the analogue
requirement for computationally bounded adversaries, se-
mantic security [13], is impossible here: if Eve knows that
W is one of two strings w1, w2 which differ in only a few
bits, then she can use whatever algorithm Bob would have
run to compute W from S(W ) and w1.

The difficulty, then, is that the standard definitions of
security require secrecy even when Eve knows a lot about
W . We show that when this requirement is relaxed (that
is, when Eve is sufficiently uncertain about W ), a strong
secrecy guarantee can be provided.

A more suitable definition for our setting is entropic secu-
rity [7, 24, 12]. If W, Y are (correlated) random variables, Y
hides all functions of W if for every function f , it is nearly as
hard to predict f(W ) given Y as it is without Y , regardless
of the adversary’s computing power. A randomized map
S() is called entropically secure if S() hides all functions
of W whenever the min-entropy1 of W is above a certain
threshold. This definition of security has already produced
surprising results in two contexts. Canetti, Micciancio and
Reingold [6, 7] constructed hash functions whose outputs
leak no partial information about the input. Russell and
Wang [24] and Dodis and Smith [12] gave entropically se-
cure symmetric encryption schemes with keys much shorter
than the length of the input, thus circumventing Shannon’s
famous lower bound on key length.

This paper introduces a third, very different application
of entropic security: we construct secure sketches that are
(a) efficiently decodable (that is, Bob’s recovery algorithm
is polynomial-time) and (b) entropically secure. In partic-
ular, for any entropy bound t which is linear in n, we ob-
tain sketches which can efficiently decode a constant fraction
of errors and have leakage exponentially small in n. The
core of our construction is a family of strong randomness
extractors with an additional property: given the output
of the extractor and a string which is close to the source,
one can efficiently recover the source exactly. We construct
these extractors based on small random families of algebraic-
geometric codes, and then apply our constructions to private
storage of keys derived from biometric measurements, obfus-
cation of proximity queries, and key re-use in the bounded
storage model (see Section 1.1).

The Relation to Entropy Loss. The task of correcting
errors in a joint string is usually called information reconcil-
iation [2, 4, 5, 17, 10], fuzzy cryptography ([15], see [26] for
a survey), or document exchange (in communication com-
plexity, e.g. [9, 8]). In contrast to this paper, previous work
focused only on maximizing the length of a cryptographic
key which can be derived from W once the errors in W ′ have
been corrected. Because of that, they are only interested in
bounding the drop in the entropy of W from Eve’s point of
view when she sees the communication between Alice and
Bob.

The security guarantee we provide is strictly stronger than
in previous work. Indeed, min-entropy is an upper bound
on all the measures of entropy used in the literature, and
entropic security implies a lower bound on the min-entropy
of W given the sketch S(W ). The converse implication is

1Min-entropy measures the difficulty of guessing W a priori:
H∞(W ) = − log(maxw Pr[W = w]).

not true: simply bounding the min-entropy of W given the
sketch does not prevent Eve from learning some particular
function of W with probability 1 (for example, the syndrome
construction above always reveals a particular, fixed set of
linear combinations of the bits of W ). This can be a prob-
lem for several reasons. First, W itself may be sensitive (say,
if it is a biometric used for authentication [15, 16, 11]), in
which case S(W ) might reveal sensitive information, such
as a person’s age. Second, when we use the error-correction
protocol as a piece of a larger framework, entropy loss may
not be a sufficient guarantee of secrecy; we will see an ex-
ample of this in key agreement protocols which are secure
against memory-bounded adversaries [10].

For completeness, we state the min-entropy loss of our
constructions explicitly, since it is typically much lower than
the bound implied by entropic security.

Notation and Definitions. We denote the output of a
randomized algorithm on input x and random coins r by
Y (x; r). We use the shorthand Y (x) for (random) output
when the string r is chosen uniformly at random. The sta-
tistical difference between two probability distributions A

and B on the same space is SD (A, B)
def
= 1

2

P

v

˛

˛ Pr[A =

v] − Pr[B = v]
˛

˛ (that is, half the L1 distance between the
probability mass functions). The main measure of entropy
we use is min-entropy, which measures the difficulty of guess-
ing a random variable A a-priori: the best predictor suc-
ceeds with probability p∗ = maxa Pr[A = a], and the min-
entropy is H∞(A) = − log(p∗) (all logarithms are base 2
by default). A is called a t-source if H∞(A) ≥ t. The

conditional min-entropy of A given B is H̄∞(A | B)
def
=

− log(Eb←B

h

2−H∞(A|B=b)
i

). (This definition is not stan-

dard but very convenient.) Finally, h2() denotes the binary
entropy function.

We now turn to defining secure sketches and entropic se-
curity. Following [11], we incorporate entropy loss into the
definition of a secure sketch; we state the definition of en-
tropic security separately.

Definition 1 ([11]). A (t, t′, τ)-secure sketch is a pair
of (possibly) randomized maps S : {0, 1}n → {0, 1}∗ and
Rec : {0, 1}∗ → {0, 1}n such that:

• For all pairs of strings w, w′ of distance at most τ , we
have Rec(w′, S(w)) = w with probability 1.

• For all t-sources W , we have H̄∞(W | S(W )) ≥ t′.

The entropy loss of a sketch is the difference t− t′.
The sketch is efficient if S and Rec run in time poly(n).

Definition 2 ([7, 24, 12]). The probabilistic map Y ()
hides all functions of W with leakage ǫ if for every adversary
A, there exists an adversary A∗ such that for all functions
f : {0, 1}∗ → {0, 1}∗,

˛

˛ Pr[A(Y (W )) = f(W )]− Pr[A∗() = f(W )]
˛

˛ ≤ ǫ.

The map Y () is called (t, ǫ)-entropically secure if Y () hides
all functions of W , for all t-sources W .

The definitions above make sense for any distance function
on the strings held by Alice and Bob. In this paper, we only
discuss Hamming distance over a vector space Fn

q . Two
cases will be of special interest: binary Hamming distance
(q = 2), since it is the most widely studied, and q ≥ n,
since we will then be able to obtain information-theoretically
optimal constructions.



1.1 Our Contributions
Our main result is the construction of entropically secure

sketches for Hamming distance. We state the results for two
settings: the binary alphabet (q = 2), and a large alphabet
(q ≥ n).

Theorem 1. (Binary Alphabet) There exist efficient
(t, t′, τ)-secure sketches for inputs in {0, 1}n (with binary
Hamming distance) which are also (t, ǫ)-entropically secure,
such that, for infinitely many n,

(1) the tolerated error τ and residual entropy t′ are Ω(n);

(2) the information leakage ǫ is exponentially small (2−Ω(n))

whenever the original min-entropy t is linear in n. (That
is, whenever t = Ω(n) then we can find schemes where τ , t′

and log
`

1
ǫ

´

are Ω(n)).
(Large Alphabet) If q > n and t > 2τ log(q), there exist

efficient (t, t′, τ, ǫ) entropically secure sketches over Fn
q such

that t′ = t− 2τ log(q) and ǫ = O(2−t′/2).

Before proceeding, a word about parameters: the original
entropy t of the input W is given by the context in which
W arises. The error tolerance τ will also typically be spec-
ified externally—it is the amount of noise to which W will
likely be subject. Thus, the goal is to get both the (en-
tropic) security log

`

1
ǫ

´

and the residual min-entropy t′ as

high as possible. The quantity log
`

1
ǫ

´

measures the diffi-
culty of learning some function of W , while t′ measures the
difficulty of guessing W exactly. In particular, t′ is bounded
below by log

`

1
ǫ

´

(roughly), since by the definition of en-
tropic security the adversary’s probability of predicting the
identity function f(W ) = W is at most ǫ+2−t ≈ ǫ. Thus, it
is sufficient to look for sketches will tolerate τ errors and are
(t, ǫ)-entropically secure for τ, log

`

1
ǫ

´

= Ω(n). Theorem 1
states that such secure sketches do indeed exist.

In fact, for a large class of natural schemes—those where
the sketch is actually a strong randomness extractor—we
prove that t′ ≥ 2 log

`

1
ǫ

´

− Θ(1); some of our constructions
achieve this bound. For large enough alphabets, our con-

structions achieve both optimal leakage ǫ = 2−t′/2 and op-
timal min-entropy loss of 2τ log q.

The Relation to Randomness Extraction. The start-
ing point of the constructions is a result from earlier work
stating that randomness extractors [23] are entropically se-
cure, that is the output hides all functions of the source. We
say a (randomized) map Y () is (t, ǫ)-indistinguishable if for
all pairs of t-sources W1, W2, the distributions Y (W1) and
Y (W2) are ǫ-close. (Y () is a randomness extractor in the
special case where the output distribution is always close to
uniform.) We will use the following result several times:

Fact 2 ([12], Thm 2.1). If Y () is (t, ǫ)-entropically se-
cure, then it is (t − 1, 4ǫ)-indistinguishable. Conversely, if
Y () is (t, ǫ)-indistinguishable, then it is (t+2, 8ǫ)-entropically
secure.

The second implication is the more interesting of the two.
In particular, our main result is really a construction of
randomness extractors (which are indistinguishable) whose
output can be used to correct errors in the input. They are
strong randomness extractors in the sense of Nisan and Zuck-
erman [23]: all the random coins used by the extractor (the
“seed”) appear explicitly in the output. The construction
is explained in Section 2; here we rephrase the main result
in terms of extractors:

Theorem 3. (Binary alphabet) For any constant en-
tropy rate t/n, there is an explicitly constructible ensemble
of strong (t, ǫ)-extractors Ext : {0, 1}n × {0, 1}d → {0, 1}p ×
{0, 1}d with seed length d = n such that (1) Ext() extracts
at most a constant fraction p = t(1 − Ω(1)) of entropy
from the input with exponentially small error and (2) Ext()
corrects a linear number τ of binary Hamming errors in
the source. That is, there is a polynomial time algorithm
Rec such that for any strings w, w′ at distance at most τ ,
Rec(w′, Ext(w; R)) = w with probability 1.

(Large alphabet) For Hamming distance over Fn
q , q >

n, for any t, τ and n such that t > 2τ log q, there is an ex-
plicitly constructible strong (t, ǫ)-extractor which can correct
τ errors efficiently, and which extracts 2τ log(q) bits with
error satisfying log

`

1
ǫ

´

≥ t/2− τ log(q)−O(1).

The previous theorem may initially appear strange when
seen as a result on randomness extractors. Typically, the
goal of extractor constructions is to maximize the length of
the extracted string, and minimize the seed length d (for
given min-entropy and error).

In our constructions however, the output length p of the
extractor is the entropy loss of the corresponding secure
sketch: because the output is random, every bit of output
really decreases the entropy of the input by a bit. Thus, our
goal is to minimize the output length while keeping the error
(leakage) ǫ as low as possible and correcting as many errors
τ as possible. To add to the confusion, the term entropy loss
is overloaded here. In the context of extractors, the entropy
loss typically refers to the disparity between the initial en-
tropy and the number of extracted bits, i.e. t−p. In the con-
text of secure sketches, this quantity is actually the residual
entropy t′, which we are trying to maximize. Thus, although
it is helpful to think of our result in terms of extractors, one
must bear in mind that the focus is on functionality—that
is, error-tolerance—and not on maximizing the output.

Finally, one may also think of this result as adding to
the list of connections between explicit constructions of dif-
ferent combinatorial objects—in this case, extractors and
error-correcting codes. In the past, error-correcting codes
have been used to construct extractors and vice-versa (see,
e.g. [25]). However, this paper describes objects which are in
some sense both. Fuzzy extractors [11] provide a different ex-
ample of objects which combine the two requirements. The
connections to fuzzy extractors are explained in Section 3.

Applications. We present three applications of our results.

• Key Re-Use in the Bounded Storage Model. This is per-
haps the least expected application of our technique, re-
solving the main open question left by Ding [10]. Ding
considered the question of correcting errors in Maurer’s
bounded storage model [21]. In this model, Alice, Bob
and the adversary all have temporary access to a huge,
random string, X, but have very bounded memories (only
enough to remember a fraction of the length of the string).
Alice and Bob, using only a short, shared key, can derive
a much longer shared key about which the adversary has
no information, without making computational assump-
tions such as the existence of a pseudo-random generator.
The model has received a lot of attention recently (see
[10, 27, 18] and references therein), in particular because
of a feature dubbed everlasting security : the same long
term key can be re-used many times, and the session keys
remain secure even if the adversary learns the long-term



key. One of the aspects limiting the usability of the cur-
rent solutions comes from the fact that Alice and Bob
must see (almost) exactly the same string X in order to
ensure that they derive the same key: current protocols
can only tolerate a negligibly small probability of error
in each bit of X. By having Alice send a single message
to Bob, Ding [10] showed that one can actually tolerate a
constant error rate in X, at the expense of considerably
weakening the key re-use property: the parties must syn-
chronously and periodically update their long-term secret
keys. We resolve this issue by showing that nearly op-
timal error-correction is possible without sacrificing key
re-use.

• Obfuscation and Perfectly One-Way Functions. An ob-
fuscator for a program P generates a scrambled circuit P̃
which allows one to evaluate P on any input, but leaks
no additional information. Although code obfuscation is
not possible in general (Barak et al. [1]), there are a few
results showing that obfuscation of certain functions is
possible in variants of the basic model, e.g. [19, 28]. Per-
fectly one-way hash functions, constructed by Canetti,
Micciancio and Reingold [7], can be interpreted as ob-
fuscating equality queries (which accept the input if and
only if it is equal to some particular value w.), provided w
has high enough min-entropy from the adversary’s point
of view. It is natural to ask whether it is possible to
obfuscate more general proximity queries, which also ac-
cept inputs sufficiently close to w. This was explicitly
mentioned as an open problem in [19], who observed that
random oracles seem of little help for correcting unknown
errors. We settle the problem in the affirmative under
the assumption that w has high entropy (as in [7]). To
do so, we construct error-tolerant perfectly one-way hash
functions. Along the way, we simplify and improve the
analysis of the noise-free construction of [7].

• Stronger Privacy for Biometric Applications. Fuzzy ex-
tractors were recently introduced [11] for extracting a se-
cret, random key from noisy, non-uniform data such as
biometric measurements. On input W , a fuzzy extrac-
tor outputs some public data P and a key R(W ), such
that P can be used to recover R from subsequent read-
ings of W , despite noise. In the constructions of [11],
the public information P actually leaks some potentially
sensitive information about the biometric W . Our re-
sults here are two-fold. On the one hand, we show that
P must indeed leak some non-trivial amount of Shannon
information about W . This conclusion is harder to prove
for fuzzy extractors than for sketches, and relies on the
geometry of {0, 1}n. On the other hand, we construct
fuzzy extractors which leak no function (such as a sen-
sitive substring) of the input W . This once again shows
that Shannon security is stronger than entropic security.

This Abstract. Section 2 describes the construction of
secure sketches which leak no partial information. Section 3,
Section 4 and Section 5 describe the applications to private
fuzzy extractors, to error-correction and key reuse in the
bounded storage model and to resilient perfectly one-way
hash functions, respectively. Due to space limitations, most
proofs are deferred to the full version.

2. SKETCHES THAT HIDE ALL PARTIAL
INFORMATION

This section describes the main technical construction of
the paper (Theorem 1). Unless explicitly stated otherwise,
most of the discussion below will concentrate on the more
challenging case of binary alphabets. Our discussion refers
often to the “code-offset” construction [2, 15]: if we view
an error-correcting code as a function C : {0, 1}k → {0, 1}n
with minimum distance d, the randomized map

S(w; R) = w ⊕ C(R) (1)

has entropy loss t − t′ = n − k [11]. It can correct τ =
⌊(d− 1)/2⌋ errors, and is efficient if and only if C has effi-
cient encoding and error-correction algorithms. In the case
of linear codes, this construction reduces to the syndrome
construction in the introduction, since w⊕C(R) is a random
element of the coset {x ∈ {0, 1}n : synC(x) = synC(w)}).

2.1 Overview of the Construction
Our starting point is the following fact about “small-bias”

subsets of {0, 1}n (defined below). If A is randomly drawn
from a subset of sufficiently small “bias,” and B is any ran-
dom variable with sufficient min-entropy, then A⊕B is close
to uniform on {0, 1}n. (This fact was also used to construct
a entropically secure encryption scheme [24].) The intuition
behind our approach, then, is simple:

If C itself is a small-bias set, then the code-offset construc-
tion S(W ) = W ⊕ C(R) always yields distributions close to
uniform, and hence S() is entropically secure.

The problem with this intuition is that explicit construc-
tions of codes with small bias are not known (in particu-
lar, such codes cannot be linear, and most explicitly con-
structible codes are linear). We circumvent this difficulty
and construct explicit, efficient entropically secure sketches.
We show that the code-offset construction can be made in-
distinguishable (even with linear codes) when the choice of
error-correcting code is randomized as opposed to always
using the same fixed code.

Suppose that we have a family of k-dimensional linear
error-correcting codes {Ci}i∈I indexed by some set I. Con-
sider sketches of the form

S(w; i) = (i, synCi
(w)) , for i← I, or, equivalently,

S(w; i, x) = (i, w ⊕ Ci(x)) , for i← I, x← {0, 1}k
(2)

Below, we establish a necessary condition on the code family
for the construction to leak no partial information about w.

1. We define a notion of “bias” for families of codes, and
show that a small-bias family of codes also leads to an
entropically secure sketch. This allows us to work with
linear codes.

2. To illustrate the framework, we show that random linear
codes are optimal in terms of both error-correction and
entropic security (this corresponds to reproving the “left-
over hash” lemma [14]).

3. We construct explicit, efficiently decodable, small-bias
families of codes by considering a subset of binary images
of a fixed code over a large (but constant-size) alphabet
GF (2e).

A number of interesting observations come out of our anal-
ysis. First of all, we derive a general sufficient condition for



a set of linear functions to form a good randomness extrac-
tor; this may be of independent interest. We also obtain new
bounds on the average weight enumerators of “generalized”
algebraic-geometric codes.

Bias and Secrecy. The bias of a random variable A over
{0, 1}n is a (weak) measure of “pseudo-randomness”: it
measures how close A is to fooling all statistical tests that
look only at the parity of a subset of bits. Formally, the
bias of A with respect to a non-zero vector α is the distance
between the dot product of α and A from a fair coin flip,
that is

biasα(A)
def
= E

ˆ

(−1)α⊙A
˜

= 2Pr[α⊙A = 1]− 1

The random variable A has bias δ if |biasα(A)| < δ for all
non-zero vectors α ∈ {0, 1}n. The bias of a set C is the bias
of the uniform distribution over that set. It is known that
the map Y (W ; A) = W ⊕ A is a (t, ǫ)-extractor whenever

the bias of C is sufficiently small (δ ≤ ǫ2−(n−t−1)/2), e.g.
[3].

We generalize this to a family of sets by requiring that on
average, the squared bias with respect to every α be low:

Definition 3. A family of random variables (or sets)

{Ai}i∈I is δ-biased if, for all α 6= 0n,
q

E
i←I

[biasα(Ai)2] ≤ δ.

Note that this is not equivalent, in general, to requiring
that the expected bias be less than δ. There are two impor-
tant cases:

Case 1. If C is a δ-biased set, then {C} is a δ-biased set
family with a single member.

Constructing codes with good minimum distance and neg-
ligible bias seems difficult. Such codes do exist: a completely
random set C of 2k elements will have both (1) minimum
distance d, where k/n ≈ (1 − h2(d/n))/2 [20] and (2) bias

approximately 2−(k−log n)/2 [22]. However, these codes are
neither explicitly constructed nor efficiently decodable. This
raises a natural question:

Does there exist an explicitly-constructible ensemble of good
codes with small bias and poly-time encoding and decoding
algorithms (ideally, codes with linear rate and minimum dis-
tance, and exponentially small bias)?

To the best of our knowledge, the problem remains open.

Case 2. A family of linear codes {Ci}i∈I is δ-biased if there

is no word which is often in the dual C⊥i of a random code
Ci from the family. Specifically, the bias of a linear space
with respect to a vector α is always either 0 or 1:

biasα(Ci) =



0 if α 6∈ C⊥i
1 if α ∈ C⊥i

Hence a family of codes is δ-biased if and only if Pri←I [α ∈
C⊥i ] ≤ δ2, for every α 6= 0n.

Note that for a family of linear codes to satisfy Definition 3
the expected bias must be at most δ2, while for a single set
the bias need only be δ.

The general lemma below will allow us to prove that the ran-
domized code-offset construction is indistinguishable (and
hence entropically secure).

Lemma 4 (Small-Bias Families Yield Extractors).
Let {Ai}i∈I be a δ-biased family of random variables over

{0, 1}n, with δ ≤ ǫ · 2−n−t−1
2 . For any t-source B (indepen-

dent of Ai) the pair (I, AI ⊕B) is ǫ-close to uniform.

The proof of Lemma 4 is a generalization of the proof
that random walks on the hypercube converge quickly when
the edge set is given by a small bias set. The basic idea
is to bound the Fourier coefficients (over Z

n
2 ) of the output

distribution in order to show that it is close to uniform in
the ℓ2 norm.

In order to apply Lemma 4 we will need a family of error-
correcting codes with small bias. Our construction is de-
scribed in the next section, and summarized here:

Lemma 5 (Good Code Families Construction).
For any constant 0 < λ < 1, there exists an explicitly con-
structible ensemble of (binary) linear code families which
efficiently correct τ = Ω(n) errors and have square bias
δ2 < 2−λn.

For any q > n and 0 ≤ τ < n/2, there exists an explicitly
constructible family of linear codes over Fn

q which efficiently
corrects τ errors with dimension n−2τ and square bias δ2 <
O(q−(n−2τ)).

Proof of Theorem 1. We can combine this lemma and
Lemma 4 to prove our main result, i.e. that there are effi-
cient, entropically secure sketches. For the binary case: If
t/n is constant, we can set λ = 1− t

2n
. Picking a sequence

of code families as in Lemma 5, we obtain a secure sketch
scheme which corrects τ = Ω(n) errors efficiently and is

(t, ǫ)-entropically secure, where ǫ = δ · 2(n−t)/2+O(1). Since

δ2 ≤ 2−λn = 2t/2−n, the leakage ǫ is exponentially small.
To prove the statement large alphabets, fix n, q, t, and

τ . In order to apply Lemma 4, we must first observe that
the same statement holds over larger alphabets Fq, with a

similar bound ǫ = δ · 2
(n log(q)−t−1)

2 . By Lemma 5, there
is a code family which gives a secure sketch scheme which
corrects τ errors (in Fn

q ) and is (t, ǫ)-entropically secure,

where ǫ = O(2−(t−2τ log(q))/2). The dimension of the code is
n− 2τ and so the entropy loss of the sketch is 2τ log q.

2.2 Small-Bias Families of Linear Codes
Inefficient Construction: Random Linear Codes. An
easy observation is that the family of all linear codes of a
particular dimension k has squared bias δ2 = 2−k, although
the codes are not known to be efficiently decodable. This
bias is easily seen to be optimal. Random linear codes also
exhibit the best known tradeoff between rate and distance
for binary codes, as they lie near the Gilbert-Varshamov
bound with high probability [20]. This gives us a point of
reference with which to measure other constructions.

Efficient Construction via Random Binary Images.
The basic idea behind our construction is to start from a
single, fixed code C′ over a large (but constant) alphabet,
and consider a family of binary codes obtained by converting
field elements to bit strings in different ways.

Let F = GF (q), where q = 2e. Starting from a [n′, k′, d]q
code C′ over F , we can construct a binary code by taking the
binary image of C′, that is by writing down the codewords of
C′ using some particular e-bit binary representation for ele-
ments of F . More formally, fix any basis of the field F over
Z2, and let bin(a) ∈ {0, 1}e be the binary representation of a
field element a in the basis. For a vector α = (a1, ..., an′) ∈
Fn′ , let bin(α) be the concatenation (bin(a1), ..., bin(an′)).
Finally, let bin(C′) denote the set of binary images of the

codewords, bin(C′)
def
= {bin(c) : c ∈ C′}.



We can randomize the code C′ by multiplying each coor-
dinate of the code by some random non-zero scalar in F , and
then taking the binary image of the result. Clearly, these
operations affect neither the dimension nor the decodability
of C′: they are invertible and preserve Hamming distances

in Fn′ . Describing the particular operations that were ap-
plied to the code requires O(n′ log(q − 1)) bits to describe
n′ non-zero scalars.

When the initial code C′ is a Reed-Solomon (RS) code
or an algebraic-geometric (AG) code, the codes obtained as
above are called generalized RS (resp. AG) codes. We prove
a new bound the average square bias of these codes based
on the minimum distance of the dual code of C′.

In the statement below, we consider general p-ary images
instead of only binary ones. That is, when q = pe for a
prime power e, we obtain the p-ary image of an element by
writing it out in some fixed basis of GF (q) over GF (p).

Lemma 6 (Random p-ary Images). Let C′ be a lin-
ear [n′, k′, d]q code over F = GF (q), with q = pe. Let {C′i}
be the set of [n′, k′, d]q codes over F obtained by multiplying
each coordinate by a non-zero scalar in F . Let Ci = bin(C′i)
be the corresponding p-ary images. Then

1. The Ci are [n, k, d]p codes with n = n′e and k = k′e.
(Note that the rates k/n and k′/n′ are equal).

2. If C′ can correct τ errors in GF (q)n′ efficiently, then
each Ci can efficiently correct τ errors in GF (p)n.

3. If (C′)⊥ has minimum distance d⊥, then the average
square bias of {Ci} is

δ2 = max
α∈GF (p)n,α6=0n

˘

Pr
i

[α ∈ C⊥i ]
¯

≤ 1/(q − 1)d⊥−1.

Note that in the last statement, the dual code (C′)⊥ is taken

with respect to the dot product in Fn′ , while the dual code
C⊥i is taken with respect to the dot product in GF (p)n.

Using Reed-Solomon Codes. Recall, RS codes are a class
of efficiently-decodable [n′, k′, d]q linear codes over a large
alphabet GF (q), q ≥ n′, having distance d = n′ − k′ + 1
and dual distance d⊥ = k′ + 1. Applying Lemma 6, we get

δ2 = (q − 1)−d⊥+1 = (q − 1)−k′ < 3q−k′ . When q is in fact
a power of 2 we get that binary images of RS codes have
optimal bias log

`

1
δ

´

= k/2 − O(1), just like random linear
codes. Unfortunately, the conversion to a binary alphabet
increases the code length and dimension without increas-
ing the distance. Thus, these codes are only guaranteed to
correct about (n− k)/2e ≤ (n− k)/2 log n binary errors.

Nevertheless, for large alphabets, these codes do very well.
Specifically, setting p = q and e = 1 (i.e., n = n′, k = k′), we

get both optimal square bias O(q−k′) and optimal distance
d = n− k + 1. This gives the optimal large alphabet bound
claimed in Lemma 5.

Binary Codes via AG Codes. To overcome the distance
reduction we experienced with RS codes, we use AG codes
instead. Applying Lemma 6 to such codes yields the follow-
ing lemma (whose proof is given in the full version), which
implies Lemma 5.

Lemma 7 (Good Binary Code Families). For any
constant 0 < R < 1, and any q = 22i where i is an integer,
i ≥ 2, there exists an explicitly constructible ensemble of

binary code families which efficiently correct τ errors and
have square bias δ2 where:

τ ≥ n

log q

„

1−R− 1√
q − 1

«

and

log
`

1
δ

´

≥ n

2

„

R− 1√
q − 1

« „

1− log q

q − 1

«

3. SECRECY FOR FUZZY EXTRACTORS
Fuzzy extractors were introduced in [11] to cope with keys

derived from biometrics and other noisy measurements.

Definition 4 ([11]). An (t, ℓ, τ, ǫ) fuzzy extractor is a
given by two efficient procedures (Gen, Rep).

1. Gen is a probabilistic generation procedure, which on
input w ∈M outputs an “extracted” string R ∈ {0, 1}ℓ
and a public string P , such that for any t-source W ,
if 〈R, P 〉 ← Gen(W ), then SD (〈R, P 〉, 〈Uℓ, P 〉) ≤ ǫ.

2. Rep is a deterministic reproduction procedure which al-
lows one to recover R from the corresponding public
string P and any vector w′ close to w: for all w, w′ ∈
M satisfying dist(w, w′) ≤ τ , if 〈R, P 〉 ← Gen(w),
then we have Rep(w′, P ) = R.

We first explain the distinction between fuzzy extractors
and the entropically secure sketches we constructed in Sec-
tion 2, which also were extractors by themselves. The key
difference is that in the case of entropically secure sketches
one reconstructs W from W ′ and the extracted randomness
S(W ). In the case of fuzzy extractors, one reconstructs W
from W ′ and some “extra information” P , which is separate
from the extracted randomness R. In particular, the value
P could leak some non-trivial information about the input
W . This is the case, for example, for the fuzzy extractors
constructed in [11]. Thus, a natural question to ask in this
context is whether it is possible to construct fuzzy extrac-
tors where the public value P does not leak any sensitive
information about W ; this is the subject of this section.

The first hope is to hide all information about W , that
is to construct a fuzzy extractor where P (W ) and W are
(close to) independent random variables. We show that this
is impossible. For fuzzy extractors, as for secure sketches,
leaking Shannon information is unavoidable even if the input
distribution W is uniform (which is a valid t-source for any
t). The proof of this result may be found in the full version.

Theorem 8. Assume (Gen, Rep) is a (n, t, ℓ, τ, ǫ) fuzzy
extractor, and let P denote the public output of the gen-
eration algorithm Gen(W ) on a uniform input W . Then as
long as τ = Ω(

√
n), ℓ = ω(1) and ǫ = o(1), then P reveals

Ω(n) bits of information about W : I(W ; P ) = Ω(n).

Despite this limitation, one can achieve entropic security
for fuzzy extractors—a weaker (but meaningful) notion of
security.

Definition 5. A (n, t, ℓ, τ, ǫ) fuzzy extractor is called

• ǫ′-private if the pair 〈R, P 〉 is (t, ǫ′)-entropically secure.

• uniform if SD
`

〈R, P 〉, 〈Uℓ, U|P |〉
´

≤ ǫ.

A few observations are in place. First, recall that for
secure sketches, we required that S(W ) be entropically se-
cure. For fuzzy extractors, it is tempting to require only that



P (W ) be entropically secure since it is P which is published
while R is supposed to be secret. However, we cannot guar-
antee that no information about R will be leaked in some
higher level application (e.g., if R is used as a one-time pad
to encrypt a known string). Requiring that the pair 〈R, P 〉,
be entropically secure protects against arbitrary information
being revealed about both P and R. Second, by Fact 2 [12]
we can see that a uniform fuzzy extractor is also ǫ′ = 8ǫ-
private for min-entropy t + 2. Thus, for our purposes it is
sufficient to construct a uniform fuzzy extractor. Such an
extractor can be viewed as a regular extractor Gen which
extracts ℓ + |P | nearly random bits from W , but such that
W is recoverable from “only” |P | of these bits and any W ′

of distance at most τ from W . In this view, it is clear that
we really want to minimize |P | and maximize the length ℓ
of the “actual” extracted randomness R. The fact that P
is random is never used for the purposes of randomness ex-
traction, but rather as a convenient tool to ensure that P
leaks no sensitive information about W .

A Simple Construction. Recall that [11] made a simple
observation that fuzzy extractors can be constructed from
secure sketches by applying a strong randomness extractor2

to the secure sketch. Specifically, if Ext is a strong random-
ness extractor using seed K, one sets R = Ext(W ; K) and
P = 〈K, S(W )〉. It is easy to see that this transformation
preserves entropic security if we start with an entropically
secure sketch S (here the indistinguishability view given by
Fact 2 is very useful). In fact, the resulting private fuzzy
extractor is actually uniform whenever our entropically se-
cure sketch is an extractor (like in Theorem 3). In this
case, the analysis of [11] and the near uniformity of our
sketch implies that, for any t-source W , the joint distri-
bution 〈R, P 〉 = 〈Ext(W ; K), K, S(W )〉 is within statistical
distance O(ǫ) from a triple of uniform, independent random
strings, which means that the resulting fuzzy sketch is uni-
form, and therefore private.

If S(W ) and Ext are strong extractors, this construction
has an additional property: the value P contains all the
randomness used in the fuzzy extractor. In other words, Gen

by itself could be viewed as a strong randomness extractor
which extracts a random string 〈R, S(W )〉. In this light, it
is once again clear why we want to minimize the length of
S(W ): as the total length of S(W ) and R can be at most t
(in fact, t− 2 log

`

1
ǫ

´

), minimizing |S(W )| leaves more room
for maximizing |R| = ℓ. Slightly abusing the terminology,
we will call such fuzzy extractors strong, by analogy with
ordinary strong extractors (for which P is simply the seed).

Now, by using the entropically secure sketches constructed
in Theorem 3 coupled with any strong extractor which ex-
tracts a constant fraction of the entropy (such as a pairwise-
independent hash family), we get the following corollary.

Theorem 9. For any constant entropy rate t/n, there ex-
ists an efficient construction of uniform strong (n, t, ℓ, τ, ǫ)
fuzzy extractors such that (1) ℓ, τ, log

`

1
ǫ

´

are all Ω(n); and
(2) |P | (and thus the seed which is part of P ) is O(n).

These parameters are optimal up to a constant factor

2Specifically, the extractor has to work for distributions of
min-entropy at least t′ − log

`

1
ǫ

´

, where t′ is the residual
min-entropy of the sketch. When the extractor comes from
the leftover hash lemma, [11] also showed that the loss of
log

`

1
ǫ

´

above is unnecessary.

(where linear |P | follows from Theorem 8). It would be inter-
esting, however, to understand the precise optimal tradeoffs
between various constant factors involved. Another inter-
esting problem is to decrease the seed length of a strong
uniform fuzzy extractor below O(n).

4. NOISE TOLERANCE AND “EVERLAST-
ING SECURITY”

In this section we resolve the main open question of [10]:
we show that there is a noise-tolerant “locally computable
extractor” which allows its key to be reused many times.

Bounded Storage Model (BSM). We first briefly re-
call the basics of the bounded storage model [21]. Alice
and Bob share a short, “long-term” secret key K. A se-
quence of huge random strings X1, X2, . . .

3 is broadcast to
both of them. Alice and Bob then apply a deterministic
function fK to derive relatively short one-time pads Ri =
fK(Xi). Traditionally, there are two main considerations
in the bounded storage model: efficiency and everlasting
security. Efficiency means that fK depends on few bits
of the source Xi (we will denote this number by n), and
that these bits can be easily determined from the long-term
key K alone. Security means that as long as the adver-
sary does not know the secret key K and cannot store each
source Xi in “its entirety”, the one-time pads Ri are statis-
tically close to uniform, even if the adversary later gets the
long-term secret key K. A bit more formally (see [27] for
a complete definition), we assume the adversary can store
at most γN bits for some constant γ < 1, and can update
its state Ai ∈ {0, 1}γN at time i as an arbitrary function
of Ai−1, the current source Xi, as well as the past one-
time pads R1, . . . , Ri−1. The claim now is that at the end
of the game the joint distribution 〈Am, K, R1, . . . , Rm〉 is
ǫ-statistically close to 〈A′m, K, U1, . . . , Um〉, where Ui are in-
dependent, truly uniform keys of the same length as Ri, and
A′m is obtained in the same manner as Am but using the Ui’s
in place of the Ri’s.

The BSM has received a lot of attention recently (see [10,
27, 18] and references therein). The current technique for
achieving everlasting security [18, 27] in this model is the
“sample-then-extract” approach. The high-level idea is to
have K consist of two keys Ks and Ke, where Ks is used to
select a small portion Xi

s of the bits of Xi, and then Ke is
used as a key for a strong randomness extractor [23]. Using
optimal parameter settings, one can achieve a total key of
size O(log N + log

`

1
ǫ

´

).

Error-Correction in BSM. Recently Ding [10] consid-
ered the problem of the error-correction in the bounded stor-
age model. Suppose that Bob does not necessarily receive
the same string Xi as Alice, but instead receives some X̃i

which is guaranteed (or expected) to be close to Xi in the
Hamming distance. Ding proposed the following simple idea
to overcome such errors, which we first describe for a single
sample (i.e., m = 1). After receiving the source X and sam-
pling the substring Xs (using Ks), Alice will simply send to
Bob — over a public channel — the string P = synC(Xs),
where C is a good error-correcting code.4 Bob will sample

3More generally, it is sufficient that each Xi has high min-
entropy conditioned on the other Xj for j 6= i.
4More precisely, if the adversary is allowed to corrupt δ-
fraction of the bit in X, C should be able to correct slightly
more than δ-fraction of errors.



the string X̃s which is going to be close to Xs (due to the
properties of the sampler), which means that he can recover

Xs from P and X̃s, after which he can use Ke to extract
the final randomness R. For any storage rate γ < 1, any (up
to exponentially small) error ǫ and any number of sampled
bits n, there exists an error rate δ > 0 such that one can (a)
extract Ω(n) bits which are ǫ-close to uniform, (b) tolerate
δ-fraction of adversarial errors in the source, (c) still main-
tain optimal key size O(log N +log

`

1
ǫ

´

), and (d) have Alice
send O(n) bits to Bob.

It is easy to see that this idea works for t = 1 and might
initially appear to work for arbitrary number of repetitions
t. However, Ding pointed out the following subtle prob-
lem. The value synC(Xs) leaks some information about Xs,
which in turn could conceivably leak information about the
long-term key Ks, since Xs depends on Ks. But the security
in the BSM model crucially assumes that the sampling key
Ks is close to independent from the source. Now, leaking P1

conceivably leaks information about Ks, which in principle
means that the attacker can store information A2 which de-
pends on Ks. Thus the conditional distribution of X2 given
the adversary’s view can no longer be argued to be indepen-
dent from the sampling key Ks, and the analysis does not
go through.

Ding addressed this problem by making Alice and Bob
synchronized and stateful. Specifically, after each commu-
nication they not only extract a fresh one-time pad Ri, but
also refresh the long-term key K (specifically, Ks must be
replaced). While Ding showed that this solution achieves
very good parameters, it creates a lot of inconvenience for
the sender and the receiver.

Our Construction. Using our technique, we resolve the
main open problem of [10]. Specifically, we achieve all prop-
erties (a)-(d) above, while also enjoying a stateless scheme.
We start with a randomized scheme, and then derandomize
it. The idea is to replace a fixed error-correcting code C used
by Ding by a code Ci chosen randomly from a family of codes
{Ci} we constructed in Section 2, which have the property
that a syndrome of a randomly selected code is a random-
ness extractor. Namely, instead of sending synC(Xs) Alice
will send a pair 〈i, synCi

(Xs)〉 = S(Xs) to Bob (for ran-
dom i). We also notice that since our current construction
is randomized, Alice might as well sample a new (anyway
very short) extraction key Ke for every time period, and
then include Ke as part of the message transmitted to Bob.
In this variant, Alice and Bob only share a single long-term
sampling key Ks.

The concrete scheme above is a special case of the follow-
ing more general paradigm, which is conceptually cleaner
and easier to analyze. We will use the abstraction of uni-
form (or even just private) fuzzy extractors developed in
Section 3. Recall, such extractor Gen(W ) outputs a pair
〈R, P 〉 which is statistically close to a pair of uniform ran-
dom strings 〈U1, U2〉 (of the appropriate length), and such
that R can be recovered from P and any W ′ which is rea-
sonably close to W .

Suppose Alice and Bob share only a sampling key Ks of
length O(log N + log

`

1
ǫ

´

). Upon sampling of the substring
Xs from X, Alice applies a uniform fuzzy extractor to pro-
duce 〈R, P 〉 ← Gen(Xs), views R as the current-period one-
time pad, and sends P to Bob. Bob samples a different,
but likely close string X̃s, and then recovers R from X̃s and
P . In the next time period, they repeat this process from

scratch (using the same Ks).
It is easy to see that the randomized scheme above achieves

the claimed parameters (a)-(d) when using the uniform fuzzy
extractors from Theorem 9. We therefore only need to es-
tablish its security (below “high” denotes Ω(n), where n is
the length of Xs). We start with one-time security. Recall,
by the property of averaging samplers, proved in [27, 23],
the joint distribution of 〈A, Ks, X

s〉 is statistically close to
〈A, Ks, Y 〉, where Y |Ks=a,g(X)=b has high min-entropy, for
every setting of a, b. Therefore, 〈A, Ks, (R, P ) = Gen(Xs)〉
is statistically close to 〈A, Ks, Gen(Y )〉, which is in turn sta-
tistically close to 〈A, Ks, (U1, U2)〉, since Y has high entropy
and Gen is a uniform fuzzy extractor. This immediately im-
plies one-time security.

Now, given that the above “one-time” indistinguishability
holds even conditioned on the sampling key Ks, the multiple
time security of this locally computable extractor can be
shown via a hybrid argument, much like for the error-free
case (e.g., see [27]). (In contrast, using the original scheme
of Ding one cannot necessarily condition on the sampling
key Ks, since the syndrome could in fact reveal information
about Ks.)

Finally, we notice that we can easily derandomize our con-
struction, by increasing the secret key (on Alice’s side only)
by a constant factor. The idea is to first extract from our
source X the O(n) random bits Z needed for our randomized
construction, and then to independently apply our random-
ized construction to X again, but now using Z. In order
to extract Z, we can use any usual, “error-intolerant” ex-
traction scheme with optimal key size O(log N + log

`

1
ǫ

´

),
such as the scheme of Vadhan [27]. Namely, in addition to
sampling key Ks, Alice will store as part of her secret key
another sampling key K′s and an extraction key K′e. Us-
ing K′ = (K′s, K

′
e), Alice first extracts O(n) bits Z from X

(which we know will look random to the attacker), and then
uses our randomized scheme above with sampling key Ks

and randomness Z. Notice, since Z will be leaked to the ad-
versary (indeed, it will be sent in the clear to Bob), it does
decrease the residual min-entropy of X. However, since |Z|
is only O(n), this decrease is asymptotically negligible.

5. PERFECTLY ONE-WAY FUNCTIONS
AND CODE OBFUSCATION

“Perfectly one-way” hash functions (POWFs) were intro-
duced by Canetti [6] to formalize the common intuition that
cryptographic hash functions reveal very little about their
input. We adopt the somewhat simplified version of the def-
inition used in the subsequent paper of Canetti, Micciancio
and Reingold [7]; see [6, 7] for a discussion of the differences.

Informally, POWFs are randomized hash functions w 7→
H(w; R) which satisfy two properties. First, given w and y,
one can verify that y = H(w; r) for some value of the ran-
domness r (that is, a computationally bounded adversary
cannot produce a pair w′ 6= w which would pass the same
test). Second, if R is random, then H(w; R) reveals “no
information” about w. The second requirement was formal-
ized in [7] using entropic security. Our results apply in two
different ways:

1. Noise Tolerance. We show how to construct “fuzzy”—
that is, noise-resilient—perfect hash functions. The hash
value for w allows one to verify whether a candidate string
w′ is close to w, but reveals nothing else about w.



This is a significant departure from the approach of Canetti
et al.. The motivation behind [6, 7] was to formalize the
properties of an ideal “random oracle” which might be achiev-
able by a real computer program. In contrast, even given a
random oracle, it is not at all clear how to construct a prox-
imity oracle for a particular value w (i.e. an oracle Bw,τ (·)
that accepts an input w′ if and only if dist(w, w′) ≤ τ).

2. Improved Construction. We strengthen the results of
[7] on information-theoretically-secure POWF’s. First, we
reduce the assumptions necessary for security: Canetti, Mic-
ciancio and Reingold [7] assume the existence of a collision-
resistant hash function with an extra combinatorial prop-
erty, regularity (balancedness), in order for their proof to go
through. We modify the analysis so that the extra condi-
tion is unnecessary. Second, we improve the parameters of
the [7] construction, roughly halving the requirement on the
min-entropy of the input for the same level of security.

One- vs Many-Time Secrecy. The constructions we dis-
cuss are secure only when a bounded number of indepen-
dent hash functions are revealed to an adversary. Canetti et
al. also discussed many-time POWF constructions, which
remain secure even when an unbounded number of indepen-
dent hashes of an input w are revealed to a computationally
bounded adversary. Extending our results to that setting
remains an important open question.

The Relation to Code Obfuscation. Given a program
P (say a Turing machine or a circuit), the goal of code obfus-

cation is to come up with a new program P̃ which computes
the same functionality as P yet reveals nothing about its
internal structure. The requirement can be formalized in
various ways, but typically one asks that an adversary given
P̃ learn no more, in some sense, than a “simulator” who is
given only oracle access (i.e. input/output access) to a box
which computes P .

Barak et al. [1] showed that general-purpose obfuscation
is impossible: for some distributions on programs P and for
any obfuscation technique which preserves the input/output
behavior, there is a predicate g() such that an adversary

given P̃ will be able to predict g(P ) much better than an
adversary given only oracle access to P . The proof is an
elegant use of diagonalization. Drastically simplified, the
idea is to run P̃ on its own description to compute g(P ).

In contrast, several results show that obfuscation is pos-
sible if one changes the model. Lynn et al. [19] showed
that point functions can be obfuscated in the random oracle
model. A point function fα,β() is given by two parameters,
w, a ∈ {0, 1}n such that fw,a(x) = a if x = w and ⊥ oth-
erwise. The idea of [19] is, roughly, that storing RO(w)
allows one to check if x = w but reveals nothing about w.
The attack of Barak et al. fails since the “code” of the
random oracle is not accessible in the model. Wee [28] re-
cently showed that obfuscating point functions is possible
even without the random oracle, at the cost of simulator
whose running time depends on the quality of the simula-
tion and a very strong complexity assumption. In a different
vein, the perfectly one-way functions constructed by Canetti
et al. [7] can be viewed as obfuscated point functions5 (in
the standard model), where the obfuscation holds as long as

5In fact, Canetti et al. deal with identity queries, i.e. func-
tions Idw(x) which are 1 if x = w and 0 otherwise. It is easy
to extend their results (and ours) to point functions, where
a secret string b revealed when input is w.

the adversary is sufficiently uncertain about the obfuscated
value w to begin with.

These positive results deal only with point functions, and
it is natural to ask whether or not one can obfuscate more
general proximity queries, which accept inputs w′ that are
sufficiently close to w. This was explicitly mentioned as an
open problem in [19].

The noise-resilient POWF’s we construct here answer the
question in the affirmative: they are weakly obfuscated ver-
sions of a proximity oracle where, as with [7], obfuscation
holds as long as the target value w has enough entropy from
the adversary’s point of view.

5.1 Noise-resilient POWFs
Recall the two informal conditions on POWF’s. Formaliz-

ing the first requirement is straightforward, though the hash
function requires a key in order to get collision resistance
against non-uniform adversaries. The second requirement
is formalized using a definition almost identical to semantic
security. Denote by Rn the space of random coins required
by the hash, and by Kn the space of keys (for input lengths
n). We say a family of keyed, randomized hash functions is a
one-time, (t(n), τ(n), ǫ(n)) noise-tolerant perfectly one-way
hash function if satisfies the following two definitions. An
ordinary POWF corresponds to the special case τ(n) = 0.

Definition 6 (Public Verifiability). A ensemble of
keyed randomized functions H = {Hk}k∈Kn,n∈N

is τ(n)-
publicly proximity-verifiable if there is a polynomial-time
verification algorithm Ver such that

• For all pairs w, w′ ∈ {0, 1}n such that dist(w, w′) ≤
τ(n), we have Ver(k, w, Hk(w; r)) = acc with probability
1 over k and r.

• For any PPT adversary A, the probability over k and the
coins of A that A(k) outputs a triple (w, w̃, c) such that
Ver(k, w, c) = Ver(k, w̃, c) = acc and dist(w, w̃) > 2τ(n)
is negligible in n. This probability is called the soundness
error.

Definition 7 (Semantic Security). A ensemble of
keyed randomized functions H = {Hk}k∈Kn,n∈N

is (t(n),

τ(n), ǫ(n))-semantically perfectly one-way if for every adver-
sary A, and for every ensemble {Wn}n∈N

of t-sources, there

exists a circuit ABw,τ (·)
∗ , which makes at most polynomially-

many (in n) queries to the proximity oracle, such that for
every function f : {0, 1}∗ → {0, 1}∗ and for every n and
k ∈ Kn:

Pr
w←Wn
r←Rn

[A(Hk(w; r)) = f(w)]− Pr
w←Wn

[ABw,τ (·)
∗ = f(w)] ≤ ǫ(n)

where Bw,τ (·) is the proximity oracle which accepts its input
w′ iff dist(w, w′) ≤ τ .

The construction we give below actually satisfies a stronger
definition, namely entropic security (Definition 2). That is,
it satisfies the definition above even when the “simulator”
A∗ has no access at all to the proximity oracle. This is
perhaps counter-intuitive, but it comes from the fact that
the entropy of W is assumed to be high enough that the
adversary can essentially never find an input on which the
oracle accepts. This was also the case for the constructions
of Canetti et al. [7] in the noise-free case. The point is made
explicitly in the analysis of Canetti et al. [7]. In our context,



it is implicit in the fact that entropically secure sketches are
possible for the assumed min-entropy.

Construction. The idea behind the main construction is
simple: entropically secure sketches compose well with any
ordinary POWF, as long as the residual entropy of the secret
given the sketch is higher than the entropy requirement for
the POWF. The proof of this lemma is given in the final
version.

Lemma 10. Suppose that S is a (n, t−1, t′, τ, ǫ)-entropically
secure sketch, and {Hk} is a family of ordinary POWF’s
(that is, τ = 0) which is (t′−log

`

1
ǫ

´

+1, ǫ)-perfectly one-way.
Then the family {H ′k} of randomized hash functions given by

H̃k(w; r1, r2)
def
= 〈S(w; r1), Hk(w; r2)〉 is (t+1, τ, 2ǫ)-perfectly

one-way.

5.2 Improved Noise-free Construction
Before we can apply the generic construction of the previ-

ous section, we need to constructions of ordinary, non-noise-
resilient POWF’s. In the full version, we give a simpler and
improved analysis of the construction of [7], in light of the
equivalence between entropic security and indistinguishabil-
ity. Specifically, the proposition below removes the regular-
ity assumption on the collision-resistant family and roughly
halves the sufficient min-entropy requirement t on input W .

Proposition 11. Suppose that

• {crhfk(·)}k∈Kn,n∈N
is a collision-resistant hash family

from n bits to ℓ = ℓ(n) bits,

• ℓ < t− 2 log
`

1
ǫ

´

,

•
˘

{πi}i∈I
¯

n∈N
is an ensemble of pairwise independent

permutations of {0, 1}n.

Then the ensemble of randomized hash functions given by:
Hk(w; i) = 〈i, crhfk(πi(w))〉 is (t, ǫ)-entropically secure.

To prove entropic security, it suffices to prove that the
scheme is indistinguishable. The statement follows directly
from a variant of the left-over hash lemma (Lemma 12 be-
low), which states that combining pairwise-independent per-
mutations with any arbitrary functions yields a “crooked”
strong extractor: that is, the output may not be look ran-
dom, but it will look the same for all input distributions of
sufficiently high entropy. Contrary to intuition, this state-
ment does not follow directly from the left-over hash lemma
(the hash functions here may be length-increasing and so the
intermediate distribution 〈I, hI(X)〉 is not close to uniform).

Lemma 12. Let f : {0, 1}N → {0, 1}ℓ be an arbitrary
function. If {hi}i∈I is a family of pairwise independent
hash functions from n bits to N bits and X is a t-source
(in {0, 1}n) with t ≥ ℓ + 2 log

`

1
ǫ

´

+ 1, then the distribu-
tions 〈I, f(hI(X))〉 and 〈I, f(UN )〉 are ǫ-far where I ← I,
UN ← {0, 1}N (both drawn independently of X).

5.3 Final Construction
We can now combine Theorem 1 with Proposition 11 and

Lemma 10, and obtain the following result:

Theorem 13. If collision-resistant hash functions exist,
then for any initial entropy t = Ω(n), there exists a one-
time (t, τ, ǫ) noise-tolerant POWF ensemble which tolerates
a linear number of errors τ = Ω(n), achieves exponential

security ǫ = 2−Ω(n) and is publicly verifiable with negligible
soundness error.
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