
Merkle-Damg̊ard Revisited : how to Construct a Hash Function

Jean-Sébastien Coron ∗ Yevgeniy Dodis † Cécile Malinaud ‡ Prashant Puniya §

September 4, 2007

Abstract

The most common way of constructing a hash function (e.g., SHA-1) is to iterate a compression function
on the input message. The compression function is usually designed from scratch or made out of a block-
cipher. In this paper, we introduce a new security notion for hash-functions, stronger than collision-
resistance. Under this notion, the arbitrary length hash function H must behave as a random oracle when
the fixed-length building block is viewed as a random oracle or an ideal block-cipher. The key property is
that if a particular construction meets this definition, then any cryptosystem proven secure assuming H is
a random oracle remains secure if one plugs in this construction (still assuming that the underlying fixed-
length primitive is ideal). In this paper, we show that the current design principle behind hash functions
such as SHA-1 and MD5 — the (strengthened) Merkle-Damg̊ard transformation — does not satisfy this
security notion. We provide several constructions that provably satisfy this notion; those new constructions
introduce minimal changes to the plain Merkle-Damg̊ard construction and are easily implementable in
practice.

∗University of Luxembourg, Email: coron@clipper.ens.fr
†New York University, Email: dodis@cs.nyu.edu
‡Gemplus Card International, Email: cecile.malinaud@normalesup.org
§New York University, Email: puniya@cs.nyu.edu

1 Introduction

Random Oracle Methodology. The random oracle model has been introduced by Bellare and Rogaway
as a “paradigm for designing efficient protocols” [4]. It assumes that all parties, including the adversary,
have access to a public, truly random hash function H. This model has been proven extremely useful for
designing simple, efficient and highly practical solutions for many problems. From a theoretical perspective,
it is clear that a security proof in the random oracle model is only a heuristic indication of the security of
the system when instantiated with a particular hash function, such as SHA-1 [17] or MD5 [19]. In fact,
many recent “separation” results [12, 27, 20, 2, 13, 16] illustrated various cryptographic systems secure in the
random oracle model but completely insecure for any concrete instantiation of the random oracle (even by
a family of hash functions). Nevertheless, these important separation results do not seem to directly attack
any of the concrete, widely used cryptosystems (such as OAEP [6] and PSS [5] as used in the PKCS #1 v2.1
standard [28]) which rely on “secure hash functions”. Moreover, we hope that such particular systems are in
fact secure when instantiated with a “good” hash function. In the random oracle model, instead of making
a highly non-standard (and possibly unsubstantiated) assumption that “my system is secure with this H”
(e.g., H being SHA-1), one proves that the system is at least secure with an “ideal” hash function H (under
standard assumptions). Such formal proof in the random oracle model is believed to indicate that there are
no structural flaws in the design of the system, and thus one can heuristically hope that no such flaws will
suddenly appear with a particular, “well designed” function H. But can we say anything about the lack of
structural flaws in the design of H itself?

Building Random Oracles. On the first glance, it appears that nothing theoretically meaningful can
be said about this question. Namely, we know that mathematically a concrete function H is not a random
oracle, so to prove that H is “good” we need to directly argue the security of our system with this given
H. And the latter task is usually unmanageable given our current tools (e.g., “realizable” properties of H
such as collision-resistance, pseudorandomness or one-wayness are usually not enough to prove the security
of the system). However, we argue that there is a significant gap in this reasoning. Indeed, most systems
abstractly model H as a function from {0, 1}∗ to {0, 1}n (where n is proportional to the security parameter),
so that H can be used on some arbitrary input domain. On the other hand, in practice such arbitrary-length
hash functions are built by first heuristically constructing a fixed-length building block, such as a fixed-length
compression function or a block cipher, and then iterating this building block in some manner to extend
the input domain arbitrarily. For example, SHA-1, MD5, as well as all the other hash function we know of,
are constructed by applying some variant of the Merkle-Damg̊ard construction to an underlying compression
function f : {0, 1}n+κ → {0, 1}n (see Figure 5):

Function H(m1, . . . , mℓ) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to ℓ do yi ← f(yi−1, mi)
return yℓ

When the number of κ-bit message blocks ℓ is not fixed, one essentially appends an extra block mℓ+1 containing
the binary representation 〈|m|〉 of the length of the message (prepended by 1 and a string of 0’s in order to
make everything a multiple of κ; the exact details will not matter for our discussion). This procedure is
known as Merkle-Damg̊ard strengthening. The fixed-length compression function f can either be constructed
from scratch or made out of a block-cipher E via the Davies-Meyer construction (see [32] and Figure 9):
f(x, y) = Ey(x)⊕ x. For example, the SHA-1 compression function was designed specifically for hashing, but
a block-cipher can nevertheless be derived from it, as illustrated in [21].

Our Main Question. Given such particular and “structured” design of our hash function H,— which is

1

actually the design used in practice,— we argue that there exists a missing link in the claim that no structural
flaws exist in the design of our system. Indeed, we only know that no such flaws exist when H was modeled as
a “monolithic” random oracle, and not as an iterated hash function built from some smaller building block.
As since the real implementation of H as an iterated hash function has much more structure than a random
monolithic hash function would have, maybe this structure could somehow invalidate the security proof in
the random oracle model? To put this into a different perspective, all the ad-hoc (and hopefully “secure”)
design effort for widely used hash functions, such as SHA-1 and MD5, has been placed into the design of
the fixed-length building block f (or E). On the other hand, even if f (or E) were assumed to be ideal, the
current proofs in the random oracle model do not guarantee the security of the resulting system when such
iterated hash function H is used!

Let us illustrate our point on a well known example. A common suggestion to construct a MAC algo-
rithm is to simply include a secret key k as part of the input of the hash function, and take for example
MAC(k, m) = H(k‖m). It is easy to see that this construction is secure when H is modeled as a random
oracle [4], as no adversary can output a MAC forgery except with negligible probability. However, this MAC
scheme is completely insecure for any Merkle-Damg̊ard construction considered so far (including Merkle-
Damg̊ard strengthening used in current hash functions such as SHA-1, and any of the 64 block-cipher based
variants of iterative hash-functions considered in [30, 10]), no matter which (ideal) compression function f
(or a block cipher E) is used. Namely, given MAC(k, m) = H(k‖m), one can extend the message m with any
single arbitrary block y and deduce MAC(k, m‖y) = H(k‖m‖y) without knowing the secret key k (even with
Merkle-Damg̊ard strengthening, one could still forge the MAC by more or less setting y = 〈|m|〉, where the
actual block depends on the exact details of the strengthening). This (well known) example illustrates that
the construction of a MAC from an iterated hash function requires a specific analysis, and cannot be derived
from the security of this MAC with a monolithic hash function H. On the other hand, while the Merkle-
Damg̊ard transformation and its variants have been intensively studied for many “realizable” properties such
as collision-resistance [14, 26, 30, 10], pseudorandomness [8], unforgeability [1, 25] and randomness extraction
[15], it is clear that these analyses are insufficient to argue its applicability for the purposes of building a hash
function which can be modeled as a random oracle, since the latter is a considerably stronger security notion
(in fact unrealizable in the standard model). For a simple concrete example, the Merkle-Damg̊ard strength-
ening is easily seen to preserve collision-resistance when instantiated with a collision-resistant compression
function, while we just saw that it does not work to yield a random oracle or even just a variable-length MAC,
and this holds even if the underlying compression function is modeled as a random oracle.

Our Goals. Summarizing the above discussion, our goal is two-fold. First, we would like to give a formal
definition of what it means to implement an arbitrary-length random oracle H from a fixed-length building
block f or E. The key property of this definition should be the fact that if a particular construction of
H from f (or E) meets this definition, then any application proven secure assuming H is a random oracle
would remain secure if we plug in our construction (although still assuming that the underlying fixed-length
primitive f or E was ideal). In other words, we can safely use our implementation of H as if we were using
a monolithic random oracle H. We remark that this means that our definition should not just preserve the
pseudorandomness properties of H, but also all the other “tricks” present in the random oracle model, such
as “programmability” and “extractability”. For example, we could try to set H(x) = f(h(x)), where f is
a fixed-length random oracle and h is a collision-resistant hash function (not viewed as a random oracle).
While pseudorandom, this simple implementation is clearly not “extractable”: for example, given output
z = f(h(x)) for some unknown x, we can only “extract” the value h(x) (by observing the random oracle
queries made to f), but then have no way of extracting x itself from h(x) (indeed, we will show a direct attack
on this implementation in Section 3.1). This shows that the security definition we need is an interesting and
non-trivial task of its own, especially if we also want it to be simple, natural and easy to use.

Second, while the definition we seek should not be too specific to some variant of the Merkle-Damg̊ard trans-

2

formation, we would like to give secure constructions which resemble what is done in practice as much as
possible. Unfortunately, we already argued that the current design principle behind hash functions such as
SHA-1 and MD5 — the (strengthened) Merkle-Damg̊ard transformation — will not be secure for our ambi-
tious goal. Therefore, instead of giving new and practically unmotivated constructions, our secondary goal
is to come up with minimal and easily implementable in practice changes to the plain Merkle-Damg̊ard con-
struction, which would satisfy our security definition.

Our results. First, we give a satisfactory definition of what it means to implement an arbitrary-length
random oracle H from a fixed length primitive g (where g is either an ideal compression function f , or a an
ideal block cipher E). Our definition is based on the indifferentiability framework of Maurer et al. [24]. This
framework enjoys the desired closure property we seek, and is very intuitive and easy to state. However, we
view adapting the indifferentiability framework of Maurer to our problem as one of the main contributions of
our work.

Having a good security definition, we provide several provable constructions. We start by giving three
modifications to the (insecure) plain Merkle-Damg̊ard construction which yield a secure random oracle H
taking arbitrary-length input, from a compression function viewed as a random oracle taking fixed-length
input. This result can be viewed as a secure domain extender for the random oracle, which is an interesting
result of independent interest. We remark that domain extenders are well studied for such primitives as
collision-resistant hash functions [14, 26], pseudorandom functions [8], MACs [1, 25] and universal one-way
hash functions [7, 31]. Although the above works also showed that some variants of Merkle-Damg̊ard yield
secure domain extenders for the corresponding primitive in question, these results are not sufficient to claim
a domain extender for the random oracle.

Our secure modifications to the plain Merkle-Damg̊ard construction are the following.

1. Prefix-Free Encoding : we show that if the inputs to the plain MD construction are guaranteed to be
prefix-free, then the plain MD construction is secure.

2. Dropping Some Output Bits : we show that by dropping a non-trivial number of output bits from the
plain MD chaining, we get a secure random oracle H even if the input is not encoded in the prefix-free
manner.

3. Using NMAC construction (see Figure 8a): we show that by applying an independent hash function g
to the output of the plain MD chaining (as in the NMAC construction [8]), then once again we get a
secure construction of an arbitrary-length random oracle H, in the random oracle model for f and g.

4. Using HMAC Construction (see Figure 8b): we show a slightly modified variant of the NMAC construc-
tion allowing us to conveniently build the function g from the compression function f itself (as in [8]
when going from NMAC to HMAC)! In this latter variant, one implements a secure hash function H
by making two black-box calls to the plain Merkle-Damg̊ard construction (with the same fixed IV and a
given compression function f): first on (ℓ + 1)-block input 0κm1 . . .mℓ, getting an n-bit output y, and
then on one-block κ-bit input y′ (obtained by either truncating or padding y depending on whether or
not κ > n), getting the final output.

Note that we could also define the HMAC construction by using a different initialization vector in each part
of the construction, instead of using the same IV but prepending 0κ to the input. However, our purpose here
is to present these constructions as black-box extensions of existing hash functions such as SHA-1 which have
only one fixed IV , in which case our proposed construction can be viewed as making two black-box calls to
SHA-1 to get SHA− 1(SHA− 1(0κ ‖ m1 . . .mℓ).

However, in practice most hash-function constructions are block-cipher based, either explicitly as in [30]
or implicitly as for SHA-1. Therefore, we consider the question of designing an arbitrary-length random

3

oracle H from an ideal block cipher E, specifically concentrating on using the Merkle-Damg̊ard construction
with the Davies-Meyer compression function f(x, y) = Ey(x) ⊕ x, since this is the most practically relevant
construction. We show that all of the four fixes to the plain MD chaining which worked when f was a
fixed-length random oracle, are still secure (in the ideal cipher model) when we plug in f(x, y) = Ey(x) ⊕ x
instead. Specifically, we can either use a prefix-free encoding, or drop a non-trivial number of output bits
(when possible), or apply an independent random oracle g to the output of plain MD chaining, or use the
optimized HMAC construction which allows us to build this function g from the ideal cipher itself.

Other Extensions. We also discuss other practical extensions of our results. We note that each of our
proposed constructions allow really efficient output expansion. In particular, one can extend the output length
of any of our constructions by a factor of L by using only one extra evaluation of the underlying fixed-length
input primitive for each extra block. We also show that the same procedure can also be used for domain
separation of RO to get multiple independent random oracles using a single one.

Bellare and Ristenpart [9] discuss the notion of a multi-property preserving construction. In particular, such
a construction is an indifferentiable random oracle construction as well as a domain extender for pseudorandom
functions and collision-resistant hash functions.

2 Definitions

In this section, we introduce the main notations and definitions used throughout the paper. Our security
notion for secure hash-function is based on the notion of indifferentiability of systems, introduced by Maurer
et al. in [24]. This is an extension of the classical notion of indistinguishability, when one or more oracles are
publicly available, such as random oracles or ideal ciphers. This notion is based on ideas from the Universal
Composition framework introduced by Canetti in [11] and on the model of Pfitzmann and Waidner [29]. The
indifferentiability notion in [24] is given in the framework of random systems providing interfaces to other
systems, but equivalently we use this notion in the framework of Interactive Turing Machines (as in [11]).

We define an ideal primitive as an algorithmic entity which receives inputs from one of the parties and
deliver its output immediately to the querying party. The ideal primitives that we consider in this paper are
random oracles and ideal ciphers. A random oracle [4] is an ideal primitive which provides a random output
for each new query. Identical input queries are given the same answer. An ideal cipher is an ideal primitive
that models a random block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n. Each key k ∈ {0, 1}κ defines a random
permutation Ek = E(k, ·) on {0, 1}n. The ideal primitive provides oracle access to E and E−1; that is, on
query (0, k, m), the primitive answers c = Ek(m), and on query (1, k, c), the primitive answers m such that
c = Ek(m).

We now proceed to the definition of indifferentiability [24] :

Definition 1 A Turing machine C with oracle access to an ideal primitive G is said to be (tD, tS , q, ε) indif-
ferentiable from an ideal primitive F if there exists a simulator S, such that for any distinguisher D it holds
that :

∣

∣Pr
[

DC,G = 1
]

− Pr
[

DF ,S = 1
]
∣

∣ < ε

The simulator has oracle access to F and runs in time at most tS. The distinguisher runs in time at most tD
and makes at most q queries. Similarly, CG is said to be (computationally) indifferentiable from F if ε is a
negligible function of the security parameter k (for polynomially bounded tD and tS).

As illustrated in Figure 1, the role of the simulator is to simulate the ideal primitive G so that no distinguisher
can tell whether it is interacting with C and G, or with F and S; in other words, the output of S should

4

look “consistent” with what the distinguisher can obtain from F . Note that the simulator does not see the
distinguisher’s queries to F ; however, it can call F directly when needed for the simulation.

C G F S

D

Figure 1: The indifferentiability notion: the distinguisher D either interacts with algorithm C and ideal
primitive G, or with ideal primitive F and simulator S. Algorithm C has oracle access to G, while simulator
S has oracle access to F .

In the rest of the paper, the algorithm C will represent the construction of an iterative hash-function (such
as the Merkle-Damg̊ard construction recalled in the introduction). The ideal primitive G will represent the
underlying primitive used to build the hash-function. G will be either a random oracle (when the compression
function is modelled as a random oracle), or an ideal block-cipher (when the compression function is based
on a block-cipher). The ideal primitive F will represent the random oracle that the construction C should
emulate. Therefore, one obtains the following setting : the distinguisher has oracle access to both the block-
cipher and the hash-function, and these oracles are implemented in one of the following two ways: either the
block-cipher E is chosen at random and the hash-function C is constructed from it, or the hash-function H is
chosen at random and the block-cipher is implemented by a simulator S with oracle access to H. Those two
cases should be indistinguishable, that is the distinguisher should not be able to tell whether the block-cipher
was chosen at random and the iterated hash-function constructed from it, or the hash-function was chosen at
random and the block-cipher then “tailored” to match that hash-function.

It is shown in [24] that if CG is indifferentiable from F , then CG can replace F in any cryptosystem, and the
resulting cryptosystem is at least as secure in the G model as in the F model. For example, if a block-cipher
based iterative hash function is indifferentiable from a random oracle in the ideal cipher model, then the
iterative hash-function can replace the random oracle in any cryptosystem, and the resulting cryptosystem
remains secure in the ideal cipher model if the original scheme was secure in the random oracle model.

We use the definition of [24] to specify what it means for a cryptosystem to be at least as secure in the G
model as in the F model. A cryptosystem is modelled as an Interactive Turing Machine with an interface

C G F

P A P A'

ε ε

Figure 2: The environment E interacts with cryptosystem P and attacker A. In the G model (left), P has
oracle access to C whereas A has oracle access to G. In the F model, both P and A′ have oracle access to F

5

C G F S

P A P A

ε ε

D D

A'

Figure 3: Construction of attacker A′ from attacker A and simulator S.

to an adversary A and to a public oracle. The cryptosystem is run by an environment E which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has oracle access to C whereas
attacker A has oracle access to G. In the F model, both P and A have oracle access to F . The definition is
illustrated in Figure 2.

Definition 2 A cryptosystem is said to be at least as secure in the G model with algorithm C as in the F
model, if for any environment E and any attacker A in the G model, there exists an attacker A′ in the F
model, such that

∣

∣

∣
Pr

[

E(PC ,AG) = 1
]

− Pr
[

E(PF ,A′F) = 1
]∣

∣

∣

is a negligible function of the security parameter k. Similarly, a cryptosystem is said to be computationally at
least as secure, etc., if E, A and A′ are polynomial-time in k.

The following theorem from [24] shows that security is preserved when replacing an ideal primitive by an
indifferentiable one :

Theorem 2.1 Let P be a cryptosystem with oracle access to an ideal primitive F . Let C be an algorithm such
that CG is indifferentiable from F . Then cryptosystem P is at least as secure in the G model with algorithm
C as in the F model.

Proof: We only provide a proof sketch; see [24] for a full proof. Let P be any cryptosystem, modelled as
an Interactive Turing Machine. Let E be any environment, and A be any attacker in the G model. In the G
model, P has oracle access to C whereas A has oracle access to ideal primitive G; moreover environment E
interacts with both P and A. This is illustrated in Figure 3 (left part).

Since CG is indifferentiable from F (see Figure 1), one can replace (C,G) by (F , S) with only a negligible
modification of the environment’s output distribution. As illustrated in Figure 3, by merging attacker A
and simulator S, one obtains an attacker A′ in the F model, and the difference in E ’s output distribution is
negligible.

6

3 Domain Extension for Random Oracles

In this section, we show how to construct an iterative hash-function indifferentiable from a random oracle,
from a compression function viewed as a random oracle. We start with two simple and intuitive constructions
that do not work.

3.1 H(x) = f(h(x)) for Random Oracle f and Collision-Resistant One-way Hash-function

h

One could hope to emulate a random oracle (with arbitrary-length input) by taking :

Cf (x) = f(h(x))

where f : {0, 1}n → {0, 1}n is modelled as a random oracle and h : {0, 1}∗ → {0, 1}n is any collision-
resistant one-way hash-function (not modelled as a random oracle). However, we show that such Cf is not
indifferentiable from a random oracle; namely, we construct a distinguisher that can fool any simulator.

f H S
h

f

C(m) = f(h(m))

C

H(m) = S(h(m))

Figure 4: The simulator cannot output H(m) since it only receives h(m) and cannot recover m from h(m).

As illustrated in Figure 4, the distinguisher first generates an arbitrary m and computes u = h(m). Then
it queries v = f(u) to random oracle f and queries z = Cf (m) to Cf . It then checks that z = v and outputs 1
in this case, and 0 otherwise. It is easy to see that the distinguisher always output 1 when interacting with Cf

and f , but outputs 0 with overwhelming probability when interacting with H and any simulator S. Namely,
when the distinguisher interacts with H and S, the simulator only receives u = h(m); therefore, in order to
output v such that v = H(m), the simulator must either recover m from h(m) (and then query H(m)) or
guess the value of H(m), which can be done with only negligible probability.

3.2 Plain Merkle-Damg̊ard Construction

We show that the plain Merkle-Damg̊ard construction (see Figure 5) fails to emulate a random oracle (taking
arbitrary-length input) when the compression function f is viewed as a random oracle (taking fixed-length
input). For simplicity, we only consider the usual Merkle-Damg̊ard variant, although the discussion easily
extends to the strengthened variant which appends the message length 〈|m|〉 at the last block :

Function MDf (m1, . . . , mℓ) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to ℓ do yi ← f(yi−1, mi)
return yℓ ∈ {0, 1}n.

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.
We have already mentioned in introduction a counter-example based on MAC. Namely, we showed that

MAC(k, m) = H(k‖m) provides a secure MAC in the random oracle model for H, but is completely insecure
when H is replaced by the previous Merkle-Damg̊ard construction MDf , because of the message extension

7

IV

m1 m2

ff f
y1 y2

yℓ

mℓ

Figure 5: The plain Merkle-Damg̊ard Construction

attack. In the following, we give a more direct refutation based on the definition of indifferentiability, using
again the message extension attack.

We consider only one-block messages or two-block messages. For such messages, we have that MDf (m1) =
f(0, m1) and MDf (m1, m2) = f(f(0, m1), m2). We build a distinguisher that can fool any simulator as follows.
The distinguisher first makes a MDf -query for m1 and receives u = MDf (m1). Then it makes a query for
v = f(u, m2) to random oracle f . The distinguisher then makes a MDf -query for (m1, m2) and eventually
checks that v = MDf (m1, m2); in this case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher
always outputs 1 when interacting with MDf and f . However, when the distinguisher interacts with H and
S (who must simulate f), we observe that S has no information about m1 (because S does not see the
distinguisher’s H-queries). Therefore, the simulator cannot answer v such that v = H(m1, m2), except with
negligible probability.

3.3 Prefix-free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are guaranteed to be prefix-free, then
the plain MD construction is secure. Namely, prefix-free encoding enables to eliminate the message expansion
attack described previously. This “fix” is similar to the fix for the CBC-MAC [3], which is also insecure in
its plain form. Thus, the plain MD construction can be safely used for any application of the random oracle
H where the length of the inputs is fixed or where one uses domain separation (e.g., prepending 0, 1, . . . to
differentiate between inputs from different domains). For other applications, one must specifically ensure that
prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable injective function g : {0, 1}∗ →
({0, 1}κ)∗ such that for all x 6= y, g(x) is not a prefix of g(y). Moreover, it must be easy to recover x given
only g(x). We provide two examples of prefix-free encodings. The first one consists in prepending the message
size in bits as the first block. The last block is then padded with the bit one followed by zeroes.

Function g1(m) :
let N be the message length of m in bits.
write m as (m1, . . . , mℓ) where for all i, |mi| = κ

and with the last block mℓ padded with 10r.
let g1(m) = (〈N〉, m1, . . . , mℓ) where 〈N〉 is a κ-bit binary encoding of N .

An important drawback of this encoding is that the message length must be known in advance; this can
be a problem for streaming applications in which a large message must be processed on the fly. Our second
encoding g2 does not suffer from this drawback, but requires to waste one bit per block of the message :

8

Function g2(m) :
write m as (m1, . . . , mℓ) where for all i, |mi| = κ− 1

and with the last block mℓ padded with 10r.
let g2(m) = (0|m1, . . . , 0|mℓ−1, 1|mℓ).

Given any prefix-free encoding g, we consider the following construction of the iterative hash-function
pf-MDf

g : {0, 1}∗ → {0, 1}n, using the Merkle-Damg̊ard hash-function MDf : ({0, 1}κ)∗ → {0, 1}n defined
previously.

Function pf-MDf
g (m) :

let g(m) = (m1, . . . , mℓ)

y ← MDf (m1, . . . , mℓ)
return y

Theorem 3.1 The previous construction is (tD, tS , q, ǫ)-indifferentiable from a random oracle, in the random
oracle model for the compression function, for any tD, with tS = ℓ · O(q2) and ǫ = 2−n · ℓ2 · O(q2), where ℓ is
the maximum length of a query made by the distinguisher D.

Proof: Due to lack of space, we only provide a proof sketch for a particular prefix-free encoding which has
a simpler proof; the proof for any prefix-free encoding is given at the end of section 4 because we derive it
as an implication of theorem 4.1. The simpler proof given here illustrates the overall structure of proofs of
indifferentiability.

The particular prefix-free encoding that we consider consists in adding the message-length as part of the
input of f ; moreover, the index of the current block is also included as part of the input of f , so that f
can be viewed as an independent random oracle for each block mi. Specifically, we construct an iterative
hash-function Cf : ({0, 1}κ)∗ → {0, 1}n from a compression function f : {0, 1}n+κ+2·t → {0, 1}n as follows :

Function Cf (m1, . . . , mℓ) :
let y0 = 0n

for i = 1 to ℓ do yi ← f(yi−1, mi, 〈ℓ〉, 〈i〉)
return yℓ

where for all i, |mi| = κ. The string 〈ℓ〉 is a t-bit binary encoding of the message length ℓ, and 〈i〉 is a t-bit
encoding of the block index. The construction is shown in Figure 6.

m1 m2 mℓ

fff
IV

〈1〉 〈2〉 〈ℓ〉

〈ℓ〉〈ℓ〉〈ℓ〉

Figure 6: Merkle-Damg̊ard with a particular prefix-free encoding.

In the following, we show that Cf is indifferentiable from a random oracle, in the random oracle model
for f . Since the block-length ℓ is part of the input of the compression function f , we have that Cf behaves
independently for messages of different length. Therefore, we can restrict ourselves to messages of fixed length
ℓ, i.e. it suffices to show that for all ℓ, the construction Cf with message length ℓ is indifferentiable from
random oracle Hℓ : ({0, 1}κ)ℓ → {0, 1}n.

9

We consider for all 1 ≤ j ≤ ℓ the function Cf
j : ({0, 1}κ)j → {0, 1}n outputting the intermediate value yj

in Cf . From the definition of Cf , we have for all 2 ≤ j ≤ ℓ :

Cf
j (m1, . . . , mj) = f(Cf

j−1(m1, . . . , mj−1), mj , 〈ℓ〉, 〈j〉) (1)

We provide a recursive proof that for all j, the construction Cf
j is indifferentiable from a random oracle. The

result for Cf will follow for j = ℓ. The property clearly holds for j = 1. Assuming now that it holds for j− 1,
we show that it holds for j. We use the following lemma :

Lemma 3.2 Let h1 : {0, 1}a → {0, 1}n and h2 : {0, 1}n+κ → {0, 1}n. The construction Rh1,h2 = h2(h1(x), y)
is indifferentiable from a random oracle, in the random oracle model for h1 and h2.

Replacing Cf
j−1 by h1 and f(·, 〈ℓ〉, 〈j〉) by h2 in equation (1), one then obtains that Cf

j is indifferentiable from
a random oracle (see Figure 7 for an illustration).

IV

H

f f f

m1 m2 m3

〈ℓ〉 〈ℓ〉 〈ℓ〉

〈1〉 〈2〉 〈3〉

Figure 7: The output of the first two blocks is replaced by a random oracle using Lemma 3.2.

We now proceed to the proof of lemma 3.2; due to lack of space, we only provide a proof sketch. One
must construct a simulator S such that interacting with (R, (h1, h2)) is indistinguishable from interacting
with (H, S), where H is a random oracle. Our simulator is defined as follows :

Simulator S :
On h1-query x, return a random v ∈ {0, 1}n.
On h2-query (v′, y), check if v′ = h2(x

′) for some previously queried x′.
In this case, query (x′, y) to H and output H(x′, y).
Otherwise return a random output.

The distinguisher either interacts with (R, (h1, h2)) or with (H, S). We denote by F the event that a
collision occurs for h1, that is h1(x) = h1(x

′) for some distinct queries x, x′. We denote by F ′ the event that
the distinguisher makes a h2-query (v′, y) such that v′ = h1(x) and (x, y) was previously queried to R, but x
was never queried directly to h1 by the distinguisher. We claim that conditioned on the complement of F ∨F ′,
the simulation of S is perfect (see the full paper for a complete justification). The distinguishing probability
is then at most Pr[F ∨ F ′]; for a distinguisher making at most q queries, this gives:

Pr[F ∨ F ′] ≤
2q2

2n

which shows a negligible distinguishing probability.

10

3.4 The Chop Solution

In this section, we show that by removing a fraction of the output of the plain Merkle-Damg̊ard construction
MDf , one obtains a construction indifferentiable from a random oracle. This “fix” is similar to the method
used by Dodis et al. [15] to overcome the problem of using plain MD chaining for randomness extraction
from high-entropy distributions, and to the suggestion of Lucks [23] to increase the resilience of plain MD
chaining to multi-collision attacks. It is also already used in practice in the design of hash functions SHA-348
and SHA-224 [18] (both obtained by dropping some output bits from SHA-512 and SHA-256). Here we show
that by dropping a non-trivial number of output bits from the plain MD chaining, one gets a secure random
oracle H even if the input is not encoded in the prefix-free manner. For example, such dropping prevents the
“extension” attacks we saw in the MAC application, since the attacker cannot guess the value of the dropped
bits, and cannot extend the output of the MAC to a valid MAC of a longer message.

Formally, given a compression function f : {0, 1}n+κ → {0, 1}n, the new construction chop-MDf
s is defined

as follows :

Function chop-MDf
s (m) :

let m = (m1, . . . , mℓ)

y ← MDf (m1, . . . , mℓ)
return the first n− s bits of y.

Theorem 3.3 The chop-MDf
s construction is (tD, tS , q, ǫ) indifferentiable from a random oracle, for any tD,

with tS = ℓ ·O(q2) and ǫ = 2−s · ℓ2 ·O(q2). Here ℓ is the maximum length of a query made by the distinguisher
D.

While really simple, the drawback of this method is that its exact security is proportional to q22−s, where s
is the number of chopped bits and q is the number of oracle queries. Thus, to achieve adequate security level
the value of s has to be relatively high, which means that short-output hash functions such as SHA-1 and
MD5 cannot be fixed using this method. However, functions such as SHA-512 can naturally be fixed (say, by
setting s = 256). A formal proof of theorem 3.3 is given in the next section.

3.5 The NMAC and HMAC constructions

The NMAC construction [8], which is the basis of the popular HMAC construction, applies an independent
hash function g to the output of the plain MD chaining. It has been shown very valuable in the design
of MACs [8], and recently also randomness extractors [15]. Here we show that if g is modelled as another
fixed-length random oracle independent from the random oracle f (used for the compression function), then
once again one gets a secure construction of an arbitrary-length random oracle H, even if plain MD chaining
is applied without prefix-free encoding. Intuitively, applying g gives another way to hide the output of the
plain MD chaining, and thus prevent the “extension” attack described earlier.

Formally, given f : {0, 1}n+κ → {0, 1}n and g : {0, 1}n → {0, 1}n
′
, the function NMACf,g is defined as (see

Figure 8a):

Function NMACf,g(m) :
let m = (m1, . . . , mℓ)
y ←MDf (m1, . . . , mℓ)
Y ← g(y)
return Y

11

Theorem 3.4 The construction NMACf,g is (tD, tS , q, ǫ) indifferentiable from a random oracle for any tD,
tS = ℓ · O(q2) and ǫ = 2−min(n,n′)ℓ2O(q2), in the random oracle model for f and g, where ℓ is the maximum
message length queried by the distinguisher.

To practically instantiate this suggestion, we would like to implement f and g from a single compression
function. This problem is analogous to the problem in going from NMAC to HMAC in [8], although our
solution is slightly different. One simple way for achieving this is to use domain separation: e.g., by prepending
0 for calls to f and 1 — for calls to g. However, with this modeling we are effectively using the prefix-free
encoding mapping m1m2 . . .mℓ to 0m10m2 . . . 0mℓ10κ, which appears slightly wasteful. Additionally, this also
forces us to go into the lower-level implementation details for the compression function, which we would like to
avoid. Instead, our solution consists in applying two black-box calls to the plain Merkle-Damg̊ard construction
MDf (with the same f and IV) : first to the input 0κm1 . . .mℓ, getting an n-bit output y, and again to κ-bit
y′, where y′ is defined from y as follows (see Figure 8b):

Function HMACf (m) :
let m = (m1, . . . , mℓ)
let m0 = 0κ

y ← MDf (m0, m1, . . . , mℓ)
if n < κ then y′ ← y ‖ 0κ−n

else y′ ← y|κ
Y ← MDf (y′)
return Y

Intuitively, we are almost using the NMAC construction with g(y) = f(IV, y′) (where y′ is obtained from y
as above), except we prepend a fixed block m0 = 0κ to our message. This latter tweak is done to ensure that
there are no inter-dependencies between using the same IV on y′ and the first message block (which would
have been under adversarial control had we not prepended m0). Indeed, it is very unlikely that “high-entropy”
y′ will ever be equal to m0 = 0κ, so the analysis for NMAC can be easily extended for this optimization.

Theorem 3.5 The construction HMACf is (tD, tS , q, ǫ) indifferentiable from a random oracle for any tD,
tS = ℓ · O(q2) and ǫ = 2−min(n,κ) · ℓ2 · O(q2), in the random oracle model for f , where ℓ is the maximum
message length queried by the distinguisher.

The formal proofs for both theorems 3.4 and 3.5 are given in the next section.

4 Constructions using Ideal Cipher

In practice, most hash-function constructions are block-cipher based, either explicitly as in [30] or implicitly
as for SHA-1. Therefore, we consider the question of designing an arbitrary-length random oracle H from an
ideal block cipher E : {0, 1}κ×{0, 1}n → {0, 1}n, specifically concentrating on using the Merkle-Damg̊ard con-
struction with the Davies-Meyer compression function f(x, y) = Ey(x)⊕x (see Figure 9), since this is the most
practically relevant construction. We notice that the question of designing a collision-resistant hash function
H from an ideal block cipher was explicitly considered by Preneel, Govaerts and Vandewalle in [30], and
latter formalized and extended by Black, Rogaway and Shrimpton [10]. Specifically, the authors of [10] actu-
ally considered 64 block-cipher variants of the Merkle-Damg̊ard transform (which included the Davies-Meyer
variant among them), and formally showed that exactly 20 of these variations (including the Davies-Meyer
variant) are collision-resistant when the block cipher E is modeled as an ideal cipher. However, while our work
will also model E as an ideal cipher, our security goal is considerably stronger than mere collision-resistance.
Indeed, we already pointed out that none of the 64 variants above can withstand the “extension” attack on

12

mℓ

m1 m2 mℓ

y0 y1

yℓ

f f f f

f f f g
y1 y2 yℓ

Y

Y

m1

b. HMAC construction

a. NMAC construction

IV

IV

0κ

Figure 8: The NMAC and HMAC constructions

the MAC application, even with the Merkle-Damg̊ard strengthening. And even when restricting to a fixed
number of blocks ℓ (which invalidates the “extension” attack), collision-resistance is completely insufficient
for our purposes. For example, the authors of [10] show the collision-resistance when using the plain MD
chaining with fixed IV and compression function f(x, y) = Ey(x). On the other hand, it is easy to see that
this method does not provide a secure random oracle H according to our definition.

f
x

y

x

y

E

Figure 9: The Davies-Meyer Compression function

From a different direction, if we could show that the Davies-Meyer compression function f(x, y) = Ey(x)⊕x
is a secure random oracle when E is an ideal block-cipher, then we could directly apply any of the three fixes
discussed above. Unfortunately, this is again not the case: intuitively, the above construction allows anybody
to compute x from f(x, y) ⊕ x and y (since x = E−1

y (f(x, y) ⊕ x)), which should not be the case if f was
a true random oracle. Thus, we need a direct proof to argue the security of the Davies-Meyer construction.
Luckily, using such direct proofs we indeed argue that all of the fixes to the plain MD chaining which worked
when f was a fixed-length random oracle, are still secure when f(x, y) = Ey(x)⊕ x is used instead. Namely,
we can either use a prefix-free encoding, or drop a non-trivial number of output bits, or apply an independent
random oracle g to the output of plain MD chaining. With respect to this latter fix, we also show that we
can implement this independent g using the ideal cipher itself, similarly to the case with an ideal compression
function f .

Formally, given a block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n, the plain Merkle-Damg̊ard hash-function
with Davies-Meyer’s compression function is defined as :

13

Function MDE(m1, . . . , mℓ) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to ℓ do yi ← Emi

(yi−1)⊕ yi−1

return yℓ ∈ {0, 1}n.

where for all i, |mi| = κ. The block-cipher based iterative hash-functions pf-MDE
g , chop-MDE

s , NMACE
g and

HMACE are then defined as in section 3, using MDE instead of MDf . The proof of the following theorem is
given in the full version of this paper.

Theorem 4.1 The block-cipher based constructions pf-MDE
g , chop-MDE

s , NMACE
g and HMACE are (tD, tS , q, ǫ)-

indifferentiable from a random oracle, in the ideal cipher model for E, for any tD and tS = ℓ · O(q2), with
ǫ = 2−n · ℓ2 · O(q2) for pf-MDE

g , ǫ = 2−s · ℓ2 · O(q2) for chop-MDE
s , ǫ = 2−min(n,n′) · ℓ2 · O(q2) for NMACE

g and

ǫ = 2−min(κ,n) · ℓ2 · O(q2) for HMACE. Here ℓ is the maximum message length queried by the distinguisher.

Proof: We will prove that the Merkle-Damg̊ard (MD) based constructions are indifferentiable constructions
of a random oracle (RO), when applied to the Davies-Meyer (DM) compression function using an ideal block
cipher (IC). The four constructions that we prove to be secure are:

1. Prefix-free Merkle-Damg̊ard construction pf-MDE
g : In this construction, we apply the Davies-

Meyer Merkle-Damg̊ard (DMMD) construction to a prefix-free encoding of the input (using the prefix-
free encoding scheme g).

2. Merkle-Damg̊ard construction with truncated output chop-MDE
s : This is the plain DMMD

construction applied directly to the input, with a non-trivial number, s, of the output bits chopped.

3. NMAC construction NMACE1,E2: This construction uses two independent ideal block ciphers E1 :
{0, 1}κ×{0, 1}n → {0, 1}n and E2 : {0, 1}κ

′
×{0, 1}n

′
→ {0, 1}n

′
. It first applies the DMMD construction

using E1 to the input, getting a n bit output Y . Then it applies the Davies-Meyer compression function
using E2 to Y to get the final output.

4. HMAC construction HMACE: This is an instantiation of the NMAC construction using the same
ideal cipher for both parts, but using different initialization vectors in each part (implemented by
prepending 0κ to the input).

The proof of indifferentiability in each of these cases essentially involves two steps. First, we propose a
simulator that simulates the task of the ideal cipher in the random oracle model (ROM). Secondly, we show
that the view of any distinguisher in the ROM, with oracle access to the actual random oracle and the ideal
cipher simulator, does not differ from its view in the ideal cipher model (ICM), with oracle access to the RO
construction and the ideal cipher, by more than a negligible amount. We have provided detailed proofs for
each of the above constructions in the appendix 6. Here we will concentrate on providing an intuitive idea of
the basic paradigm used in each of the proofs.

The Simulator. The task of the simulator in each of the cases is to simulate the ideal cipher in the
ROM, in such a way that its relation with the random oracle is consistent with the relation between that
actual ideal cipher and the RO construction in the ICM. Thus, in each case, the simulator essentially gives
random responses to all forward block cipher queries except those that form the last application of the ideal
cipher for some random oracle input (when processed using the RO construction). For example, in the Chop
construction this will be the last block cipher call in the Davies-Meyer Merkle-Damg̊ard computation.

If the query corresponds to a last block cipher call, then the simulator consults the random oracle and
adjusts its response so as to remain consistent with the ICM scenario.

14

In the case of an inverse block cipher query, the simulator always gives random responses. In addition, the
simulator also maintains a table T in which it records all previous query-response pairs (so as to maintain
consistency among its responses).

Proof of Indifferentiability. Each of the proofs of indifferentiability consist of a hybrid argument that
presents a sequence of mutually indistinguishable games starting in the random oracle model, with the RO
F and the ideal cipher simulator S, leading up to the ideal cipher model, with the RO construction (which
we call CE) and the ideal cipher E. The overall structure of the hybrid argument is similar for each of the
constructions, though the formal proof differs. We will describe the overall structure of the proof here.

Game 1. This is the random oracle model, where the distinguisher is given oracle access to the random
oracle F and the ideal cipher simulator S.

Game 2. In this game, we introduce a relay algorithm R0 that is simply a dummy algorithm between

the distinguisher and the random oracle F . This relay algorithm simply relays the queries of the distinguisher
to the RO and relays back the output of F .

Game 3. In this game, we modify the simulator by defining a few failure conditions for its query-response

pairs. If any of these failure conditions is true, then the new simulator S0 explicitly fails. These failure
conditions capture certain collision conditions which, if they happen, could be exploited by the distinguisher
to decide the scenario it is in. The failure conditions are different for each constructions and are described in
the formal proof. Thus the distinguisher has oracle access to the new simulator SF

0 and the relay algorithm
RF

0 in this game.

Game 4. Now we modify the relay algorithm so as to make its responses directly dependent on the

simulator, instead of the RO F . The new relay algorithm R1 essentially evaluates the construction CE using
the simulator S0 instead of the ideal cipher E. The main idea here is to prove that unless one of the failure
conditions described in game 3 is true for the query-response pairs of the simulator S0 (in which case it would
fail), the responses of R1 are still consistent with the random oracle. Thus, games 3 and 4 form the heart of

the proof in each case. In this game, the distinguisher has oracle access to the relay algorithm R
SF

0

1 and the
simulator SF

0 .

Game 5. In this game, we modify the simulator so that it chooses its responses independent of the

random oracle (i.e. uniformly random by itself). In addition, the new simulator S1 does not check for any of
the failure conditions described above. This does not introduce any changes in the view of the distinguisher
since the relay algorithm R1 uses the simulator S1 to construct its responses (which still look random). Thus,
in this game the distinguisher has oracle access to the relay algorithm RS1

1 and the simulator S1.

Game 6. Finally, we replace the simulator S1 by the ideal block cipher E. Thus the relay algorithm

R1 now becomes identical to the RO construction CE . Thus in this game the distinguisher has oracle access
to the RO construction CE and the ideal cipher E.

This completes the proof of indifferentiability in each of the cases. We have skipped most of the details
here, which can be found in appendix 6.

15

4.1 Implications for the RO Domain Extenders

We saw above that the four modifications of the Merkle-Damg̊ard construction, i.e. the prefix-free, chop,
NMAC and HMAC constructions, applied to the Davies-Meyer compression function are indifferentiable from
a variable-length input random oracle (VIL-RO) in the ideal cipher model. This fact was formally stated and
proved in theorem 4.1. Now we will show that this result is stronger than the indifferentiability of domain
extenders for the random oracle described in section 3. In particular, we show that theorems 3.1, 3.3, 3.4 and
3.5 from section 3 can be derived as a direct consequence of theorem 4.1.

To this purpose, say we are given a fixed-length input random function oracle (FIL-RO) f : {0, 1}κ+n →
{0, 1}n. Consider the following construction based on f :

T f : {0, 1}κ × {0, 1}n → {0, 1}n

(x, y) 7→ f(x ‖ y)⊕ y

Note that the construction T f is essentially the same as the Davies-Meyer construction except that the latter
is defined for an ideal block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n. If we are able to show that T f is
indifferentiable from the ideal block cipher E, then it will complete the proof of all theorems from section
3 as an implication of theorem 4.1 and the composability property of indifferentiable constructions. This is
because the Davies-Meyer construction applied to T f is identical to the FIL-RO f . However, it is easily seen
that T f cannot be proven indifferentiable from the ideal cipher E1.

To overcome this, we introduce a weaker ideal primitive than the ideal cipher, which we will call the weak
ideal block cipher. A weak ideal block cipher E is essentially the same as an ideal cipher, except that it only
responds to forward block cipher queries. In this case, we do not run into the problem of responding to inverse
queries made to the construction T f . Unfortunately, we cannot use theorem 4.1 in a “black-box manner”
to get indifferentiable VIL-RO construction using a weak ideal cipher. However, none of the constructions
proposed in theorem 4.1 make use of inverse queries to the underlying block cipher.

Corollary 4.2 The block-cipher based constructions pf-MDE
g , chop-MDE

s , NMACE
g and HMACE are (tD, tS , q, ǫ)-

indifferentiable from a random oracle, in the weak ideal cipher model for E, for any tD and tS = ℓ · O(q2),
with ǫ = 2−n · ℓ2 ·O(q2) for pf-MDE

g , ǫ = 2−s · ℓ2 ·O(q2) for chop-MDE
s , ǫ = 2−min(n,n′) · ℓ2 ·O(q2) for NMACE

g

and ǫ = 2−min(κ,n) ·ℓ2 ·O(q2) for HMACE. Here ℓ is the maximum message length queried by the distinguisher.

In fact, the proof of this theorem is simpler than that for theorem 4.1 since the simulator need not respond
to inverse ideal cipher queries. We now show that the construction T f is an indifferentiable construction of a
weak ideal cipher E : {0, 1}κ × {0, 1}n → {0, 1}n using the FIL-RO f .

Lemma 4.3 The construction T f (described above) is (tD, tS , q, ǫ)-indifferentiable from a weak ideal cipher
E : {0, 1}κ × {0, 1}n → {0, 1}n for any tD, tS = O(q2) and ǫ = 2−n · q2, in the random oracle model for f .

Proof: In order to prove this theorem, we need to describe a random oracle simulator S such that no dis-
tinguisher can tell apart the random oracle model, where it has oracle access to the random function oracle f
and the construction Tf , from the weak ideal cipher model, where it has oracle access to the simulator S and
the weak ideal block cipher E. We will start by describing the simulator.

The Simulator. The simulator S gets random oracle queries of the form x ‖ y ∈ {0, 1}κ+n. The sim-
ulator makes the forward query (x, y) to block cipher E to get Ex(y). Then S responds with z = Ex(y)⊕ y.
In addition, the simulator S also maintains a table T of previous query-response pairs (x ‖ y, z) which it

1In particular, the construction T f cannot answer inverse ideal cipher queries.

16

checks each time to see if the current query matches a previous one.

Proof of Indifferentiability. The proof of indifferentiability involves a hybrid argument that starts
in the ideal cipher model, where the distinguisher D has oracle access to E and S, which is game 1.

Game 1. This is essentially the weak ideal cipher model, where the distinguisher D is given oracle access to
the random oracle simulator S and the weak ideal cipher E. Let G1 denote the event that D outputs 1 in
this game. Thus, if λ denote the security parameter,

Pr[G1] = Pr
[

DSE ,E(1λ) = 1
]

Game 2. In this game, we give the distinguisher D oracle access to a relay algorithm R0, instead of the

weak ideal cipher E. This relay algorithm R0 has oracle access to the simulator SE . On a forward block
cipher query (x, y) ∈ {0, 1}κ×{0, 1}n, the relay algorithm R0 simply queries the simulator SE on x ‖ y to get
its response z. Then R0 responds to the block cipher query with y ⊕ z.

Let G2 denote the event that D outputs 1 in this game. Since the view of the distinguisher does not change
in this game, we can deduce that

Pr[G1] = Pr

[

DSE ,RSE

(1λ) = 1

]

= Pr[G1]

Game 3. In this game, we modify the simulator so that it does not consult the ideal block cipher for any

of the queries made to it. Instead, the new simulator S0 always chooses a uniformly random n-bit response z
to every new query x ‖ y, and records it in its table T before sending over the response.

Let G3 denote the event that the distinguisher D outputs 1 in this game. Since the relay algorithm only
consults S0 for any query, so that the view of the distinguisher in this game is entirely independent of the
weak ideal cipher E. Thus the distinguisher D detects a difference between this game and game 2 only if the
relay algorithm R0 outputs a collision for two block cipher queries with the same key, and the probability of
this event can be easily bounded using the birthday paradox. Thus, we can deduce that

|Pr[G3]− Pr[G2]| ≤
q2

2n

Note that the simulator S0 is essentially the same as the fixed-length input RO f , while the relay algorithm
R0 is defined in the same way as the construction T f . Hence, we can also deduce that

∣

∣

∣
Pr

[

Df,T f

(1λ) = 1
]

Pr
[

DSE ,E(1λ) = 1
]∣

∣

∣
= |Pr[G3]− Pr[G1]|

≤
q2

2n

5 Practical Implications and Other Extensions

Increasing Output Length. All the random oracle constructions that we have discussed, permit really
efficient output expansion. Given a random oracle H : {0, 1}∗ → {0, 1}n, output expansion by a factor L can

17

be achieved by appending an extra log(L)-bit block to the input X and outputting the concatenation of the
following blocks:

H(X ‖ 〈1〉), H(X ‖ 〈2〉), . . . , H(X ‖ 〈L〉)

It can be easily seen that this construction is generically secure, including any of the indifferentiable construc-
tions of VIL-RO that we have proposed. However, one would imagine that evaluating this construction would
involve L evaluations of the VIL-RO H.

As it turns out, for the Prefix-free, Chop, NMAC and HMAC constructions of a VIL-RO using a FIL-RO
or an ideal cipher, this procedure can be completed extremely efficiently using only one (or two) extra eval-
uation of the underlying fixed-length input primitive for each extra block of output. 2 This can be done by
first computing the Merkle-Damg̊ard construction on the input X, and evaluating only one last part of the
construction for each of the output blocks. This reduces the running time for the procedure from L · (|X|/κ)
to L + (|X|/k) computations.

Domain Separation for Independent ROs. The same technique as above can also be used for domain
separation of the random oracle, to get multiple independent random function oracles from a single one. This
is useful in cryptographic constructions where one needs to use multiple independent random oracles in order
to prove the security of the construction. In particular, if we have a single random oracle H : {0, 1}∗ → {0, 1}n,
and we need L independent random oracles in our constructions, then we can achieve this by defining these
random oracles as:

H1(X) := H(X ‖ 〈1〉)

...

HL(X) := H(X ‖ 〈L〉)

We cannot use the same efficient processing technique that we used for output expansion, since one usually
does not need to evaluate the independent random oracles on the same input.

6 Conclusion

In this paper, we pointed the attention of the cryptographic community to the gap between assuming an
arbitrary-length random oracle H and assuming a fixed-length ideal building block for H such as a fixed-length
compression function or a block cipher. We then provided a formal definition which suffices to eliminate this
gap, noticed that the current iterative hash functions like SHA-1 and MD5 do not satisfy our security notion,
and showed several practically motivated, easily implementable and provably secure fixes to the plain Merkle-
Damg̊ard transformation. Specifically, one can either ensure that all the inputs appear in the prefix-free form,
or drop a nontrivial number of the output bits (if the output of the hash function is long enough to allow
it), or, — when the above methods are not applicable — apply an independent fixed-length hash function to
the output, which, as we illustrated, can be conveniently implemented using the corresponding building block
itself.

An interesting open problem is to provide a construction in the opposite direction, that is, a construction
that securely realizes an ideal block-cipher (or a random permutation) from a random oracle. One could use
the Luby-Rackoff construction of a pseudo-random permutation from a pseudo-random function [22], but the
major difference is that here the adversary has oracle access to the inner functions. One can show that at

2For a prefix-free encoding g, this can be done by appending 〈1〉 . . . 〈L〉 to g(X) instead appending to X and then evaluating
g.

18

least six rounds are required to securely realize a random permutation from a random oracle (which should
be contrasted with the secret-key case where four rounds are necessary and sufficient [22]), but we were not
able to find a proof that six or more rounds would be sufficient.

Acknowledgments: We would like to deeply thank Victor Shoup for his invaluable contribution to all
aspects of this work. We also thank the anonymous referees for many useful comments.

References

[1] J. H. An, M. Bellare, Constructing VIL-MACs from FIL-MACs: Message Authentication under Weakened
Assumptions, CRYPTO 1999, pages 252-269.

[2] Mihir Bellare, Alexandra Boldyreva and Adriana Palacio. An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. Proccedings of Eurocrypt 2004.

[3] M. Bellare, J. Kilian, and P. Rogaway. The Security of Cipher Block Chaining. In Crypto ’94, pages
341–358, 1994. LNCS No. 839.

[4] M. Bellare and P. Rogaway, Random oracles are practical : a paradigm for designing efficient protocols.
Proceedings of the First Annual Conference on Computer and Commmunications Security, ACM, 1993.

[5] M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign with RSA and Rabin.
Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-Verlag, 1996, pp. 399-416.

[6] M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eurocrypt’94, LNCS vol.
950, Springer-Verlag, 1994, pp. 92–111.

[7] M. Bellare and P. Rogaway, Collision-Resistant Hashing: Towards Making UOWHFs Practical, In Crypto
’97, LNCS Vol. 1294.

[8] M. Bellare, R. Canetti, and H. Krawczyk, Pseudorandom Functions Re-visited: The Cascade Construc-
tion and Its Concrete Security, In Proc. 37th FOCS, pages 514-523. IEEE, 1996.

[9] M. Bellare and T. Ristenpart, Multi-Property-Preserving Hash Domain Extension and the EMD Trans-
form, In Advances in Cryptology - Asiacrypt 2006.

[10] J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block-Cipher-Based Hash-Function Con-
structions from PGV, in Advances in Cryptology - CRYPTO 2002, California, USA.

[11] R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic Protocols, proceedings
of the 42nd Symposium on Foundations of Computer Science (FOCS), 2001. Cryptology ePrint Archive,
Report 2000/067, http://eprint.iacr.org/.

[12] R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited, STOC’ 98, ACM,
1998.

[13] Ran Canetti, Oded Goldreich and Shai Halevi. On the random oracle methodology as applied to Length-
Restricted Signature Schemes. In Proceedings of Theory of Cryptology Conference, pp. 40–57, 2004.

[14] I. Damg̊ard, A Design Principle for Hash Functions, In Crypto ’89, pages 416-427, 1989. LNCS No. 435.

19

[15] Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin, Randomness Extraction and Key Deriva-
tion Using the CBC, Cascade and HMAC Modes, Advances in Cryptology - CRYPTO, August 2004.

[16] Y. Dodis, R. Oliveira, K. Pietrzak, On the Generic Insecurity of the Full Domain Hash, Advances in
Cryptology - CRYPTO, August 2005.

[17] FIPS 180-1, Secure hash standard, Federal Information Processing Standards Publication 180-1, U.S.
Department of Commerce/N.I.S.T., National Technical Information Service, Springfield, Virginia, April
17 1995 (supersedes FIPS PUB 180).

[18] National Institute of Standards and Technology (NIST). Secure hash standard. FIPS 180-2. August 2002.

[19] RFC 1321, The MD5 message-digest algorithm, Internet Request for Comments 1321, R.L. Rivest, April
1992.

[20] Shafi Goldwasser and Yael Tauman. On the (In)security of the Fiat-Shamir Paradigm. In Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science (2003), 102-114.

[21] H. Handschuh and D. Naccache, SHACAL, In B. Preneel, Ed., First Open NESSIE Workshop, Leuven,
Belgium, November 13-14, 2000

[22] M. Luby and C. Rackoff, How to construct pseudo-random permutations from pseudo-random functions,
SIAM J. Comput., Vol. 17, No. 2, April 1988.

[23] Stefan Lucks. Design Principles for Iterated Hash Functions, available at E-Print Archive,
http://eprint.iacr.org/2004/253.

[24] U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results on Reductions, and
Applications to the Random Oracle Methodology, Theory of Cryptography - TCC 2004, Lecture Notes
in Computer Science, Springer-Verlag, vol. 2951, pp. 21-39, Feb 2004.

[25] Ueli Maurer and Johan Sjodin. Single-key AIL-MACs from any FIL-MAC, In ICALP 2005, July 2005.

[26] R. Merkle, One way hash functions and DES, Advances in Cryptology, Proc. Crypto’89, LNCS 435, G.
Brassard, Ed., Springer-Verlag, 1990, pp. 428-446.

[27] Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
Committing Encryption Case. In Advances in Cryptology - Crypto 2002 Proceedings (2002), 111 -126

[28] PKCS #1 v2.1, RSA Cryptography Standard (draft), document available at www.rsa

security.com/rsalabs/pkcs.

[29] B. Pfitzmann and M. Waidner, A model for asynchronous reactive systems and its application to secure
message transmission. In IEEE Symposium on Security and Privacy, pages 184-200. IEEE Computer
Society Press, 2001.

[30] B. Preneel, R. Govaerts and J. Vandewalle, Hash Functions Based on Block Ciphers: A Synthetic Ap-
proach, in Advances in Cryptology - CRYPTO ’93,, Santa Barbara, California, USA.

[31] V. Shoup, A composition theorem for universal one-way hash functions, In Eurocrypt ’00, pp. 445–452,
LNCS Vol. 1807.

[32] R. Winternitz, A secure one-way hash function built from DES, in Proceedings of the IEEE Symposium
on Information Security and Privacy, pages 88-90. IEEE Press, 1984.

20

A Proof of Theorem 4.1

Theorem A.1 The block-cipher based constructions pf-MDE
g , chop-MDE

s , NMACE
g and HMACE are (tD, tS , q, ǫ)-

indifferentiable from a random oracle, in the ideal cipher model for E, for any tD and tS = ℓ · O(q2), with
ǫ = 2−n · ℓ2 · O(q2) for pf-MDE

g , ǫ = 2−s · ℓ2 · O(q2) for chop-MDE
s , ǫ = 2−min(n,n′) · ℓ2 · O(q2) for NMACE

g and

ǫ = 2−min(κ,n) · ℓ2 · O(q2) for HMACE. Here ℓ is the maximum message length queried by the distinguisher.

Proof: We will prove that the Merkle-Damg̊ard (MD) based constructions are indifferentiable constructions
of a random oracle (RO), when applied to the Davies-Meyer (DM) compression function using an ideal block
cipher (IC). The four constructions that we prove to be secure are:

1. Prefix-free Merkle-Damg̊ard construction pf-MDE
g : In this construction, we apply the Davies-

Meyer Merkle-Damg̊ard (DMMD) construction to a prefix-free encoding of the input (using the prefix-
free encoding scheme g).

2. Merkle-Damg̊ard construction with truncated output chop-MDE
s : This is the plain DMMD

construction applied directly to the input, with a non-trivial number, s, of the output bits chopped.

3. NMAC construction NMACE1,E2: This construction uses two independent ideal block ciphers E1 :
{0, 1}κ×{0, 1}n → {0, 1}n and E2 : {0, 1}κ

′
×{0, 1}n

′
→ {0, 1}n

′
. It first applies the DMMD construction

using E1 to the input, getting a n bit output Y . Then it applies the Davies-Meyer compression function
using E2 to Y to get the final output.

4. HMAC construction HMACE: This is an instantiation of the NMAC construction using the same
ideal cipher for both parts, but using different initialization vectors in each part (implemented by
prepending 0κ to the input).

The proof of indifferentiability in each of these cases essentially involves two steps. First, we propose a
simulator that simulates the task of the ideal cipher in the random oracle model (ROM). Secondly, we show
that the view of any distinguisher in the ROM, with oracle access to the actual random oracle and the ideal
cipher simulator, does not differ from its view in the ideal cipher model (ICM), with oracle access to the RO
construction and the ideal cipher, by more than a negligible amount. The proof of indifferentiability in each
of the four cases involves a hybrid argument.

We start by proving the indifferentiability of the prefix-free MD construction pf-MDE
g .

Lemma A.2 The prefix-free Merkle-Damg̊ard construction pf-MDE
g using an ideal cipher E : {0, 1}κ ×

{0, 1}n → {0, 1}n is (tD, tS , q, ǫ)-indifferentiable from a random oracle in the ideal cipher model for E, for
any tD and tS = O(q · Rg(q · κ)) (where Rg(q · κ) is the running time of the decoding algorithm of g on an
input of length q · κ), with ǫ = 2−n · ℓ2 · O(q2).

Proof:

The Simulator. The simulator SE accepts either forward ideal cipher queries, (+, x, y), or inverse ideal
cipher queries, (−, x, z), such that x ∈ {0, 1}κ and y, z ∈ {0, 1}n. In either case, the simulator S responds
with a n-bit string that is interpreted as Ex(y) in case of a forward query (+, x, y) and as E−1

x (z) in case of
an inverse query. The simulator maintains a table T of triples (x, y, z) ∈ {0, 1}κ×{0, 1}n×{0, 1}n, such that
it either responded with z to a forward query (+, x, y) or with y to an inverse query (−, x, z).

On getting a forward query (+, x, y), the simulator searches its table T for a triple (x, y, z) for any z. If
there exists such a triple, then it responds with z otherwise it needs to choose a new response to this query.
It then searches its table T for a sequence of triples (x1, y1, z1) . . . (xi, yi, zi) such that:

21

• The bit string x1 ‖ . . . ‖ xi ‖ x decodes to a valid RO input under the prefix-free encoding g.

• It is the case that y1 = IV , where IV denotes the initialization vector used in the construction pf-MDE
g .

• For each j = 2 . . . i, it is the case that yj = zj−1 ⊕ yj−1.

• It is the case that y = zi ⊕ yi, where y is the input message in the current forward query.

Note that for an empty sequence of triples, i.e. when just considering the κ-bit block x from the current
query, only the first requirement makes sense. We additionally also require that y = IV in this case.

If the simulator S finds such a sequence of triples, then it needs to give a response that is consistent with
the random oracle output on g−1(x1 ‖ . . . ‖ xi ‖ x). Thus, the simulator makes this RO query to get the
output Y = F (g−1(x1 ‖ . . . ‖ xi ‖ x)), and responds with z = Y ⊕ y. If the simulator does not find such a
sequence of triples, it outputs a random response z. In either case, it stores the triple (x, y, z) in its table T .

On receiving an inverse query (−, x, z), the simulator S searches its table T for a triple (x, y, z) for any y.
If it finds such a triple, then it outputs y as its response. If it does not find such a triple, it chooses a random
n-bit string y and responds with y. It then stores the triple (x, y, z) into its table T .

Proof of Indifferentiability. We need to prove that the distinguisher cannot tell apart the two sce-
narios, one where it has oracle access to the random oracle F and the simulator S and the other where it
has access to the RO construction pf-MDE

g and the ideal block cipher E. As we mentioned above, the proof
involves a hybrid argument starting in the random oracle scenario, and ending in the ideal cipher scenario
through a sequence of mutually indistinguishable hybrid games.

Game 1. This is the random oracle model, where the distinguisher D has oracle access to the random

oracle F and the simulator S described above. Let G1 denote the event that D outputs 1 after interacting
with F and S. Thus,

Pr[G1] = Pr
[

DF,SF

(1λ) = 1
]

Game 2. In this game, we give the distinguisher oracle access to a dummy relay algorithm R0 instead of

direct oracle access to the random oracle F . This relay algorithm R0 is given oracle access to the random
oracle F , and on getting a random oracle query from the distinguisher, it simply makes the same query to
the RO F and forwards the RO output to the distinguisher as its response. Let G2 denote the event that the
distinguisher outputs 1 in this game. Since we have left the view of the distinguisher unchanged in this game,
the distribution of its outputs also remains the same.

Pr[G2] = Pr
[

DRF
0

,SF

(1λ) = 1
]

= Pr[G1]

Game 3. In this game, we modify the simulator S. In particular, we restrict the responses of the simulator

such that they never satisfy certain specific failure conditions. If the simulator comes up with a response
that results in its responses satisfying one of these conditions, then it fails explicitly instead of sending this
response.

The failure conditions that the new simulator S0 avoids essentially describe certain dependencies that could
arise among its responses that could be exploited by the distinguisher. In response to a forward query (+, x, y),
the new simulator chooses a response z ∈ {0, 1}n similar to the original simulator S and it checks for the
following conditions:

22

1. Condition B1: It is the case that z⊕ y = IV , where IV is the n-bit initialization vector used in the RO
construction pf-MDE

g .

2. Condition B2: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y), such that y′ ⊕ z′ = y ⊕ z.

3. Condition B3: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y), such that y ⊕ z = y′.

If the response z is chosen by the simulator S0 at random then the simulator S0 checks for these conditions
and explicitly fails if any of them holds. However, if the simulator is forced to choose a response in order to
maintain consistency with the random oracle F , then it only checks for the conditions B1 and B2.

Let us briefly describe how the distinguisher can exploit each of these conditions to its advantage. If the
condition B1 holds then the distinguisher could possibly force two different RO query sequences to end in the
same block, where one input is the suffix of the other. Hence the simulator can be consistent with at most
one of these two RO inputs. If condition B2 holds, then the distinguisher can again force two query sequences
to end in the same block. However, in this case the two RO inputs have a common suffix and the simulator
can be consistent with at most one of these inputs. If condition B3 holds, then distinguisher can make a RO
query sequence to the simulator such that the simulator is not consistent with the RO output because the
query corresponding to the last block of the (encoding of the) RO input is not the last one that it makes.

Now we will estimate the occurrence probability for each of the above failure conditions. Let the number
of random oracle queries made by the distinguisher be qF , and let the number of ideal cipher queries be qE .
To start with, it is easy to see that the occurrence probability of condition B1 is at most the probability that
one of q(= qE + qF) random n-bit strings are equal to IV .

To bound the occurrence probability of failure condition B2, we will analyze three situations separately.

• Query (+, x, y) does not correspond to the last block of (the prefix-free encoding of) a random oracle
query. In this case, condition B2 occurs only if the uniformly random n-bit string y ⊕ z (with z chosen
by the simulator), collides with one of qE n-bit strings corresponding to other queries.

• Both (x, y, z) and (x′, y′, z′) form last blocks of random oracle queries. In this case, condition B2 is
exactly the event that two random oracle outputs collide.

• The triple (x, y, z) forms the last block of a random oracle query, but (x′, y′, z′) does not. In this case,
y′⊕z′ is a random n-bit string chosen by the simulator. Hence, condition B2 corresponds to the random
oracle output y ⊕ z collides with a random n-bit string chosen by the simulator.

Hence, we can bound the occurrence probability of condition B2 by the birthday bound over (qE + qF)
uniformly random n-bit strings.

The simulator checks for condition B3 only if it chooses the response independently. In this case, the
occurrence probability of this failure condition can be bounded by the (qE2/2n). We do not force the simulator
to check for condition B3 when it is forced to be consistent with the random oracle. This is because the
distinguisher can force this condition using RO queries, but this does not help since we use a prefix-free
encoding before applying the Merkle-Damg̊ard construction.

If an inverse query (−, x, z) is made to the simulator S0, the it chooses a response y ∈ {0, 1}n to this query
similar to the original simulator S and checks for the following failure conditions:

1. Condition C1. It is the case that y = IV or y ⊕ z = IV , where IV is the n-bit initialization vector.

2. Condition C2. There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z), such that y′ ⊕ z′ = y ⊕ z.

3. Condition C3. There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z), such that y ⊕ z = y′ or y′ ⊕ z′ = y.

23

In the case of inverse queries, the simulator always independently chooses random responses to any new queries
and fails if any of the conditions C1, C2 or C3 holds, and hence estimating the occurrence probability of these
failure conditions is straightforward. The reasons for avoiding the conditions C1, C2 and C3 are similar to
those given above for B1, B2 and B3.

Let G3 denote the event that the distinguisher outputs 1 in game 3, i.e. Pr[G3] = Pr
[

DRF
0

,SF
0 (1λ) = 1

]

.

The responses of the distinguisher in games 2 and 3 differ only in situations where the new simulator S0

explicitly fails and the original simulator S does not. This event is identical with the event that any of the
failure conditions hold for the responses of either simulator (both of which are identically distributed).

|Pr[G3]− Pr[G2]| ≤ 2 · Pr[B1 ∪B2 ∪B3 ∪ C1 ∪ C2 ∪ C3 hold for a corresponding query.]

≤
2 · (q

E
+ q

F
) · (2 · (q

E
+ q

F
) + 1)

2n

= O

(

q2

2n

)

Game 4. In this game, we modify the relay algorithm and leave the ideal cipher simulator unchanged.

The underlying idea is to make the responses of the relay algorithm directly dependent on the simulator.
Thus, instead of giving the new relay algorithm R1 an oracle access to the random oracle F , here it is given
oracle access to the simulator S0.

On a random oracle query X, the relay algorithm R1 computes the prefix-free encoding of X, i.e. g(X).
It then applies the Davies-Meyer Merkle-Damg̊ard construction to g(X) by querying the simulator S0. Thus
the relay algorithm R1 is essentially the same as the random oracle construction pf-MDE

g , except that it is
based on the simulator S0 instead of the ideal cipher E.

Let G4 denote the event that the distinguisher D outputs 1 when given oracle access to S0 and R1 in this
game. Thus, we know that

Pr[G4] = Pr[DR
S0

1
,SF

0 (1λ) = 1]

Now we will show that the view of the distinguisher D remains unchanged (upto a negligible additive factor)
in the transformation from game 3 to game 4. We will assume that that maximum length of the prefix-free
encoding g(X) of a random oracle input X queried upon by the distinguisher is ℓκ. This claim is formally
stated below:

Claim 3 Let G3 and G4 denote the events that the distinguisher D outputs 1 in games 3 and 4, respectively. If
qE and qF denote the number of ideal cipher and random oracle queries made by the distinguisher (respectively),
then it is the case that

|Pr[G4]− Pr[G3]| = O

(

(q
E

+ ℓ · q
F
)2

2n

)

proof of claim 3: From the view of the distinguisher, the games 3 and 4 differ only if it detects any
difference in the responses of the relay algorithm or the simulator in these two games. We will prove that
such a difference in the responses is impossible unless the simulator S0 fails in either game 3 or 4. We start
by demonstrating a few useful properties of the responses of the simulator S0.

Claim 4 If the simulator S0 does not explicitly fail, then there are no two different sequences of κ-bit blocks
x1 . . . xm and x′

1 . . . x′
p with corresponding triples (x1, y1, z1) . . . (xm, ym, zm) and (x′

1, y
′
1, z

′
1) . . . (x′

p, y
′
p, z

′
p) in

table T such that:

24

• Both x1 ‖ . . . ‖ xm and x′
1 ‖ . . . ‖ x′

p constitute valid prefix-free encodings of random oracle inputs.

• It is the case that y1 = y′1 = IV , and for each s = 1 . . .m and s′ = 1 . . . p, ys = ys−1 ⊕ zs−1 and
y′s′ = y′s′−1 ⊕ z′s′−1.

• There is a s ∈ {1, m} such that (xs, ys, zs) = (x′
p, y

′
p, z

′
p).

proof of claim 4: We will prove this claim by performing an induction on the number of queries made to
the simulator S0, and show that unless the simulator explicitly fails, such sequence of triples cannot exist in
the table T maintained by it. When no queries have been made, then the claim is vacuously true. Assume
that it holds when q queries have already been made to the simulator S0.

Say there are two sequences of κ-bit blocks x1 . . . xm and x′
1 . . . x′

p that satisfy the properties mentioned in

the statement of the claim after the (q + 1)th query. We can deduce that there are two subsequences of κ-bit
blocks xj−r . . . xj and x′

p−r . . . x′
p such that:

∀s ∈ {0, r} : (xj−s, yj−s, zj−s) = (x′
p−s, y

′
p−s, z

′
p−s)

If r < j − 1 and r < p − 1, then consider the triples (xj−r−1, yj−r−1, zj−r−1) and (x′
p−r−1, y

′
p−r−1, z

′
p−r−1).

Since yj−r = y′p−r, we can deduce that yj−r−1⊕zj−r−1) = y′p−r−1⊕z′p−r−1. Without loss of generality, assume
that the query corresponding to the triple (xj−r−1, yj−r−1, zj−r−1) was made after the one corresponding to
(x′

p−r−1, y
′
p−r−1, z

′
p−r−1). If this query was a forward query then the simulator S0 would have explicitly failed

because of failure condition B2. If this was an inverse query then the simulator would have failed because of
failure condition C2.

Now consider the case that r = p− 1 but r < j − 1. In this case, if the triple (xj−r−1, yj−r−1, zj−r−1) was
generated as a result of a forward query, then the simulator S0 would have explicitly failed because of failure
condition B1 since zj−r−1 ⊕ yj−r−1 = yj−r = y′1 = IV . If this triple was generated due to an inverse query
then the simulator will fail because of failure condition C1. The case when r = j − 1, but r < p− 1 is similar.

Lastly, if r = p− 1 = j − 1 then we have that ∀s ∈ {1, p} : (xs, ys, zs) = (x′
s, y

′
s, z

′
s). But this implies that

x′
1 ‖ . . . ‖ x′

p is a prefix of x1 ‖ . . . ‖ xm, which is not possible since they are encodings of two different inputs
using the prefix-free encoding g.

Hence, we can conclude that there can be no such sequence of κ-bit blocks x1 ‖ . . . ‖ xm and x′
1 ‖ . . . ‖ x′

p

if the simulator S0 does not explicitly fail.

Next we show that if the distinguisher wishes to find the random oracle output for an input X ∈ {0, 1}∗,
such that g(X) = x1 ‖ . . . ‖ xs, by making queries to the simulator S0 to compute the Davies-Meyer Merkle-
Damg̊ard construction applied to x1 ‖ . . . ‖ xs, then the only way it can do so is by making the ordered
sequence of forward queries (+, x1, y1) . . . (+, xs, ys).

Claim 5 Consider any sequence of κ-bit blocks x1 . . . xs, with corresponding triples (x1, y1, z1) . . . (xs, ys, zs)
in the table T maintained by the simulator S0, such that:

• x1 ‖ . . . ‖ xs is a valid encoding of a random oracle input X under the prefix-free encoding g.

• y1 = IV , and for all j ∈ {2, s} it is the case that yj = yj−1 ⊕ zj−1.

If the simulator S0 does not explicitly fail then it must be the case that the triples (x1, y1, z1) . . . (xs, ys, zs)
were stored as a result of the ordered sequence of queries (+, x1, y1) . . . (+, xs, ys).

25

proof of claim 5: To the contrary, assume that the sequence of queries that resulted in the triples
(x1, y1, z1) . . . (xs, ys, zs) was not the sequence of forward queries given in the claim statement. We can then
deduce that at least one of the following must be true regarding this sequence of queries:

1. For j ∈ {1, s−1}, a forward query (+, xj , yj) was made when the triple (xj+1, yj+1, zj+1) already existed
in the table T .

2. For j ∈ {2, s}, an inverse query was made (−, xj , zj) when the triple (xj−1, yj−1, zj−1) already existed
in the table T .

3. The triple (x1, y1, z1) was generated as a result of an inverse query (−, x1, z1).

In the first case, we know from claim 4 that the triple (xj , yj , zj) cannot be the last block of the prefix-free
encoding of another query if the simulator S0 does not fail. Hence it must be the case that the response to the
corresponding query was randomly chosen by the simulator itself (independent of the random oracle). But
since the triple (xj+1, yj+1, zj+1) already exists in table T , the simulator will explicitly fail from condition B3

since the equality yj ⊕ zj = yj+1 holds. In the second case, the simulator will explicitly fail due to failure
condition C3 since the equality yj = zj−1 ⊕ yj−1 holds. In the last case the simulator fails due to failure
condition C1.

Thus the simulator S0 explicitly fails in either of the above situations, and the only sequence of queries
possible is the one mentioned in the statement of the claim.

Next, we wish to show that the responses of the relay algorithm R0 and the simulator S0 are always consistent
in game 3. Note that in game 4, the relay algorithm R1 responds to all queries by computing the RO
construction pf-MDS0

g , with the ideal cipher E replaced by the simulator S0. On the other hand, the responses
of the relay algorithm R0 could be inconsistent with the simulator S0 (i.e. the distinguisher may get a different
output to a random oracle input depending on whether it uses the construction pf-MDS0

g itself, or queries the
relay algorithm R0). We show that such a situation is impossible unless the simulator S0 fails.

Claim 6 In game 3, if the simulator S0 never fails then there is no sequence of κ-bit blocks x1 . . . xj, with
corresponding triples (x1, y1, z1) . . . (xj , yj , zj) such that:

• The bit string x1 ‖ . . . ‖ xj is a valid prefix-free encoding of a random oracle input.

• y1 = IV and for l = 2 . . . j it is the case that yl = yl−1 ⊕ zl−1.

• To the random oracle query g−1(x1 ‖ . . . ‖ xj), the response of the relay algorithm R0 is different from
yj ⊕ zj.

proof of claim 6: To any random oracle query X, the relay algorithm R0 always responds with the random
oracle output F (X). Thus the situation described in the statement of the claim occurs if and only if the
simulator responds to its queries (corresponding to the κ-bit blocks in g(X) = x1 ‖ . . . ‖ xj) in such a way
that yj ⊕ zj 6= F (X).

From claim 5, we can deduce that if the distinguisher is to compute the Davies-Meyer Merkle Damg̊ard
output on g(X) = x1 ‖ . . . xj , then the only way to do this is to make the ordered sequence of queries
(+, x1, y1), . . . , (+, xj , yj) unless the simulator S0 fails. Here y1 = IV and for each i = 2 . . . j we have
yi = yi−1 ⊕ zi−1. Hence the simulator S0 already has the triples (x1, y1, z1) . . . (xj−1, yj−1, zj−1) in its table T
when the query (+, xj , yj) is made.

If the response of the simulator S0 to the query (+, xj , yj) is different from F (X)⊕ yj , then it must be the
case that the simulator is unable to give this response because of some other constraint. But from claim 4, we

26

can deduce that the block xj cannot be part of any other valid Davies-Meyer Merkle-Damg̊ard computation
sequence unless the simulator S0 fails. Thus there can be no other constraint of the response of S0 if it has
not explicitly failed.

Thus the responses of S0 are always consistent with the relay algorithm R0 in game 3, if it does not fail.

In fact, we can use the same argument as in proof of claim 6 to show that the responses of S0 are consistent
with the random oracle F in game 4 as well (that is, the result of applying Davies-Meyer Merkle-Damg̊ard
construction using S0 to g(X) is the same as F (X)).

From the above, we can deduce that if the simulator S0 does not fail in game 4, then the responses of the
relay algorithm R1 are identical to the responses of the relay algorithm R0. And since we are using the same
simulator S0 in both games, and have shown that the responses of the simulator and the two relay algorithms
are consistent in the two games, we can also deduce that the view of the distinguisher D remains unchanged
from game 3 to game 4 if the simulator S0 does not fail in either of the two games.

Hence, we can finally complete the proof of claim 3 by observing that if the maximum length of the
prefix-free encoding of a random oracle query made by D is ℓ · κ then,

|Pr[G4]− Pr[G3]| ≤ Pr [S0 fails in game 3] + Pr [S0 fails in game 4]

= O

(

(qE + qF ℓ)2

2n

)

= O

(

(qℓ)2

2n

)

Game 5. In this game, we modify the simulator S0 so as to make its responses independent of the random
oracle F . For this purpose, we remove the random oracle F from this game entirely and the new simulator
S1 always chooses a random n-bit response, even in situations where S0 would have consulted the RO F . We
also remove all the failure conditions from the new simulator S1.

Thus on a forward query (+, x, y), the new simulator S1 checks if there is a triple (x, y, z) in its table T . If
it finds such a triple then it responds with the n-bit string z. Otherwise it chooses a uniformly random n-bit
string z and sends this as its response, while storing the triple (x, y, z) in T . On an inverse query (−, x, z), it
similarly checks to see if there is a triple (x, y, z) in its table T . If it finds such a triple, it responds with y,
else it chooses a uniformly random n-bit response y.

Now we will show that the view of the distinguisher D does not change by a non-negligible amount from
game 4 to game 5. In fact, if we can show that the responses of the simulators S0 and S1 seem almost identical
to the distinguisher D, then we will be done. But the responses of these two simulators are identical apart
from the failure conditions which are used by S0 and not by S1 (even when S0 consults the random oracle,
its response is still uniformly distributed). Thus, the distinguisher does not notice a difference between these
games if:

• In game 4, the simulator S0 does not fail.

• In game 5, the simulator S1 does not respond to its queries in such a manner that its satisfy one of the
failure conditions specified in the definition of S0.

27

In fact, these two events are identical in terms of their probability of occurrence since the distribution of the
responses of the two simulators is identical. Let G5 denote the event that the distinguisher D outputs 1 in

game 5, so that Pr[G5] = Pr[DR
S1

1
,S1(1λ) = 1]. Then we can deduce that,

|Pr[G5]− Pr[G4]| ≤ Pr [S0 fails in game 4] + Pr [S1 should have failed in game 5]

= O

(

q2ℓ2

2n

)

Game 6. This is the final game of our argument. Here we finally replace the simulator S1 with the ideal
cipher E. Since the relay algorithm R1 simply implemented the construction pf-MDS1

g , it will be the same as

the RO construction pf-MDE
g in this game. Hence this game is same as the view of the distinguisher in the

ideal cipher model.

The outputs of the ideal cipher E are not distributed uniformly like the responses of S1. Hence the
distinguisher may be able to differentiate between games 5 and 6 if it can detect this. However, this happens
only if S1 outputs an input/output collision for the same ideal cipher key. The probability of this event is
easily seen to be at most the birthday bound. Let G6 denote the probability that the distinguisher outputs 1

in game 6, so that Pr[G6] = Pr[Dpf-MDE

g ,E(1λ) = 1]. Then we can deduce that

|Pr[G6]− Pr[G5]| = O

(

q2ℓ2

2n

)

Now we can complete the proof of lemma A.2 by combining games 1 to 6, and observing that game 1 is
same as the random oracle model while game 6 is same as the ideal cipher model. Hence we can deduce that

∣

∣

∣

∣

Pr
[

DF,SF

(1λ) = 1
]

− Pr

[

Dpf-MDE

g ,E(1λ) = 1

]∣

∣

∣

∣

= O

(

q2ℓ2

2n

)

Now we will prove the indifferentiability of the second random oracle construction chop-MDE
s . Recall that

this construction essentially applies the plain Davies-Meyer Merkle-Damg̊ard construction (using the ideal
cipher E) to the input and then removes a non-trivial number s of the output bits.

Lemma A.3 The Merkle-Damg̊ard construction with truncated output chop-MDE
s based on the Davies-Meyer

construction applied to an ideal cipher E : {0, 1}κ × {0, 1}n → {0, 1}n is (tD, tS , q, ǫ)-indifferentiable from a
random oracle F : {0, 1}∗ → {0, 1}n−s in the ideal cipher model for E, for any tD and tS = O(q2 · κ)), with
ǫ = 2−n · ℓ2 · O(q2).

Proof:

We will assume that the random oracle inputs provided to the construction chop-MDE
s are all of length, that

is a multiple of the block length κ. In actual implementation, this can be achieved by applying an appropriate
encoding scheme to the input, such as appending a 1 followed by a sufficient number of 0s to the input.

The Simulator. The simulator S accepts either forward ideal cipher queries, (+, x, y), or inverse ideal
cipher queries, (−, x, z), such that x ∈ {0, 1}κ and y, z ∈ {0, 1}n. In either case, the simulator responds with a
n-bit string that is interpreted as Ex(y) in case of a forward query (+, x, y), and as E−1

x (z) in case of an inverse
query (−, x, z). The simulator maintains a table T consisting of triples (x, y, z) ∈ {0, 1}κ × {0, 1}n × {0, 1}n,
such that it either responded with z to a forward query (+, x, y) or with y to an inverse query (−, x, z).

28

On getting a forward query (+, x, y), the simulator searches its table T for a triple of the form (x, y, z). If
it finds such a triple then it responds with the n-bit string z otherwise it needs to choose a fresh response to
this query. It proceeds by searching its table T for a sequence of triples (x1, y1, z1) . . . (xi, yi, zi) such that:

• It is the case that y1 = IV , where IV denotes the initialization vector used in the construction
chop-MDE

s .

• For each j = 2 . . . i, it holds that yj = yj−1 ⊕ zj−1.

• It is the case that y = yi ⊕ zi, where y is the ideal cipher input from the current forward query.

Note that for an empty sequence of triples, i.e. when just considering the κ-bit block x from the current
query, we only need to check if y = IV and none of the above conditions make sense.

If the simulator finds such a sequence of triples, then it needs to give a response that is consistent with
the random oracle output on x1 ‖ . . . ‖ xi ‖ x. Thus, the simulator makes this RO query to get the output
Y = F (x1 ‖ . . . ‖ xi ‖ x). It then samples a uniformly random s-bit string Y ′ and outputs the n-bit string
z = (Y ‖ Y ′) ⊕ y. If the simulator does not find any such sequence of triples in its table T , then it samples
a uniformly distributed random n-bit string z and sends z as its response. In either case, it inserts the triple
(x, y, z) in its table T .

On an inverse query (−, x, z), the simulator S searches its table T for a triple (x, y, z) with arbitrary y. If
it finds such a triple, then it responds with y. Otherwise, the simulator S chooses a uniformly distributed
random n-bit string y and responds with y. It then inserts the triple (x, y, z) in its table T .

Proof of Indifferentiability. We need to prove that the distinguisher cannot tell apart the two sce-
narios, one where it has oracle access to the random oracle F and the simulator S, and the other where it
has oracle access to the RO construction chop-MDE

s and the ideal cipher E. As in the case of the prefix-free
Merkle-Damg̊ard construction, the proof involves a hybrid argument.

Game 1. This is the random oracle model, and the distinguisher D is given oracle access to the random
oracle F and the ideal cipher simulator S described above. Let G1 denote the event that the distinguisher D
outputs 1 in this game.

Pr[G1] = Pr[DF,SF

(1λ) = 1]

Game 2. In this game, the distinguisher is given oracle access to a relay algorithm R0 instead of direct oracle

access to F . The relay algorithm, in turn, has oracle access to the random oracle F . On a random oracle
query X, the relay algorithm simply makes the same query to F and responds with the RO output F (X).
Let G2 denote the event that D outputs 1 in game 2. Since the view of the distinguisher remains unchanged
in this game, we can deduce that

Pr[G2] = Pr[DRF
0

,SF

(1λ) = 1] = Pr[G1]

Game 3. In this game, we modify the simulator S. In particular, we restrict the responses of the simulator

such that they never satisfy certain specific failure conditions. If the simulator comes up with a response
that results in its responses satisfying one of these conditions, then it explicitly fails instead of sending this
response.

These failure conditions, that the new simulator S0 checks for, describe certain dependencies among its
responses that could be exploited by a distinguisher. In response to a forward query (+, x, y), the new
simulator S0 starts by choosing a n-bit response z ∈ {0, 1}n in the same way as the original simulator S. It
then checks if one of the following conditions is satisfied:

29

1. Condition B1: It is the case that z ⊕ y = IV , where IV is the initialization vector used in the RO
construction chop-MDE

s .

2. Condition B2: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y), such that y′ ⊕ z′ = y ⊕ z.

3. Condition B3: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y), such that y ⊕ z = y′.

If the response z, whether S0 chooses a uniformly random z or z is chosen to be consistent with the RO F on
some query, is such that one of these conditions is satisfied, then the simulator S0 explicitly fails.

On a new inverse query (−, x, z), the simulator S0 again chooses its response y ∈ {0, 1}n in the same way
as S. It then checks if the following conditions, and fails if any one of them is satisfied:

1. Condition C1: It is the case that y = IV or y ⊕ z = IV , where IV is the initialization vector used in
the RO construction chop-MDE

s .

2. Condition C2: There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z), such that y′ ⊕ z′ = y ⊕ z.

3. Condition C3: There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z), such that either y ⊕ z = y′ or
y′ ⊕ z′ = y.

Next we will estimate the occurrence probability for each of the above failure conditions. We start by noting
that the probability that one of the conditions C1, C2 and C3 holds can be readily estimated, since the
simulator always chooses uniformly random responses to inverse queries.

In the case of a forward query, the simulator might be forced to choose its response so as to maintain
consistency with the random oracle F . Hence the distinguisher could find out (n− s) bits of the response of
the simulator by making a random oracle query. Thus, it is not as straightforward to estimate the occurrence
probabilities for the failure conditions B1, B2 and B3. Let the number of random oracle queries made by D
be qF , and let the number of ideal cipher queries be qE (hence the total number of queries q = qE + qF)

We can bound the occurrence probability of event B1 easily, since it is the probability that at least one of
(qE + qF) uniformly random n-bit strings is IV . In order to estimate the occurrence probability of failure
condition B2, we will analyze three situations separately.

• Query (+, x, y) does not correspond to the last block of a random oracle input. In this case, condition B2

holds only if the uniformly random n-bit string y⊕z is equal to one of upto qE n-bit strings corresponding
to previous queries.

• Both (x, y, z) and (x′, y′, z′) correspond to last blocks of random oracle inputs, and the simulator adjusted
its response according to the RO output in each case. In this case, condition B2 implies a collision among
the two random oracle outputs as well as a collision among the remaining s uniformly random bits chosen
by the simulator in each case.

• The triple (x, y, z) forms the last block of a random oracle input and the simulator adjusts its response z
accordingly, but (x′, y′, z′) does not. In this case, y′⊕z′ is a random n-bit string chosen by the simulator.
Here, the condition B2 corresponds to a random oracle output along with the extra s random bits chosen
by the simulator colliding with another randomly and independently chosen n-bit string chosen by the
simulator.

From the above, we can deduce that the occurrence probability of failure condition B2 can be bounded by
the birthday bound over (qE + qF) random n-bit strings.

In order to bound the occurrence probability of failure condition B3, we note that the simulator S0 chooses
at least s random and independent bits in its response (even if it is forced to make the remaining (n− s) bits

30

consistent with the random oracle). Thus the occurrence probability of condition B3 can be bounded by the
birthday bound over (qE + qF) independent and random s-bit random strings.

Let G3 denote the event that the distinguisher D outputs 1 in this game, i.e. Pr[G3] = Pr
[

DRF
0

,SF
0 (1λ) = 1

]

.

The responses of the distinguisher in games 2 and 3 differ only if the simulator S0 exits because of one of the
failure conditions in game 3. This event is identical with the event that at least one of the failure conditions
hold for the responses of either simulators (in which case S0 exits while S does not).

|Pr[G3]− Pr[G2]| ≤ Pr[B1 ∪B2 ∪B3 ∪ C1 ∪ C2 ∪ C3 hold for a corresponding query.]

= O

(

q2

2s

)

Game 4. In this game, we modify the relay algorithm but leave the ideal cipher simulator S0 unchanged.

The underlying idea is to make the responses of the relay algorithm directly dependent on the simulator.
Thus, instead of giving the new relay algorithm R1 oracle access to the random oracle F , here it is given
oracle access to the simulator S0. It responds to a random oracle query X by computing the Davies-Meyer
Merkle-Damg̊ard construction using input X and then chops the same s bits from the output as in the case
of the RO construction chop-MDE

s .

Let G4 denote the event that the distinguisher D outputs 1 in game 4. Thus we know that

Pr[G4] = Pr
[

DR
S0

1
,SF

0 (1λ) = 1
]

We will assume that the maximum length of a random oracle query made by the adversary is ℓ · κ. Now we
will show that the view of the distinguisher changes by at most a negligible amount in the transition from
game 3 to game 4. This claim is formally stated below.

Claim A.4 Let G3 and G4 denote the events that the distinguisher outputs 1 in game 3 and game 4, respec-
tively. Let qE and qF denote the number of ideal cipher and random oracle queries made by the distinguisher,
then it is the case that

|Pr[G4]− Pr[G3]| = O

(

(qE + qF · ℓ)
2

2s

)

proof of claim A.4: The view of the distinguisher differs in games 3 and 4 only if it finds a difference in
responses of either the relay algorithm or the simulator among the two games. We will show that such a
difference is impossible, unless the simulator S0 fails in at least one of the two games. Let us start by proving
a few important properties of the simulator S0 that are valid in both games 3 and 4.

Claim A.5 If the simulator S0 does not explicitly fail, then there are no two different sequences of κ-bit blocks
x1 . . . xm and x′

1 . . . x′
p with corresponding triples (x1, y1, z1) . . . (xm, ym, zm) and (x′

1, y
′
1, z

′
1) . . . (x′

p, y
′
p, z

′
p) in

the table T such that:

• It is the case that y1 = y′1 = IV , and for each b = 2 . . .m and b′ = 2 . . . p, it holds that yb = yb−1 ⊕ zb−1

and y′b′ = y′b′−1 ⊕ z′b′−1.

• It is the case that (xm, ym, zm) = (x′
p, y

′
p, z

′
p).

proof of claim A.5: We will prove this claim by performing an induction on the number of queries made
to the simulator and show that unless the simulator S0 fails, such sequences of triples cannot exist. When no

31

queries have been made as yet, this claim is vacuously true. Let us assume that the claim is also true when q
queries have been made to the simulator S0.

Now say there exist two sequences of triples be (x1, y1, z1) . . . (xm, ym, zm) and (x′
1, y

′
1, z

′
1) . . . (x′

p, y
′
p, z

′
p),

that satisfy the properties stated in the claim, after the (q + 1)th query. Since we know that (xm, ym, zm) =
(x′

p, y
′
p, z

′
p), we can deduce that there are two subsequences of κ-bit blocks xm−r . . . xm and xp−r . . . xp such

that
∀b ∈ {0, r} : (xm−b, ym−b, zm−b) = (x′

p−b, y
′
p−b, z

′
p−b)

If r < m− 1 and r < p− 1, then consider the triples (xm−r−1, ym−r−1, zm−r−1) and (x′
p−r−1, y

′
p−r−1, z

′
p−r−1).

Since ym−r = y′p−r, we can deduce that ym−r−1 ⊕ zm−r−1 = y′p−r−1 ⊕ z′p−r−1. Without loss of generality,
assume that the query corresponding to the triple (xm−r−1, ym−r−1, zm−r−1) was made earlier than the one
corresponding to (x′

p−r−1, y
′
p−r−1, z

′
p−r−1). If this query is a forward query, then the simulator S0 would fail

because of failure condition B2. On the other hand, if this were an inverse query, then the simulator would
have failed due to failure condition C2.

Now consider the case that r = p − 1 but r < m − 1. In this case, if the triple (xm−r−1, ym−r−1, zm−r−1)
was generated as a result of a forward query then the simulator S0 would have failed due to failure condition
B1 because ym−r−1 ⊕ zm−r−1 = ym−r = y′1 = IV . If this triple were generated as a result of an inverse query
then the simulator would have failed as a result of failure condition C1 being true. The case when r = m− 1
but r < p− 1 is symmetrical

Lastly, it cannot be the case that r = p− 1 as well as r = m− 1, since the two bit strings x′
1 ‖ . . . ‖ x′

p and
x1 ‖ . . . ‖ xm are different.

Hence we can conclude that there can be no such sequences of κ-bit blocks x1, . . . , xm and x1, . . . , x
′
p if the

simulator does not explicitly fail.

Next we show that if the distinguisher wishes to find the random oracle output for an input X = x1 ‖ . . . ‖ xs

by making queries to the simulator S0 and computing the Davies-Meyer Merkle-Damg̊ard construction, then
the only way it can do so is by making the ordered sequence of forward queries (+, x1, y1) . . . (+, xs, ys).

Claim A.6 Consider any sequence of κ-bit blocks x1 . . . xs, with corresponding triples (x1, y1, z1) . . . (xs, ys, zs)
in the table T maintained by the simulator S0, such that y1 = IV and for each j = 2 . . . s it holds that
yj = yj−1 ⊕ zj−1. If the simulator S0 does not explicitly fail then it must be the case that the triples
(x1, y1, z1) . . . (xs, ys, zs) are generated as a result of the ordered sequence of forward queries (+, x1, y1) . . .
(+, xs, ys).

proof of claim A.6: To the contrary, assume that the triples (x1, y1, z1) . . . (xs, ys, zs) were not generated
as a result of the sequence of forward queries mentioned in the claim. We can then deduce that one of the
following must be true regarding the actual sequence of queries that resulted in these triples:

1. For j = 1 . . . (s − 1), a forward query (+, xj , yj) was made when the triple (xj+1, yj+1, zj+1) already
existed in the table T .

2. For j = 2 . . . s, an inverse query (−, xj , zj) was made when the triple (xj−1, yj−1, zj−1) already existed
in the table T .

3. The triple (x1, y1, z1) was generated as a result of an inverse query (−, x1, y1).

In the first case, the simulator S0 would fail since the failure condition B3 holds. Indeed, we can deduce that
yj ⊕ zj = yj+1. In the second case, the simulator explicitly fails because of failure condition C3 since we know

32

that yj = yj−1⊕zj−1. In the third and final case, the simulator would explicitly fail since the failure condition
C1 holds. Thus the only possible sequence of queries that could result in these triples is the one mentioned in
the claim.

Now we will show that the responses of the relay algorithm R0 in game 3 are consistent with those of the
simulator S0. Note that in game 4, the relay algorithm R1 is designed in such a way that its responses are
always consistent with S0 while the relay algorithm R0 is given oracle access to the random oracle F and may
not be consistent with S0. We show that such inconsistency is impossible unless the simulator S0 explicitly
fails.

Claim A.7 In game 3, if the simulator S0 never fails then there is no sequence of κ-bit blocks x1 . . . xj, with
corresponding triples (x1, y1, z1) . . . (xj , yj , zj) such that:

• y1 = IV and for l = 2 . . . j it is the case that yl = yl−1 ⊕ zl−1.

• To the random oracle query X = x1 ‖ . . . ‖ xj, the response of the relay algorithm R0 is different from
the (n− s) bits of yj ⊕ zj that are not chopped in the construction chop-MDE

s .

proof of claim A.7: To any random oracle query X, the relay algorithm R0 always responds with the
random oracle output F (X). Thus the situation described in the statement of the claim occurs if and only if
the simulator responds to its queries (corresponding to the κ-bit blocks in X = x1 ‖ . . . ‖ xj) in such a way
that yj ⊕ zj 6= F (X).

From claim A.6, we can deduce that if the distinguisher is to compute the RO output on X = x1 ‖
. . . xj by querying the simulator, then the only way to do this is to make the ordered sequence of queries
(+, x1, y1), . . . , (+, xj , yj) unless the simulator S0 fails. Here y1 = IV and for each i = 2 . . . j we have
yi = yi−1 ⊕ zi−1. Hence the simulator S0 already has the triples (x1, y1, z1) . . . (xj−1, yj−1, zj−1) in its table T
when the query (+, xj , yj) is made.

If the response of the simulator S0 to the query (+, xj , yj) is different from F (X)⊕ yj , then it must be the
case that the simulator is unable to give this response because of some other constraint. But from claim A.5,
we can deduce that the block xj cannot be the last block of any other valid Davies-Meyer Merkle-Damg̊ard
computation sequence unless the simulator S0 fails. Thus there can be no other constraint of the response of
S0 if it has not explicitly failed.

Thus we have shown that, even though the relay algorithm R0 simply forwards the random oracle outputs
in game 3, its responses are still consistent with the responses of simulator S0 in that game. Another way
to look at this claim would be to note that the responses of the simulator S0 are always consistent with the
random oracle outputs, unless it explicitly fails.

Hence, it is easy to see that if the simulator S0 does not fail in either of the games 3 or 4, the view of the
distinguisher does not change in going from one game to the other. Now we can complete the proof of claim
A.4 by observing that if the longest RO query made by the distinguisher D consists consists of at most ℓ κ-bit
blocks then

|Pr[G4]− Pr[G3]| ≤ Pr[S0 fails in game 3] + Pr[S0 fails in game 4]

= O

(

(qE + qF · ℓ)
2

2s

)

= O

(

(q · ℓ)2

2s

)

33

Game 5. In this game, we modify the simulator S0 so as to make the view of the distinguisher independent

of the random oracle F . For this purpose, we introduce a new simulator S1 that does not have oracle access to
the random oracle F , and always outputs a n-bit random response to all new forward as well as inverse queries
even in cases where S0 would have maintained consistency with F . We also remove all failure conditions from
the simulator S1.

On a forward query (+, x, y), the new simulator S1 checks if there already exists a triple (x, y, z) in its
table T . If it finds such a triple, then it responds with the n-bit string z. If not, then it chooses a uniformly
random n-bit string z and sends this as its response, while storing the triple (x, y, z) in T . On an inverse
query (−, x, z), it similarly checks to see if there is a triple (x, y, z) in its table T . If it finds such a triple, it
responds with y otherwise it chooses a uniformly random n-bit response y.

Now we will show that the view of the distinguisher does not change by a non-negligible amount in going
from game 4 to game 5. Note that if we can show that the responses of the simulators S0 and S1 are
indistinguishable, then we will be done. But in the view of the distinguisher, these two simulators are identical
apart from the failure conditions used by S0 but not by S1. Thus, we can deduce that the distinguisher does
not notice a difference between games 4 and 5 unless:

• In game 4, simulator S0 explicitly fails.

• In game 5, simulator S1 responds with an output such that it satisfies one of the failure conditions (for
which S0 would have failed).

Since the simulator S1 always chooses a uniformly random n-bit response to every query, we can easily bound
the occurrence probability of any of the failure conditions using the birthday bound. Let G5 denote the event

that the distinguisher D outputs 1 in game 5, so that Pr[G5] = Pr[DR
S1

1
,S1(1λ) = 1]. Thus we can deduce

that

|Pr[G5]− Pr[G4]| ≤ Pr[S0 fails in game 4] + Pr[S1 satisfies a failure condition in game 5]

= O

(

(q · ℓ)2

2s
+

(q · ℓ)2

2n

)

= O

(

q2ℓ2

2s

)

Game 6. This is the final game of our proof. In this game, we replace the simulator S1 with the ideal

cipher E. Since the relay algorithm R1 essentially implements the RO construction chop-MDE
s , the view of

the distinguisher in this game is essentially its view in the ideal cipher model.

The outputs of the ideal cipher E are not uniformly distributed as are the responses of S1. However, the
distinguisher can differentiate between the two only if the simulator S1 outputs a collision for the same ideal
cipher key. The occurrence probability of this event can be easily bounded using the birthday bound. Thus let

G6 be the event that the distinguisher D outputs 1 in this game, so that Pr[G6] = Pr[Dchop-MDE

s ,E(1λ) = 1]
and we can deduce that

|Pr[G5]− Pr[G4]| ≤ O

(

q2ℓ2

2n

)

Now we can complete the proof of lemma A.3 by combining games 1 to 6, and observing that game 1 is
same as the random oracle model while game 6 is the same as the ideal cipher model. Hence we can deduce

34

that
∣

∣

∣

∣

Pr
[

DF,SF

(1λ) = 1
]

− Pr

[

Dchop-MDE

s ,E(1λ) = 1

]
∣

∣

∣

∣

= O

(

q2ℓ2

2n

)

Lemma A.8 The NMAC construction NMACE1,E2 that uses two independent ideal block ciphers E1 : {0, 1}κ×
{0, 1}n → {0, 1}n and E2 : {0, 1}κ

′
× {0, 1}n

′
→ {0, 1}n

′
is (tD, tS , q, ǫ)-indifferentiable from a random oracle

F : {0, 1}∗ → {0, 1}n
′

in the ideal block cipher model for E1 and E2, for any tD and tS = O(q2), with
ǫ = 2−min(n,n′) · ℓ2 · O(q2) (ℓκ is the maximum length of an RO query made by the distinguisher).

Proof: Recall that the construction NMACE1,E2 essentially applies the Davies-Meyer Merkle-Damg̊ard con-
struction using the block cipher E1 to the input x1 ‖ . . . ‖ xℓ to get the final output Y . It then applies
the Davies-Meyer compression function using E2 to this output Y . We will assume for simplicity that the
output length n of E1 is the same as the key length κ′ of E23. We will use the initialization vector IV
for the Davies-Meyer Merkle-Damg̊ard construction applied to E1, and use initialization vector IV ′ for the
Davies-Meyer construction with E2.

The Simulator. Let us start by describing the simulator for the ideal block ciphers E1 and E2 in the
random oracle model with an actual random oracle F . The simulator gets forward/inverse queries for either
of the block ciphers E1 and E2. Thus the queries that simulator S responds to are as follows:

1. (1, +, x, y) : A forward E1 query, where (x, y) ∈ {0, 1}κ × {0, 1}n. The expected response is E1x(y).

2. (1,−, x, z) : An inverse E1 query, where (x, z) ∈ {0, 1}κ × {0, 1}n. The expected response is E1−1
x (z).

3. (2, +, x, y) : A forward E2 query, where (x, y) ∈ {0, 1}κ
′
× {0, 1}n

′
. The expected response is E2x(y).

4. (2,−, x, z) : An inverse E2 query, where (x, z) ∈ {0, 1}κ
′
× {0, 1}n

′
. The expected response is E2−1

x (z).

The simulator S also maintains a table T in which it records all previous queries that were made to it,
along with the responses it gave to each. Thus, it records an entry (1, x, y, z) in T for every forward (resp.
inverse) query of the form (1, +, x, y) (resp. (1,−, x, z)) to which it responded with z (resp. y). On the other
hand, it records an entry (2, x, y, z) in T for every forward (resp. inverse) query of the form (2, +, x, y) (resp.
(2,−, x, z)) to which it responded with z (resp. y).

On getting a forward query (1, +, x, y), the simulator first checks if there is a tuple (1, x, y, z) in its table
T . If this is the case, then the simulator S responds with z, otherwise it chooses a uniformly random n-bit
string z and sends this as its response. It then records (1, x, y, z) in its table T .

Similarly, on getting an inverse query (1,−, x, z), it first searches its table T for a tuple (1, x, y, z). If it
finds such a tuple, then it responds with z, otherwise it sends a uniformly random n-bit string y as its response
and stores (1, x, y, z) in its table T .

On a query (2, +, x, y), the simulator S again checks if there is a tuple (2, x, y, z) ∈ T . If this is the case
then it responds with z. If it cannot find such a tuple, then the simulator checks if y = IV ′, where IV ′ is the
initialization vector used in the second part of the construction NMACE1,E2. If y 6= IV ′, then the simulator
simply sends back a random response z ∈ {0, 1}n

′
and stores (2, x, y, z) in T . On the other hand, if y = IV ′,

then the simulator S searches its table T for a sequence of tuples (1, x1, y1, z1), . . . , (1, xi, yi, zi) such that the
following conditions hold:

3one can use suitable padding techniques to expand Y from n bits to κ′ bits

35

• It is the case that y1 = IV , where IV denotes the initialization vector used in NMACE1,E2.

• For each j = 2 . . . i, it holds that yj = yj−1 ⊕ zj−1.

• It is the case that yi ⊕ zi = x, where x is the key provided in the current query (2, +, x, y) (here we
assume that κ′ = n).

If the simulator S finds such a sequence of tuples, then it needs to send a response that is consistent with the
random oracle F . Thus, it queries the random oracle F on the input x1 ‖ . . . ‖ xℓ to get the output Y = F (x1

parallel . . . ‖ xℓ). It then chooses its response as z = Y ⊕ y = Y ⊕ IV ′ (since we know that y = IV ′). It then
sends this n′-bit string z as its response and store (2, x, y, z) in its table T . If S does not find such a tuple,
then it sends a random response z ∈ {0, 1}n

′
and stores (2, x, y, z) in T .

On getting an inverse query (2,−, x, z), the simulator searches its table T for a tuple (2, x, y, z) and re-
sponds with y if it finds such a tuple. If it does not find such a tuple, then it sends a uniformly random n′-bit
response y and stores (2, x, y, z) in its table T .

Proof of Indifferentiability. We need to show that the distinguisher cannot tell apart the two sce-
narios, one where it has oracle access to the actual random oracle F and the simulator S described above,
and the other where it has oracle access to RO construction NMACE1,E2 and the ideal block ciphers E1 and
E2. We will use a hybrid argument to prove this result starting in the random oracle scenario, and ending in
the ideal cipher scenario through a sequence of indistinguishable games.

Game 1. This is the random oracle model, where the distinguisher D has oracle access to the random oracle
F and the simulator S. Let G1 denote the event that D outputs 1 after interacting with F and S. Thus,

Pr[G1] = Pr
[

DF,SF

(1λ) = 1
]

Game 2. In this game, we give the distinguisher oracle access to a dummy relay algorithm R0 instead of

direct oracle access to the RO F . This relay algorithm, in turn, has oracle access to the RO F , and on getting
a random oracle query from the distinguisher, it simply makes the same query to F and forwards the RO
output to the distinguisher D as its response. The simulator S still has direct oracle access to F . Let G2

denote the event that the distinguisher D outputs 1 in this game. Since the view of the distinguisher remains
unchanged in this game, we can deduce that

Pr[G2] = Pr
[

DRF
0

,SF

(1λ) = 1
]

= Pr[G1]

Game 3. In this game, we will modify the simulator S by restricting its responses. In particular, the new

simulator S0 chooses its responses in the same fashion as the original simulator S, but after making its choice
the simulator S0 checks if it responses so far satisfy one of a few conditions that could aid the distinguisher
in getting to know that it is in the random oracle scenario.

On a forward query (1, +, x, y), the new simulator S0 checks if there is a tuple (1, x, y, z) in its table T ,
and chooses its response z in the same way as the original simulator S. However, if the response chosen is a
new one then it checks if the tuple (x, y, z) satisfies one of the following conditions before sending z.

1. Condition B1: It is the case that z⊕ y = IV , where IV is the n-bit initialization vector used in the first
Merkle-Damg̊ard construction using E1.

2. Condition B2: There is a tuple (1, x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y), such that y′ ⊕ z′ = y ⊕ z.

3. Condition B3: There is a tuple (1, x′, y′, z′) ∈ T such that z ⊕ y = y′.

36

4. Condition B4: There is a tuple (2, x′, y′, z′) ∈ T such that y ⊕ z = x′.

If the response z chosen by the simulator S0 is such that at least one of these conditions is satisfied, then the
simulator explicitly fails. Essentially, the idea is that conditions B1 and B2 could be used by the distinguisher
to make two random oracle inputs collide after the Merkle-Damg̊ard part using E1. On the other hand,
conditions B3 and B4 could be used by the distinguisher to generate a random oracle input such that the
simulator cannot adjust its output to match that of the random oracle. Since the simulator S0 always chooses
the response to any E1 query at random, we can bound the occurrence probabilities of each of these events
using simple probability calculations.

On an inverse query (1,−, x, z), the new simulator S0 chooses its response y in the same fashion as the
original simulator S. However, if the response is not chosen from the table T , then S0 checks if the tuple
(x, y, z) satisfies any of the following conditions.

1. Condition C1: It is the case that y = IV or y ⊕ z = IV , where IV is the initialization vector used in
the Merkle-Damg̊ard construction using E1.

2. Condition C2: There is a tuple (1, x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z), such that y′ ⊕ z′ = y ⊕ z.

3. Condition C3: There is a tuple (1, x′, y′, z′) ∈ T such that y ⊕ z = y′ or y′ ⊕ z′ = y.

4. Condition C4: There is a tuple (2, x′, y′, z′) ∈ T such that y ⊕ z = x′.

If the response y is such that at least one of these conditions is satisfied, then the simulator S0 explicitly fails.
We can estimate the occurrence probabilities for these failure condition similar to the case of a forward query
(1, +, x, y).

For queries made to the block cipher E2, we need to check for different failure conditions. In particular,
the Merkle-Damg̊ard construction using E2 will only be applied to one block inputs in the RO construction
NMACE1,E2. For forward queries (2, +, x, y), the new simulator S0 chooses z ∈ {0, 1}n

′
in the same way as

the original simulator S and sends z as its response without checking for any failure conditions. On the other
hand, for inverse queries (2,−, x, z), the simulator S0 chooses y ∈ {0, 1}n

′
similar to S, but then checks to see

if the tuple (x, y, z) satisfies the following condition:

1. Condition C ′
1: It is the case that y = IV ′.

If the tuple (x, y, z) satisfies this condition and the response y was freshly chosen at random, then the simulator
S0 explicitly fails. The probability of occurrence of the failure condition C ′

1 is a straightforward probability
computation.

Let G3 denote the event that the distinguisher D outputs 1 in game 3, i.e. Pr[G3] = Pr
[

DRF
0

,SF
0 (1λ) = 1

]

.

The response distribution of the distinguisher differs in games 2 and 3 if and only if the simulator S0 fails in
game 3. This event is identical to one of the failure conditions holding for the responses of the simulator S0.

|Pr[G3]− Pr[G2]| = Pr[B1 ∨B2 ∨B3 ∨B4 ∨ C1 ∨ C2 ∨ C3 ∨ C4 ∨ C ′
1]

≤
q2

2min(n.n′)

Game 4. In this game, we modify the relay algorithm, but leave the ideal cipher simulator S0 unchanged.
In particular, the new relay algorithm R1 does not simply relay the outputs of the random oracle F . Instead,
R1 is given oracle access to the simulator S0, and it responds to any random oracle queries made to it by
honestly evaluating the RO construction NMACE1,E2 by using the simulator S0 in place of the ideal ciphers
E1 and E2.

37

Let G4 denote the event that the distinguisher D outputs 1 in game 4, so that

Pr[G4] = Pr

[

DR
SF
0

1
,SF

0 (1λ) = 1

]

We assume that the maximum length of a random oracle query made by the distinguisher is ℓ · κ. Now we
will show that the view of the distinguisher D does not change by a non-negligible amount when we make
this change to the relay algorithm. This is formally stated below.

Claim A.9 Let G3 and G4 denote the events that the distinguisher outputs 1 in game 3 and 4, respectively.
Let qE and qF denote the number of ideal cipher (including both E1 and E2 queries) and random oracle
queries made by the distinguisher, then it is the case that

|Pr[G4]− Pr[G3]| = O

(

(qE + qF · ℓ)
2

2min(n,n′)

)

proof of claim A.9: The view of the distinguisher changes in the transition from game 3 to 4 only if there is
a change in the response distributions of either the relay algorithm or the simulator between the two games.
We will show that if the simulator S0 does not fail in either of the two games, then such a change in the
response distributions is impossible.

Let us start by analyzing the way the two relay algorithms, R0 and R1, choose their responses. The relay
algorithm from game 3, R0, simply forwards the random oracle output to any RO query X (i.e. responds
with F (X)). On the other hand, the relay algorithm from game 4 uses the block ciphers simulated by S0 to
implement the RO construction NMACE1,E2, and responds with the output of this “simulated construction”.
If the distinguisher detects a difference in the responses of the two relay algorithms, then it must be the case
that the simulator S0 did not adjust its responses consistently with the RO F in game 4, which resulted in
the response of the relay algorithm R1 not matching the RO output. We will show that unless the simulator
S0 explicitly fails, it is always able to adjust its responses consistent with the random oracle F .

The simulator S0 is the same in both games 3 and 4. However, the simulator receives extra queries from
the relay algorithm R1 in game 4. Thus it may be the case that the simulator S0 chooses its response to the
same query differently, depending on whether it is in game 3 or game 4. This is the case only if the simulator
chooses its response consistent with the RO F in one game, while independently at random in the other game.
We will show that such a difference is impossible, unless the simulator S0 explicitly fails in one of the games.

Below, for simplicity, we will denote by NMACS0(X) the output of the “simulated RO construction”
NMACE1,E2 using the block ciphers simulated by S0, while F (X) is the actual random oracle output on X.
We will start by proving a couple of useful properties of the responses of the simulator S0 that hold in both
games 3 and 4. The first property essentially says that if the simulator S0 does not fail then it is not possible
for the input to the Davies-Meyer function based on E2 to collide for two different RO inputs.

Claim A.10 If the simulator S0 does not explicitly fail, then there are no two different sequences of κ-bit blocks
x1 . . . xm and x′

1 . . . xp with corresponding tuples (1, x1, y1, z1) . . . (1, xm, ym, zm) and (1, x′
1, y

′
1, z

′
1) . . . (1, x′

p, y
′
p, z

′
p)

in the table T of S0 such that:

• It is the case that y1 = y′1 = IV . Moreover, for each b = 2 . . .m and b′ = 2 . . . p, it holds that
yb = yb−1 ⊕ zb−1 and y′b′ = y′b′−1 ⊕ z′b′−1.

• It is the case that ym ⊕ zm = y′p ⊕ z′p.

proof of claim A.10: This is easy to see since there is a r ∈ {0 . . . (min(m, p)− 1)} such that,

∀s ∈ {0, (r + 1)} : (xm−s, ym−s, zm−s) = (x′
p−s, y

′
p−s, z

′
p−s) and (xm−r, ym−r, zm−r) 6= (x′

p−r, y
′
p−r, z

′
p−r)

38

Of the two tuples (1, xm−r, ym−r, zm−r) and (1, x′
p−r, y

′
p−r, z

′
p−r), we consider the one whose corresponding

query was made later. Without loss of generality, let this be (1, xm−r, ym−r, zm−r). If this was a result of a
forward query (1, +, xm−r, ym−r), then the simulator S0 would have failed due to failure condition B2. On
the other hand if this were an inverse query, then S0 would have failed as a result of the failure condition C2.

Next, we show that if the distinguisher wishes to find out the output NMACS0(X) for a random oracle query
X = x1 ‖ . . . ‖ xm, then the only way it can do so is by computing the RO construction honestly.

Claim A.11 Consider any sequence of entries (1, x1, y1, z1) . . . (1, xm, ym, zm), (2, x′, y′, z′) in the table T
maintained by the simulator S0 that satisfy the following properties:

• It is the case that y1 = IV and y′ = IV ′.

• For all i = 2 . . . m, it is the case that yi = yi−1 ⊕ zi−1.

• It also holds that x′ = ym ⊕ zm.

If the simulator S0 does not explicitly fail, then it is necessarily the case that these entries were generated as
a result of the ordered sequence of queries (1, +, x1, y1), . . . , (1, +, xm, ym), (2, +, x′, y′).

proof of claim A.11: To the contrary, assume that the tuples (1, x1, y1, z1) . . . (1, xm, ym, zm), (2, x′, y′, z′)
were not generated as a result of the ordered sequence of forward queries (1, +, x1, y1), . . . , (1, +, xm, ym),
(2, +, x′, y′). In this case, one of the following must hold:

1. The tuple (1, xm, ym, zm) was stored in the table T after the tuple (2, x′, y′, z′), as a result of a for-
ward/inverse query.

2. For some j ∈ {1 . . . (m−1)}, a new forward query (1, +, xj , yj) was made when the tuple (1, xj+1, yj+1, zj+1)
already existed in the table T .

3. For some j ∈ {2 . . . m}, a new inverse query (1,−, xj , zj) was made when the tuple (1, xj−1, yj−1, zj−1)
already existed in the table T .

4. The tuple (1, x1, y1, z1) was stored in T as a result of an inverse query (1,−, x1, z1).

5. The tuple (2, x′, y′, z′) was stored in T as a result of the inverse query (2,−, x′, z′).

We will show how any of these situations would have resulted in the simulator S0 explicitly failing. In each
of these cases, we can deduce that at least one of the failure conditions would have held.

• Case 1 : In this case, the failure condition B4 (resp. C4) would have been true for the query (1, +, xm, ym)
(resp. (1,−, xm, zm)).

• Case 2 : Failure condition B3 would have been true for the query (1, +, xj , yj).

• Case 3 : Failure condition C3 would have been true for the query (1,−, xj , zj).

• Case 4 : Failure condition C1 would have been true for the query (1,−, x1, z1).

• Case 5 : Failure condition C ′
1 would have been true for the query (2,−, x′, z′).

39

Thus if the simulator never fails, then the sequence of tuples (1, x1, y1, z1) . . . (1, xm, ym, zm), (2, x′, y′, z′) could
have been stored only as a result of the sequence of forward queries (1, +, x1, y1), . . . , (1, +, xm, ym), (2, +, x′, y′).

As a consequence of claims A.10 and A.11, we can deduce that in both games 3 and 4 the simulator is always
able to adjust its responses to be consistent with random oracle F if it does not explicitly fail. Thus the
responses of the relay algorithm R0 and R1 are identical in the view of the distinguisher. Moreover, as a
result of claim A.11, we can also deduce that the distinguisher D can only find the output NMACS0(X) by
making the sequence of forward queries given in claim A.11. In this case, the simulator adjusts its response
accordingly so that NMACS0(X) = F (X) for any X. Thus the view of the distinguisher D does not change
in the transition between games 3 and 4 if the simulator S0 does not explicitly fail in either game. Hence, we
can deduce that

|Pr[G4]− Pr[G3]| ≤ Pr[S0 fails in either game]

= O

(

(qE + qF · ℓ)
2

2min(n,n′)

)

Game 5. In this game, we modify the simulator so that it always selects its responses independent of the

random oracle F . This does not induce any inconsistencies in the view of the distinguisher since the relay
algorithm R1 also uses the new simulator S1 instead of directly using the random oracle F .

The new simulator S1 always chooses a uniformly random response to any query made to it, including any
forward query (2, +, x, IV ′). Moreover, after it chooses a response it does not check for any of the failure
conditions that the old simulator S0 checked for in game 4. The view of the distinguisher does not change
by more than a negligible amount in the transition from game 4 to 5. This is because the distinguisher only
notices a difference between the two games if S0 fails in game 4 (or equivalently, the new simulator S1 responds
with a z that satisfies one of the failure conditions checked by S0). Since the new simulator S1 always chooses
a uniformly random response to any query, we can easily bound this difference.

|Pr[G5]− Pr[G4]| ≤ Pr[S0 fails in game 4] + Pr[S1 satisfies one of the failure conditions]

= O

(

(q · ℓ)2

2min(n,n′)

)

Game 6. This is the final game of our proof. Here we replace the simulator S1 by actual ideal block ciphers

E1 : {0, 1}κ×{0, 1}n → {0, 1}n and E2 : {0, 1}κ
′
×{0, 1}n

′
→ {0, 1}n

′
. Since the relay algorithm R1 essentially

implements the RO construction NMACE1,E2, the view of the distinguisher in this game is identical to its
view in the ideal cipher model.

Let G6 denote the event that the distinguisher D outputs 1 in this game. We can deduce that the view
of the distinguisher does not change in the transition from game 5 to 6, unless the simulator S1 outputs a
collision in block cipher outputs for the same key. The probability of this event can be bounded by simply
using the birthday paradox.

|Pr[G6]− Pr[G5]| ≤ Pr[S1 outputs a collision.]

= O

(

(q · ℓ)2

2min(n,n′)

)

40

Now we can complete the proof of lemma A.8 by combining the above games. Hence, we deduce that

∣

∣

∣
Pr

[

DNMACE1,E2
,E1,E2(1λ) = 1

]

− Pr
[

DF,S(1λ) = 1
]
∣

∣

∣
= O

(

q2ℓ2

2min(n,n′)

)

Lemma A.12 The HMAC construction HMACE using an ideal block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n

is (tD, tS , q, ǫ)-indifferentiable from a random oracle F : {0, 1}∗ → {0, 1}n in the ideal block cipher model for
E, for any tD and tS = O(q2), with ǫ = 2−n · ℓ2 · O(q2) (ℓκ is the maximum length of an RO query made by
the distinguisher).

Proof: The proof of this lemma is almost identical to the proof of indifferentiability for the NMAC construc-
tion given in lemma A.8. This is because the HMAC construction essentially implements the NMAC using
a single block cipher, by using different initialization vectors in each part of the construction. With slight
modifications, the simulator described in lemma A.8 works in this case as well.

The proof of indifferentiability is also almost identical to that in lemma A.8. We do add a few extra “failure
conditions” to handle the fact that we are using the same ideal cipher E in place of both E1 and E2.

This completes the proofs of indifferentiability for each of our proposed constructions of random oracle in
the ideal cipher model.

41

