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Abstract

We introduce a new cryptographic primitive we callconcealment, which is related, but quite different
from the notion of commitment. A concealment is a publicly known randomized transformation, which,
on inputm, outputs ahiderh and abinderb. Together,h andb allow one to recoverm, but separately, (1)
the hiderh reveals “no information” aboutm, while (2) the binderb can be “meaningfully opened” by
at most one hiderh. While settingb = m, h = ; is a trivial concealment, the challenge is to makejbj �jmj, which we call a “non-trivial” concealment. We show that non-trivial concealments are equivalent
to the existence of collision-resistant hash functions. Moreover, our construction of concealments is
extremely simple, optimal, and yet very general, giving rise to a multitude of efficient implementations.

We show that concealments have natural and important applications in the area ofauthenticated en-
cryption. Specifically, letAE be an authenticated encryption scheme (either public- or symmetric-key)
designed to work on short messages. We show that concealments areexactlythe right abstraction allow-
ing one to useAE for encrypting long messages. Namely, to encrypt “long”m, one uses a concealment
scheme to geth andb, and outputs authenticated ciphertexthAE(b); hi. More surprisingly, the above
paradigm leads to a very simple and general solution to the problem ofremotely keyed (authenticated)
encryption(RKAE) [12, 13]. In this problem, one wishes to split the task of high-bandwidth authenti-
cated encryption between a secure, but low-bandwidth/computationally limited device, and an insecure,
but computationally powerful host. We give formal definitions forRKAE, which we believe are simpler
and more natural than all the previous definitions. We then show that our composition paradigm satisfies
our (very strong) definition. Namely, for authenticated encryption, the host simply sends a short valueb to the device (which stores the actual secret key forAE), gets backAE(b), and outputshAE(b); hi
(authenticated decryption is similar). Finally, we also observe that the particular schemes of [13, 18] are
all special examples of our general paradigm.

1 Introduction

AUTHENTICATED ENCRYPTION. The notions of privacy and authenticity are well understood in the crypto-
graphic community. Interestingly, until very recently they have been viewed and analyzed as important but
distinctbuilding blocks of various cryptographic systems. When both were needed, the folklore wisdom was
to “compose” the standard solutions for two. Recently, however, the area ofauthenticated encryptionhas
received considerable attention. This was caused by many related reasons. First, a “composition” paradigm
might not always work [7, 20, 2], at least if not used appropriately [2, 26]. Second, a tailored solution
providing both privacy and authenticity might be noticeably more efficient (or have other advantages) than
a straightforward composition [17, 27, 32, 2, 6]. Third, theproper modeling of authenticated encryption is
not so obvious, especially in the public-key setting [2, 3].Finally, viewing authenticated encryption as a�Department of Computer Science, New York University, 251 Mercer Street, New York, NY 10012, USA. Email:
dodis@cs.nyu.eduySoftMax Inc., San Diego, USA. Email:jeehea@cs.ucsd.edu.
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separateprimitive may conceptually simplify the design of complex protocols which require both privacy
and authenticity.

OUR MAIN QUESTION. Despite the recent attention to authenticated encryption, the area is so new that
many fundamental questions remain open. In this work, we study and completely resolve one such fun-
damental question, which has several important applications. Specifically, assume we have a secure au-
thenticated encryption (either symmetric- or public-key)AE which works on “short” messages. How do
we build a secure authenticated encryptionAE 0 on “long” messages out ofAE? (Throughout, we should
interpret “short” as having very small length, like256 bits; “long” stands for fixed, but considerably larger
length, possibly on the order of gigabytes.) While our question was not previously studied in the context of
authenticated encryption, it clearly has rich history in the context of many other cryptographic primitives.
We briefly review some of this work, since it will suggest the first solutions to our problem too.

First, in the context of regular chosen plaintext secure (CPA-secure) encryption, we can simply split
the message into blocks and encrypt it “block-by-block”. Ofcourse, this solution multiplicatively increases
the size of the ciphertext, so a lot of work has been developedinto designing more efficient solutions.
In the public-key setting, the classical “hybrid” encryption solution reduces the problem into that in the
symmetric-key setting. Namely, one encrypts, using the public-key, a short randomly chosen symmetric
key � , and uses� to symmetrically encrypt the actual messagem. As for the symmetric-key setting, one
typically uses one of many securemodes of operationson block ciphers (such asCBC; see [23]), which
typically (and necessarily) add only one extra block of redundancy when encrypting a long messagem. For
authentication, a different flavor of techniques is usuallyused. Specifically, a common method is to utilize a
collision-resistant hash function[14] H1 which maps a long inputm into a short output such that it is hard
to find a “collision”H(m0) = H(m1) for m0 6= m1. Then one applies the given authentication mechanism
for short strings toH(m) to authenticate much longerm. This works, for example, for digital signatures
(this is called “hash-then-sign”), message authentication codes (MACs), and pseudorandom functions (for
the latter two, other methods are possible; see [5, 4, 11, 1] and the references therein).

FIRST SOLUTION ATTEMPT. One way to use this prior work is to examine generic constructions of au-
thenticated encryption using some of the above primitives,and apply the above “compression” techniques
to each basic primitive used. For example, in the symmetric-key setting we can take the “encrypt-then-mac”
solution [7] for authenticated encryption, theCBC mode for encryption, theCBC-MAC [5] for message
authentication, and build a specific authenticated encryption on long messages using only a fixed-length
block cipher. Even better, in this setting we could utilize some special purpose, recently designed modes of
operation forauthenticatedencryption, such as IACBC [17] or OCB [27]. Similar techniques could be ap-
plied in the public-key setting using the “hybrid” technique for encryption, “hash-then-sign” for signatures,
and any of the three generic signature/encryption compositions presented by [2].

In other words, prior work already gives us some tools to build “long” authenticated encryption, without
first reducing it to “short” authenticated encryption.

WHY SOLVING OUR PROBLEM THEN? The first reason is in its theoretical value. It is a very interest-
ing structural question to design an elegant amplification from “short” to “long” authenticated encryption,
without building the “long” primitive from scratch. For example, in the public-key setting especially, it is
curious to see what is the common generalization of such differently looking methods as “hybrid” encryp-
tion and “hash-then-sign” authentication. Indeed, we shall see that this generalization yields a very elegant
new primitive, certainly worth studying on its own. The second reason is that it gives one moreoption to
designing “long-message” authenticated encryption. Namely, instead of solving the problem by usingother
“long-message” primitives, and implementing these separately, we directly reduce it to thesame, but “short-
message” primitive, and implement it separately. And this may bring other advantages (e.g. efficiency,

1Or, when possible, a weaker class of hash functions, such as various types of universal hash functions.
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ease of implementation, etc.), depending on its application and implementation. Consider, for example,
the public-key setting, where authenticated encryption isusually calledsigncryption[32]. With any of the
generic signature-encryption compositions [2], signcryption of a long messages will eventually reduce to a
regular signature plus a regular encryption on some short messages. With our paradigm, it will reduce to a
single signcryption on a short message, which can potentially be faster than doing a separate signature and
encryption. Indeed, this potential efficiency gain was the main motivation of Zheng [32] to introduce sign-
cryption in the first place! Finally, our technique has important applications on its own. In particular, we
show that it naturally leads to a very general, yet simple solution to the problem ofremotely keyed authen-
ticated encryption[12, 21, 13] (RKAE), discussed a bit later. None of the other techniques we mentioned
seem to yield the solution to this problem.

OUR MAIN CONSTRUCTION AND A NEW PRIMITIVE . In our solution method, we seek to amplify a
given “short” authenticated encryptionAE into a “long” AE 0 as follows. First, we somehow split the long
messagem into two parts(h; b) T (m), wherejbj � jmj, and then defineAE 0(m) = hAE(b); hi. Which
transformationsT suffice in order to makeAE 0 a “secure” authenticated encryption ifAE is such? We
completely characterize such transformationsT , which we callconcealments. Specifically, we show thatAE 0 is secure if and only ifT is a (relaxed) concealment scheme.

Our new notion of concealments is remarkably simple and natural, and defines a new cryptographic
primitive of independent interest. Intuitively, a concealment T has to be invertible, and also satisfy the
following properties: (1) thehiderh reveals no information aboutm; and (2) thebinderb “commits” one tom in a sense that it is hard to find a valid(h0; b) whereh0 6= h. Property (2) has two formalizations leading to
the notions of regular and relaxed concealment schemes. Relaxed concealments suffice for the composition
purposes above, but we will need (strong) regular concealments for the problem ofRKAE, briefly mentioned
earlier and discussed shortly. We remark that concealmentslook very similar tocommitment schemesat
first glance, but there are few crucial differences, making these notions quite distinct. This comparison will
be discussed in Section 2.

Finally, we are left with the question of constructing concealment schemes. First, we show thatnon-
trivial (i.e., jbj < jmj) concealment schemes are equivalent to the existence of collision-resistant hash
functions (CRHFs). In particular, our construction fromCRHFs is very simple, efficient and general, giving
rise to many optimal implementations. Specifically,jhj � jmj, while jbj is only proportional to the security
parameter. In fact, one special case of our construction looks very similar to the famousOptimal Asymmetric
Encryption Padding(OAEP) [8]. Our construction replaces two random oraclesG andH used in this variant
of OAEP by a pseudorandom generator and a collision-resistant hash function, respectively. Thus, having a
well established goal in mind, we essentially found an application of (slightly modified) OAEP, where we
can provably eliminate random oracles in the analysis. Morefrom a theoretical point of view, we also give
a useful, but slightly less efficient construction ofrelaxedconcealments from a somewhat weaker notion of
universal one-way hash functions(UOWHF) [25]. In principle, this shows that relaxed concealments can
be constructed even from regular one-way functions [28], thus separating them from regular concealments
by the result of Simon [31].

To summarize, we show that concealments are very natural cryptographic gadgets, and can be efficiently
built from standard assumptions. In particular, they give an efficient way to implement “long” authenticated
encryption from a “short” one. Finally, we describe a powerful application of concealments and our ampli-
fication technique to the problem ofRKAE, which deserves a separate introduction.

REMOTELY KEYED AUTHENTICATED ENCRYPTION: HISTORY. The problem of “remotely keyed encryp-
tion” (RKE) was first introduced by Blaze [12] in the symmetric-key setting. Intuitively, RKE is concerned
with the problem of “high-bandwidth encryption with low bandwidth smartcards”. Essentially, one would
like to store the secret key in a secure, but computationallybounded and low bandwidth Card, while to
have an insecure, but powerful Host perform most of the operations for encryption/decryption. Of course,
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the communication between the Host and the Card should be minimal as well. The original work of Blaze
lacked formal modeling of the problem, but inspired a lot of subsequent research. The first formal modeling
of RKE was done by Lucks [21], who chose to interpret the question asthat of implementing a remotely
key pseudorandom permutation(or block cipher), which we will callRKPRP. Lucks’ paper was further
improved —both in terms of formal modeling and constructions— by an influential work of Blaze, Feigen-
baum and Naor [13]. For one thing, they observed that thePRP’s length-preserving property implies that it
cannotbe semantically secure when viewed as encryption. Thus, in addition toRKPRP, which they called
a “length-preservingRKE”, they introduced the notion of a “length-increasingRKE”, which is essentially
meant to be the notion of remotely keyedauthenticatedencryption, so we will call itRKAE. In other words,
the informal notion of “RKE” was really formalized into two very distinct notions ofRKPRP andRKAE,
none of which is really a plain encryption. Blaze et al. [13] gave formal definitions and constructions of
RKAE andRKPRP, and the latter’s construction was subsequently improved by [22].

While theRKAE definition of [13] was an important and the first step towards properly formalizing this
new notion (as opposed to the notion ofRKPRPs), their definition is convoluted and quite non-standard (it
involves an “arbiter” who can fool any adversary). For example, it looks nothing like the formal, universally
accepted notion of regular (not remotely keyed) authenticated encryption [19, 10, 7]. Of course, this has
a very objective reason in that the above formal definition appearedafter the work of [13]. Additionally,
at the time Blaze et al. perhaps tried to make their definitionof “length-increasingRKE” look as close as
possible to their definition of “length-preservingRKE” (i.e., RKPRP) also studied in that paper, since the
latter was the previously considered notion. Still, we believe that the definition ofRKAE should be based
on the definition of regular authenticated encryption, rather than try mimicking the definition of a somewhat
related, but different concept. Thus, we will give what we feel is a simpler and more natural such definition,
which looks very close to the definition of regular authenticated encryption. Additionally, we naturally
extend the whole concept ofRKAE to thepublic-keysetting, since it is equally applicable in this case too.2

Notice, in this setting the notion ofRKPRP makes no sense, which additionally justifies our choice to base
our definition on that of regular authenticated encryption.

Another closely related work is that of Jakobsson et al. [18], who also effectively studied the problem
of RKAE (even though still calling itRKE despite considering authentication as part of the requirement).
We note that the definition of [18] looks much closer to our newformalization. However, there are still
significant differences that make our notion stronger.3 For example, [18] do not support chosen ciphertext
attack in its full generality (i.e., no Card access is given to the adversary after the challenge is received), and
also require the adversary to “know” the messages corresponding to forged ciphertexts. Finally, we mention
that their main scheme uses an “OAEP”-like transform, and their security analyses critically use random
oracles. As we show, using another (in fact, simpler!) variant of OAEP forRKAE, we can eliminate random
oracles from the analysis. Thus, a special case of our construction gives an equally simple and efficient
scheme, which is provably secure in the standard model.

Finally, we mention the recent work Joux et al. [16]. Form ourperspective, it showed that naive
“remotely-keyed” implementation of many natural block cipher modes of operations for (authenticated)
encryption, such as CBC or IACBC, are completely insecure from the perspective ofRKE/RKAE. In such
naive implementations, the Card stores the key to the block cipher, while the Host does everything by itself
except when it needs to evaluate the block cipher (or its inverse), it which case it calls the Card. We notice
that this means that to perform a single (authenticated) encryption/decryption, the Host needs to adaptively
access the Card for a number of times proportional to the length of the (long) message. Perhaps not surpris-

2In this abstract, though, we will restrict ourselves to the symmetric-key setting.
3Except both [18] and [13] insist on achieving some kind of pseudorandomness of the output. Even though our constructions

achieve it as well, we feel this requirement is not crucial for any application ofRKAE, and was mainly put to make the definition
look similar toRKPRPs.
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ingly, this gives too much power to the “blockwise-adaptive” adversary, allowing him to easily break the
security of such naiveRKE/RKAE implementations. In contrast, in ourRKAE solutions the Host accesses
the Card once and on a very short input, irrespective of the length of the message it actually processes. In
fact, in one of our solutions (see “extensions” paragraph below), all the Card does is a single block cipher
call per invocation!

As a corollary, the work of [16] strongly supports our prior claim that direct “long” authenticated en-
cryption schemes, such as IACBC [17], do not seem to be naturally suited forRKAE.

OUR CONTRIBUTION TO RKAE. As we mentioned, we give a simple and natural definition ofRKAE,
which we feel improves upon the previous definitions. In addition, we show that our construction of
“long-message” authenticated encryption from that of “short-message” authenticated encryption provides
a very natural, general, and provably secure solution to theproblem ofRKAE. Recall, we hadAE 0(m) =hAE(b); hi, where(h; b) was output by some transformationT , andjbj � jmj. This immediately suggests
the following protocol forRKAE. The Host computes(h; b) and sends shortb to the Card, which stores
the secret key. The Card computes short = AE(b) and sends it to the Host, which outputsh; hi. Au-
thenticated decryption is similar. Again, we ask the question which transformationsT will suffice to make
this simple scheme secure. Not surprisingly, we get that concealment schemes are necessary and sufficient,
even though in this case we do need regular (“non-relaxed”) concealments. We believe that our result gives a
general and intuitively simple solution to the problem. Also, it generalizes the previous, so “differently look-
ing” solutions of [13, 18], both of which can be shown to use some particular concealment and/or “short”
authenticated encryption.

EXTENSIONS. All our techniques naturally support authenticated encryption with associated data[26],
which we explain in the sequel. In fact, this distinction makes our composition paradigm even slightly more
efficient. Also, we remark again that all our results apply toboth the public- and the symmetric-key authenti-
cated encryption. The only exception is the following extension that makes sense only in the symmetric-key
setting. We study the question of whether we can replace our “short” authenticated encryptionAE by a
(strong) pseudorandom permutation (i.e., a block cipher, sinceAE is applied on short inputs), which would
enhance the practical usability of our composition even more. We show that while arbitrary concealments are
generally not enough to ensure the security of thus constructedAE 0, some mild extra restrictions —enjoyed
by our main concealment constructions— make them sufficientfor this purpose.

2 Definition of Concealment

Intuitively, a concealment scheme efficiently transforms amessagem into a pair(h; b) such that: (1)(h; b)
together revealm; (2) thehiderh reveals no information aboutm; and (3) thebinderb “commits” one tom
in a sense that it is hard to find a valid(h0; b) whereh0 6= h. Below is a formal description.

SYNTAX . A concealment scheme consists of three efficient algorithms: C = (Setup;Coneal;Open). The
setup algorithmSetup(1k), wherek is the security parameter, outputs a public concealment keyCK (pos-
sibly empty, but often consisting of public parameters forC). Given a messagem from the corresponding
message spaceM (e.g.,f0; 1gk), the randomized concealment algorithmConealCK(m; r) (wherer is the
randomness) outputs a concealment pair(h; b), whereh is thehider of m andb is thebinder to m. For
brevity, we will usually omitCK and/orr, writing (h; b)  Coneal(m). Sometimes we will writeh(m)
(resp. b(m)) to denote the hider (resp. binder) part of a randomly generated (h; b). The deterministic
open algorithmOpenCK(h; b) outputsm if (h; b) is a “valid” pair for m (i.e. could have been generated
by Coneal(m)), or? otherwise. Again, we will usually writex  Open(h; b), wherex 2 fm;?g. The
correctnessproperty of concealment schemes says thatOpenCK(ConealCK(m)) = m, for anym andCK.
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SECURITY OF CONCEALMENT. Just like commitment schemes, concealment schemes have two security
properties calledhiding and binding. However, unlike commitment schemes, these properties apply to
different parts of concealment, which makes a significant difference.� Hiding . Having the knowledge ofCK, it is computationally hard for the adversaryA to come up with

two messagesm1;m2 2 M such thatA can distinguishh(m1) from h(m2). That is,h(m) reveals
no information aboutm. Formally, for any PPT (probabilistic polynomial time) adversaryA, which
runs in two stages�nd andguess, we require that the probability below is at most12 + negl(k) (wherenegl(k) denotes some negligible function):Pr h � = ~� ��� CK Setup(1k); (m0;m1; �) A(CK; �nd); �  r f0; 1g;(h; b) ConealCK(m�); ~�  A(h; �; guess) i
where� is some state information. We will also denote this byh(m0) � h(m1).� Binding. Having the knowledge ofCK, it is computationally hard for the adversaryA to come
up with b; h; h0, whereh 6= h0 such that(b; h) and (b; h0) are both valid concealment pairs (i.e.,OpenCK(h; b) 6= ? andOpenCK(h0; b) 6= ?). That is,A cannot find a binderb which it can open with
two different hiders.4

We immediately remark that settingb = m and h = ; satisfies the definition above. Indeed, the
challenge is to construct concealment schemes withjbj � jmj (we call such schemesnon-trivial). Sincejbj+ jhj � jmj, achieving a very good concealment scheme implies thatjhj � jmj.
RELAXED CONCEALMENTS. We will also considerrelaxedconcealment schemes, where the (strict) bind-
ing property above is replaced by theRelaxed Binding property, which states thatA cannot find binder
collisions for arandomly generatedbinderb(m), even ifA can choosem. Formally, for any PPTA, which
runs in two stages�nd andollide, the following probability is at mostnegl(k):Pr h h 6= h0 ^m0 6= ? ��� CK Setup(1k); (m;�) A(CK; �nd); (h; b) ConealCK(m);h0  A(h; b; �; ollide); m0  OpenCK(h0; b) i
To justify this distinction, we will see later that non-trivial (strong) concealments will be equivalent to
collision-resistant hash functions (CRHFs), while relaxed concealments can be built from universal one-
way hash functions (UOWHFs). By the result of Simon [31],UOWHFs are strictly weaker primitives than
CRHFs (in particular, they can be built from regular one-way functions [25]), which implies that relaxed
concealments form a weaker cryptographic assumption than regular concealments.

COMPARISON TOCOMMITMENT. At first glance, concealment schemes look extremely similar to commit-
ment schemes. Recall, commitments also transformm into a pair(; d), where is the “commitment”, andd is the “decommitment”. However, in this setting the commitment is both the hider and the binder, while
in our settingb is a binder andh is a hider. This seemingly minor distinction turns out to make a very big
difference. For example, irrespective of parameter settings, commitment always implies one-way functions,
while there are trivial concealments whenjbj = jmj. On the other hand, whenjbj < jmj, we will show that
concealments immediately requireCRHFs, while quite non-trivial commitments can be built from one-way
functions [24]. Not surprisingly, the two primitives have very different applications and constructions. In
particular, commitments are not useful for our applications to authenticated encryption (even though they
are useful for others; see [2]).

4We could have allowedA to findh 6= h0 as long as(h; b), (h0; b) do not open to distinct messagesm 6= m0. However, we will
find the stronger notion more convenient.
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3 Constructing Concealment Schemes

In this section, we give very simple and general constructions of strong (resp. relaxed) concealment schemes
based on any family ofCRHFs (resp.UOWHFs) and any symmetric one-time encryption scheme. Recall,
bothCRHFs andUOWHFs are defined by some familyH = fHg for which it is hard to find a colliding pairx 6= x0 such thatH(x) = H(x0), whereH is a (compressing) function randomly chosen fromH. However,
with CRHFs, we first select the functionH, and forUOWHFs the adversary has to selectx beforeH is
given to it. We first observe the following simple lemma, which shows the necessity of usingCRHFs (resp.
UOWHFs) in our constructions.

Lemma 1 Let C = (Setup;Coneal;Open) be a strong (resp. relaxed) concealment scheme where the
binder b is shorter than the messagem. Define a shrinking function familyH by the following generation
procedure: pick a randomr, run CK  Setup(1k), and outputhCK; ri as a description of a random
functionH 2 H. To evaluate suchH on inputm, run (h; b) = ConealCK(m; r), and setH(m) = b (so
that jH(m)j < jmj). ThenH is a family ofCRHFs (resp.UOWHFs).

Proof: If C is a strong concealment, findingm0 6= m1 such thatH(m0) = H(m1) = b implies findingh0 = h(m0; r), h1 = h(m1; r) such thatOpenCK(h0; b) = m0 6= ?, OpenCK(h1; b) = m1 6= ? andh0 6= h1 sincem0 6= m1. This clearly contradicts the binding property of concealment. Similarly, if
one has to choosem0 beforehand, choosing randomH 2 H involves choosing a randomr. Thus, when
evaluatingH(m0), we effectively computed arandomconcealment(h0; b)  ConealCK(m0) and gave it
to the adversary, as required by the definition of relaxed concealment. The rest of the proof is the same as
for strong concealments. 2

In the following, we show the converse of the above observation. Even though it is quite simple, we will
crystallize it even further by splitting it into several clean steps.

ACHIEVING HIDING . We first show how to achieve the hiding property so thatjbj � jmj. Later we
will utilize CRHFs/UOWHFs to add strong/relaxed binding property to any scheme whichalready enjoys
hiding.

Recall that a symmetric encryption schemeSE = (K;E;D) consists of the key generation algorithmK,
encryption algorithmE, and decryption algorithmD. Of course, if�  K(1k), we require thatD� (E� (m)) =m. For our purposes we will need the most trivial and minimalistic notion ofone-time security. Namely, for
anym0;m1 we requireE� (m0) � E� (m1), where�  K(1k) and� denotes computational indistinguisha-
bility. More formally, for anym0;m1 and any PPTA, we requirePr h � = ~� ��� �  K(1k); �  r f0; 1g;  E� (mb); ~�  A() i � 12 + negl(k)
Of course, regular one-time pad satisfies this notion. However, for our purposes we will want the secret
key to be much shorter than the message:j� j � jmj. For the most trivial such scheme, we can utilize
any pseudorandom generator (PRG) G : f0; 1gk ! f0; 1gn wherek � n. The secret key is a random� 2 f0; 1gk , and to encryptm 2 f0; 1gn we computeE� (m) = G(�) �m (to decrypt, computeD� () =G(�) � ). Of course, any stronger encryption (possibly probabilistic, such as any chosen plaintext secure
encryption) will suffice for our purposes too.

Now, letb = � andh E� (m), so thatOpen(b; h) = Db(h). It is easy to see that this scheme satisfies
the hiding (but not yet the binding) property of concealment, and also thatjbj � jmj if a good one-time
secure encryption is used, such as thePRG-based scheme above.

ADDING STRONG BINDING . AssumeC = (Setup;Coneal;Open) already achieves hiding, and letH =fHg be a family ofCRHFs (the lengths of inputs and outputs needed will be clear soon). We turnC intoC0 = (Setup0;Coneal0;Open0) which is a full fledged concealment scheme:
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� Setup0(1k): runCK Setup(1k), H  H and outputCK0 = hCK;Hi.� Coneal0(m): let (h; b) Coneal(m), h0 = h, b0 = bkH(h), and outputhh0; b0i.� Open0(h0; b0): parseb0 = bkt, h0 = h and output? if H(h) 6= t; otherwise, outputm = Open(h; b).
We remark thatH should have input size equal to the hider sizejhj. Recall that in our schemes we will
always havejhj � jmj (in fact, exactly equal in thePRG-based scheme). And the output size should be
small (say,O(k), wherek is the security parameter), as it directly contributes to the binder length which we
aim to minimize.

Lemma 2 If C satisfies the hiding property andH is aCRHF, thenC0 is a (strong) concealment scheme.

Proof: Sinceh0 = h, we get hiding for free. As for binding, if someA outputsb0 = bkt; h0; h1 causing
“collision”, thenH(h0) = H(h1) = t, which contradicts the collision resistance ofH. 2
ADDING RELAXED BINDING . AssumeC = (Setup;Coneal;Open) already achieves hiding, and letH =fHg be a family ofUOWHFs (the lengths of inputs and outputs needed will be clear soon). We turnC intoC00 = (Setup00;Coneal00;Open00) which is a full fledgedrelaxedconcealment scheme:� Setup00 = Setup.� Coneal00(m): pick H  H, compute(h; b)  Coneal(m), seth00 = h, b00 = bkH(h)kH, and

outputhh00; b00i.� Open00(h00; b00): parseb00 = bktkH, h00 = h and output? if H(h) 6= t; otherwise, outputm =Open(h; b).
We see that the construction is similar to theCRHF-based construction, except we pick a new hash function
per each call, and append it to the binderb00. This ensures thatH is always selected independently of the
input h it is applied to, as required by the definition ofUOWHFs. Unfortunately, it also means that the
construction is less attractive than the previous, more economical CRHF-based construction. Thus, the
value of this construction is mainly theoretical, since it shows that efficientrelaxedconcealments, unlike
strong concealments, can be built from regular one-way functions. In practice, one should certainly use the
more economicalCRHF-based construction.

Lemma 3 If C satisfies the hiding property andH is aUOWHF, thenC00 is a relaxed concealment scheme.

Proof: Sinceh00 = h, we get hiding for free. As for binding, if someA choosesm0, gets backb00 = bktkH
andh0 and then successfully outputsh1 6= h0 such thatH(h0) = H(h1) = t, thisA immediately breaks
the relaxed collision resistance ofH. 2

As earlier,H should have input size equal to the hider sizejhj, which is roughlyjmj. Also, the output
size should be small (say,O(k), wherek is the security parameter), as it directly contributes to the binder
length which we aim to minimize. Now, however, we also need the description of aUOWHF H to be
small, as it is also part of the binder. Unfortunately, the best known constructions ofUOWHFs for long
messages [9, 29] havejHj � O(k log jmj), wherek is the security parameter andjmj � jhj is the length of
the input toH. While the logarithmic dependence on the message length is not bad in theory — in particular,
we still get jb00j � jmj — this is a big drawback as compared to the previousCRHF-based construction,
which achievedjb0j = O(k) in addition to its stronger binding property.

COLLECTING PIECES TOGETHER. Unifying the previous discussion, and noticing that the existence of
CRHFs orUOWHFs implies the existence of a one-time secure symmetric encryption [25], we get:
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Theorem 1 Non-trivial strong (resp. relaxed) concealment schemes exist iff CRHFs (resp. UOWHFs)
exist.

In terms of a particular simple and efficient construction, we geth  E� (m), b = �kH(h), whereH is a
CRHF, andE is any one-time symmetric encryption. Specifically, if we set E� (m) = G(�)�m, whereG is
aPRG, we get a construction which looks amazingly similar to the famousOptimal Asymmetric Encryption
Padding(OAEP) [8],5 but we do not need to assumeG andH as random oracles in the analyses.

4 Applications to Authenticated Encryption

We now study applications of concealment toauthenticated encryption. Recall, the latter provides means for
private, authenticated communication between the sender and the receiver. Namely, an eavesdropper cannot
understand anything from the transmission, while the receiver is sure that any successful transmission indeed
originated from the sender, and has not been “tampered with”. The intuitive idea of using concealments for
authenticated encryption is simple. IfAE is an authenticated encryption working on shortjbj-bit messages,
and(h; b)  Coneal(m), we can defineAE 0(m) = hAE(b); hi. Intuitively, sending the hiderh “in the
clear” preserves privacy due to the hiding property, while authenticated encryption of the binderb provides
authenticity due to the binding property.

We formalize this intuition by presenting two applicationsof the above paradigm. First, we argue that
it indeed yields a secure authenticated encryption on long messages from that on short messages. And this
holds even if relaxed concealments are used (in fact, they are necessary and sufficient). Second, we show
that this paradigm also gives a very simple and general solution to remotely keyedauthenticated encryption.
Here, the full power of (strong) concealments is needed.

We remark that our applications hold for both the symmetric-and the public-key notions of authenti-
cated encryption (the latter is historically calledsigncryption[32]). In terms of usability, the long message
authenticated encryption is probably much more useful in the public-key setting, since signcryption is typi-
cally expensive. However, even in the symmetric-key setting our approach is very fast, and should favorably
compare with alternative direct solutions such as “encrypt-then-mac” [7]. For remotely keyed setting, both
public- and symmetric-key models seem equally useful and important. In fact, symmetric-key is perhaps
more relevant, since smartcards are currently much better suited for symmetric-key operations. Indeed, prior
work on “remotely keyed encryption” focused on the symmetric setting only.

4.1 Definition of Authenticated Encryption

We remark that formal modeling of authenticated encryptionin the public-key setting is somewhat more
involved than that in the symmetric-key setting due to issues such as multi-user security and “identity fraud”
(see [2]). However, the proofs we present are really identical despite these extra complications of the public-
key setting. Intuitively, the point is that we are constructing thesameprimitive on longer messages as the
primitive we are given on shorter messages. Thus, whatever (complicated) security properties were present,
will remain to be present in our composition scheme. For conciseness, we chose to concentrate on a simpler
symmetric setting for the remainder of this abstract. We stress, however, that this is donefor simplicity
only, our proofs translate to the public-key setting completelyand trivially, except that the syntax is slightly
more complex and the following minor technicality is observed. The definition of authenticated encryption
naturally has two components: privacy and authenticity. Inthe symmetric setting only, it turns out that the
authenticity notion together with a rather weak privacy notion of “chosen plaintext” security imply a stronger

5Except OAEP setsb = � � H(h). This lack of “redundancy” makes it fail to yield a concealment scheme. Indeed, OAEP
decoding never outputs?, since it is a permutation overm and� ; thus, does not achieve any binding.
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(and desired) privacy notion of “chosen ciphertext” security. Thus, in this setting it is customary to define
privacy in terms of only “chosen plaintext” attack. Since the above implication is false in the public-key
setting (see [2]), and we want to present a single proof template for both settings, we will define privacy
using a seemingly redundant notion of “chosen ciphertext” security even in the symmetric-key setting.

SYNTAX . An authenticated encryption scheme consists of three algorithms: AE = (KG;AE;AD). The
randomized key generation algorithmKG(1k), wherek is the security parameter, outputs a shared secret keyK, and possibly a public parameterpub. Of course,pub can always be part of the secret key, but this might
unnecessarily increase the secret storage. In the description below, all the algorithms (including the adver-
sary’s) can have access topub, but we omit this dependence for brevity. The randomizedauthencryption
(authenticate/encrypt) algorithmAE takes as input the keyK and a messagem from the associated message
spaceM, and internally flips some coins and outputs a ciphertext; we write AEK(m) or  AE(m),
omitting the keyK for brevity. The deterministicauthdecryption(verify/decrypt) algorithmAD takes as
input the keyK, and outputsm 2M[ f?g, where? indicates that the input ciphertext is ”invalid”. We
write m  ADK() or m  AD() (again, omitting the key). We require thatAD(AE(m)) = m, for anym 2M.

SECURITY OF AUTHENTICATED ENCRYPTION. Fix the senderS and the receiverR. Following the stan-
dard security notions [7], we define the attack models and goals of the adversary for both authenticity (i.e.
sUF-CMA)6 and privacy (IND-CCA2)7 as follows. We first model our adversaryA. A has oracle access
to the functionalities of bothS andR. Specifically, it can mount a chosen message attack onS by askingS to produce a ciphertextC of an arbitrary messagem, i.e. A has access to theauthencryption oracleAEK(�). Similarly, it can mount a chosen ciphertext attack onR by givingR any candidate ciphertextC
and receiving back the messagem (wherem could be?), i.e. A has access to theauthdecryption oracleADK(�).

To break thesUF-CMA security of the authenticated encryption scheme,A has to be able to produce
a “valid” ciphertextC (i.e.,ADK(C) 6= ?), which was not returned earlier by the authencryption oracle.8

Notice,A is not required to “know”m = ADK(C) when producingC. The scheme issUF-CMA-secure if
for any PPTA, Pr[A succeeds℄ � negl(k).

To break theIND-CCA2 security of the authenticated encryption scheme,A first has to to come up
with two messagesm0 andm1. One of these will be authencrypted at random, the corresponding ciphertextC�  AEK(m�) (where� is a random bit) will be given toA, andA has to guess the value�. To succeed
in theCCA2 attack,A is only disallowed to askR to authdecrypt the challengeC�.9 The scheme isIND-
CCA2-secure if for any PPTA, Pr[A succeeds℄ � 12 + negl(k). We also remark thatIND-CPA-security is
the same, exceptA is not given access to the authdecryption oracle.

4.2 Authenticated Encryption of Long Messages

AssumeAE = (KG;AE;AD) is a secure authenticated encryption onjbj-bit messages. We would like to
build an authenticated encryptionAE 0 = (KG0;AE0;AD0) on jmj-bit messages, wherejmj � jbj. More
specifically, we seek to employ the followingcanonicalcomposition paradigm. The keyK for AE 0 is the
same as that forAE . To authencryptm, first split it into two pieces(h; b) (so that the transformation is
invertible), and outputAE0K(m) = hAEK(b); hi. The question we are asking is what are the necessary
and sufficient conditions on the transformationm ! (h; b) so that the resulting authenticated encryption

6Meaning “strong unforgeability against chosen message attack.”
7Meaning “indistinguishability against chosen ciphertextattack.”
8A slightly weaker notion ofUF-CMA requiresC to correspond to “new” messagem not submitted toAEK(�).
9[2] define a slightly weaker but more syntactically sound notion of gCCA2 attack. Our results apply here as well.
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is secure? In this section we show that the necessary and sufficient condition is to have the transformation
above be arelaxed concealment.

More formally, assumeC = (Setup;Coneal;Open) satisfies the syntax, but not yet the security prop-
erties of a concealment scheme. We assume thatCK  Setup(1k) forms a public parameterpub of AE 0.
We defineAE 0 as stated above. Namely,AE0(m) outputshAE(b); hi, where(h; b)  Coneal(m), andAD0(; h) outputsOpen(h;AD()). The proof of the following theorem is in Appendix A.1.

Theorem 2 If AE is secure, thenAE 0 is secure if and only ifC is a relaxed concealment scheme.

4.3 Remotely Keyed Authenticated Encryption

SYNTAX . A one-round remotely-keyed authenticated encryption (RKAE) scheme consists of seven efficient
algorithms:RKAE = (RKG;Start-AE;Card-AE;Finish-AE;Start-AD;Card-AD;Finish-AD) and involves
two parties called theHostand theCard. The Host is assumed to be powerful, but insecure (subject tobreak-
in by an adversary), while the Card is secure but has limited computational power and low bandwidth. The
randomized key generation algorithmKG(1k), wherek is the security parameter, outputs a secret keyK, and
possibly a public parameterpub. In the description below, all the algorithms (including the adversary’s) can
have access topub, but we omit this dependence for brevity. This keyK is stored at the Card. The process
of authenticated encryption is split into the following 3 steps. First, on inputm, the Host runs probabilistic
algorithmStart-AE(m), and gets(b; �). The valueb should be short, as it will be sent to the Card, while�
denotes the state information that the Host needs to remember. We stress thatStart-AE involves no secret
keys and can be run by anybody. Next, the Card receivesb, and runs probabilistic algorithmCard-AEK(b),
using its secret keyK. The resulting (short) value will be sent to the host. Finally, the host runs another
randomized algorithmFinish-AE(; �) and outputs the resulting ciphertextC as the final authencryption ofm. Again,Finish-AE involves no secret keys. The sequential composition of the above 3 algorithms induces
an authencryption algorithm, which we will denote byAE0K .

Similarly, the process of authenticated decryption is split into 3 steps as well. First, on inputC, the Host
runs deterministic algorithmStart-AD(C), and gets(u; �). The valueu should be short, as it will be sent to
the Card, while� denotes the state information that the Host needs to remember. We stress thatStart-AD
involves no secret keys and can be run by anybody. Next, the Card receivesu, and runs deterministic
algorithmCard-ADK(u), using its secret keyK. The resulting (short) valuev will be sent to the host. We
note that on possible value forv will be ?, meaning that the Card found some inconsistency in the valueofu. Finally, the host runs another randomized algorithmFinish-AD(v; �) and outputs the resulting plaintextm if v 6= ?, or?, otherwise. Again,Finish-AD involves no secret keys. The sequential composition of the
above 3 algorithms induces an authdecryption algorithm, which we will denote byAD0K . We also call the
valueC valid if AD0K(C) 6= ?.

The correctness property states for anym, AD0(AE0(m)) = m.

SECURITY OF RKAE. As we pointed out,RKAE in particular induces a regular authenticated encryption
scheme, if we combine the functionalities of the Host and theCard. Thus, at the very least we would like to
require that the induced schemeAE 0 = (RKG;AE0;AD0) satisfies theIND-CCA2 andsUF-CMA security
properties of regular authenticated encryption. Of course, this is not a sufficient guarantee in the setting of
RKAE. Indeed, such security only allows the adversary oracle access to thecombinedfunctionality of the
Host and the Card. In the setting ofRKAE, the Host is anyway insecure, so the adversary should haveoracle
access to the functionality of the Card. Specifically, we allow our adversaryA0 to have oracle access to the
Card algorithmsCard-AEK(�) andCard-ADK(�).

Just like regular authenticated encryption,RKAE has security notions for privacy and authenticity, which
we denote byRK-IND-CCA andRK-sUF-CMA, respectively.
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To break theRK-sUF-CMA security ofRKAE,A0 has to be able to produce a “one-more forgery” when
interacting with the Card. Namely,A0 tries to outputt + 1 valid ciphertextsC1 : : : Ct+1 after making at
mostt calls toCard-AEK(�) (wheret is any polynomial ink). Again, we remark thatA0 is not required
to “know” the plaintext valuesmi = AD0K(Ci). The scheme isRK-sUF-CMA-secure if for any PPTA0,Pr[A0 succeeds℄ � negl(k). We note that this is the only meaningful authenticity notion in the setting of
RKAE. This is because the values  Card-AEK(b) returned by the Card have no “semantic” meaning of
their own. So it makes no sense to requireA0 to produce a new “valid” string. On the other hand, it is
trivial for A0 to computet valid ciphertextsC1 : : : Ct with t oracle calls toCard-AE, by simply following to
honest authencryption protocol on arbitrary messagesm1 : : : mt. Thus, security against “one-more forgery”
is the most ambitious goal we can try to meet in the setting ofRKAE.

To break theRK-IND-CCA security ofRKAE,A0 first has to come up with two messagesm0 andm1.
One of these will be authencrypted at random, the corresponding ciphertextC�  AEK(m�) (where� is
a random bit) will be given toA0, andA0 has to guess the value�. To succeed in theCCA2 attack,A0 is
only disallowed to call the Card authdecryption oracleCard-ADK(�) on the well-defined valueu�, where
we defineStart-AD(C�) = (u�; ��) (recall,Start-AD is a deterministic algorithm). The latter restriction is
to preventA0 from trivially authdecrypting the challenge. The scheme isRK-IND-CCA-secure if for any
PPTA0, Pr[A0 succeeds℄ � 12 + negl(k). We briefly remark thatRK-IND-CPA-security is the same, except
we do not giveA0 access to the Card authdecryption oracle.

CANONICAL RKAE. A natural implementation ofRKAE would have the Card perform regular authen-
ticated encryption/decryption on short messages, while the Host should do the special (to be discussed)
preprocessing to produce the short message for the Card fromthe given long message. Specifically, in this
case we start from some auxiliary authenticated encryptionAE = (KG;AE;AD) which works on “short”jbj-bit messages, and require thatCard-AE = AE, Card-AD = AD. Moreover, we would like the Card
to authdecrypt the same value that it produced during authencryption. In our prior notation, u =  andv = b, where AEK(b). Finally, it is natural to assume that the Host outputs as part of the final (long)
ciphertext. Putting these together, we come up with the following notion ofcanonicalRKAE.

First, the Host runsStart-AE(m), which we conveniently renameConeal(m), and produces(h; b),
whereh will be part of the final ciphertext andb is “short”. Then it sendsb to the Card, and gets back AEK(b). Finally, it outputsC = h; hi as the resulting authencryption ofm. Similarly, to authdecryptC = h; hi, it sends to the Card, getsb = ADK(), and outputsFinish-AD(h; b), which we conveniently
renameOpen(h; b). Thus, the canonicalRKAE is fully specified by an auxiliary authenticated encryptionAE and a tripleC = (Setup;Coneal;Open) (whereSetup is run at key generation and outputs the key
which is part ofpub).

The fundamental question we address is this: what security properties ofConeal andOpen are needed
in order to achieve a secure canonicalRKAE (provided the auxiliaryAE is secure)? As we show, the
necessary and sufficient condition is to employ a secure (strong) concealment scheme. We remark that the
final inducedschemeAE 0 we construct isexactly the composition scheme we discussed in Section 4.2.
However, in that application the entire authenticated encryption was performed honestly — in particular,b
was chosen by properly runningConeal(m), — so relaxed concealments were sufficient. Here, an untrusted
Host can ask the Card to authencrypt any valueb it wishes, so we need the full binding power of strong
concealments.

The following theorem states this more formally and its proof is in Appendix A.2.

Theorem 3 If AE is secure, and a canonicalRKAE is constructed fromAE andC, thenRKAE is secure
if and only ifC is a (strong) concealment scheme.

COMPARISON TOPREVIOUS RKAES. We briefly compare our scheme with those of [13, 18]. First, both
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schemes could be put into our framework by extracting appropriate concealment schemes. In fact, the con-
cealment we extract from [13] is essentially the same as our constructionb = �kH(h), h = E� (m) (they
model one-time encryption slightly differently, but this is minor)! On the other hand, instead of applying
arbitrary authenticated encryption to the value ofb, they build a very specific one based on block ciphers
and pseudorandom functions. In fact, their construction implicitly achieves a specific authenticated encryp-
tion of � with “associated data” [26]H(h) (see our extension in Section 5). Actually, this authenticated
encryption construction could be viewed as an example of therecent “ciphertext translation” method of [26]
applied to the “encrypt-then-mac” paradigm of [7]. To summarize, the construction of [13] is quite good
and efficient, but focuses on a specific ad-hoc implementations for both concealment and authenticated en-
cryption. We believe that our generality provides many moreoptions, as well as gives better understanding
towards designingRKAE, since our general description is much simpler than the specific scheme of [13]. As
for the scheme of [18], one can also extract an “OAEP”-like concealment out of it, making it a special case
of our framework too. However, the specific choices made by the authors make it very hard to replace the
random oracles by some provable implementation. On the other hand, our “OAEP”-like construction (based
on aPRG and aCRHF) is equally simple, but achieves provable security withoutthe random oracles.

5 Extensions

USING A BLOCK CIPHER IN PLACE OF AE . First, we briefly touch upon amplification paradigm of
the formAE 0(m) = hPK(b); hi, whereP is a (strong)PRP. Namely, we replace the “inner” authenticated
encryption by a block cipher. Although this is applicable only in the symmetric setting, it is likely to be quite
useful in practice, wherePRP is typically the main building block of most other primitives. We note that a
strongPRP is “almost” an authenticated encryption except it does not provide semantic security (but gives
at least one-wayness). We ask the same question as before: what are the conditions on the transformationm ! (h; b) for AE 0 to be secure? In the following, we just state our results, leaving the proofs to the full
version [15].

It turns out that four conditions are needed, the first two of which are subsumed by any relaxed conceal-
ment. The last two conditions are stated as follows: (1) for any h, Prb[Open(h; b) 6= ?℄ = negl(k). This is
needed to prevent a “lucky” forgery of the formhv; hi, wherev is arbitrary. This condition always holds for
our specific concealments, since the value ofb corresponding to anyh includesH(h). Thus, the chance that
a randomb will include the same string asH(h) is negligible, since the output of aCRHF (i.e. H) must
be sufficiently long to avoid easy collisions. (2) having oracle access toConeal(�), it is hard to ever make
it output the same valueb. This is needed to ensure the authencryption oracle never evaluates thePRP on
the same input, since the adversary will notice it. Again, this is trivially true for our concealments, since the
valueb always includes a random key� for one-time encryption. By birthday bound, the chance of collision
afterq queries is at mostq2=2jbj, which must be negligible. To summarize,hPK(�kH(h)); h = E� (m)i is
a secure authenticated encryption. We also note that herePK does not need to be astrongPRP; a regular
PRP suffices.

Finally, we briefly argue when using a strongPRP suffices for ourRKAE application. Here the ad-
versary has direct oracle access to bothPK andP�1K , so we need at least a strongPRP. It turns out that
the following two conditions should hold on the concealmentscheme in addition to its regular hiding and
binding properties (and properties (1)-(2) above). (1’) given a random stringb, it is hard to findh such thatOpen(h; b) 6= ?. This is needed to prevent the adversary from getting a forgery hv; hi, where it previously
learnedP�1s (v) = b. In our case,b includesH(h), so one needs to “invert”H on a random stringb. It
is easy to see that anyCRHF with jH(h)j < jhj � !(log k) must satisfy the needed property. As for the
second condition, it states: (2’) for anym, if (h; b)  Coneal(m), then it is hard to recover the valueb
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when given onlym andh. This is needed so that the adversary cannot determine the value b corresponding
to the challenge, and then check its guess using an oracle call to Ps(�). In our case, givenE� (m) andm,
it should be hard to find the correct value of key� . This property is false for general one-time encryptions
(i.e., for one-time pad), but holds for the ones we have in mind here. In particular, ifE� (m) = G(�) �m,
whereG is a PRG, finding � involves invertingG(�) on a random� . And it is well known that aPRG
is a one-way function providedjG(�)j > j� j + !(log k). To summarize, the following scheme is safe
to use forRKAE, providedjG(�)j > j� j + !(log k), jH(h)j < jhj � !(log k) andP is a strongPRP:AE 0(m) = hPK(�kH(h)); G(�)�mi. This remarkably simple scheme means that we can let the Card
perform a single block cipher operation per call!

ASSOCIATED DATA . Finally, we briefly discuss extensions to supporting associated data [30, 26]. Intu-
itively, associated data allows one to “bind” a public labelto the message. Viewing the label as part of the
message is a possible solution, but the generalized view canbring non-trivial efficiency gains, as was shown
by [26]. This extension is presented in more detail in Appendix B.
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[14] I. DAMGÅRD, “Collision free hash functions and public key signature schemes,” InEurocrypt ’87, pp. 203–216,
LNCS Vol. 304, 1987.

[15] Y. DODIS AND J. AN, “Concealment and its applications to authenticated encryption,” Full version of this
paper. Preliminary version appeared inEurocrypt 03, pp. 306–323, 2003.

[16] A. JOUX, G. MARTINET, F. VALETTE, “Blockwise-Adaptive Attackers: Revisiting the (In)Security of Some
Provably Secure Encryption Models: CBC, GEM, IACBC,” InCrypto ’02, pp. 17–30, LNCS Vol. 2442, 2002.

14



[17] C. JUTLA , “Encryption modes with almost free message integrity,” InEurocrypt ’01, pp. 529–544, LNCS Vol.
2045, 2001.

[18] M. JAKOBSSON, J. STERN, AND M. Y UNG, “Scramble All, Encrypt Small,” InFast Software Encryption (FSE)
’99, pp. 95–111, LNCS Vol. 1636, 1999.

[19] J. KATZ AND M. Y UNG, “Unforgeable Encryption and Chosen Ciphertext Secure Modes of Operation,” InFSE
’00, pp. 284–299, LNCS Vol. 1978, 2000.

[20] H. KRAWCZYK, “The Order of Encryption and Authentication for Protecting Communications (or: How Secure
Is SSL?),” InCrypto ’01, pp. 310–331, LNCS Vol. 2139, 2001.

[21] S. LUCKS, “On the Security of Remotely Keyed Encryption,” InFast Software Encryption (FSE) ’97, pp. 219–
229, LNCS Vol. 1267, 1997.

[22] S. LUCKS, “Accelerated Remotely Keyed Encryption,” InFast Software Encryption (FSE) ’99, pp. 112–123,
LNCS Vol. 1636, 1999.

[23] A. M ENEZES, P. VAN OORSHOT AND S. VANSTONE, “Handbook of applied cryptography,” CRC Press LLC,
1997.

[24] M. NAOR, “Bit Commitment Using Pseudorandomness,” InJournal of Cryptology, 4(2):151–158, 1991.

[25] M. NAOR AND M. Y UNG, “Universal One-Way Hash Functions and their Cryptographic Applications,” In
Proc.21st STOC, pp. 33–43, ACM, 1989.

[26] P. ROGAWAY, “Authenticated-Encryption with Associated-Data,” InProc.9th CCS, pp. 98–107, ACM, 2002.

[27] P. ROGAWAY, M. BELLARE, J. BLACK , AND T. KROVETZ, “OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption,” InProc.8th CCS, pp. 196–205, ACM, 2001.

[28] J. ROMPEL, “One-way functions are necessary and sufficient for securesignatures,” InProc. 22nd STOC,
pp. 387–394, ACM, 1990.

[29] V. SHOUP, “A composition theorem for universal one-way hash functions,” In Eurocrypt ’00, pp. 445–452,
LNCS Vol. 1807, 2000.

[30] V. SHOUP, “A proposal for an ISO standard for public key encryption (version 2.1),” IACR E-Print Archive,
2001/112,http://eprint.iacr.org/2001/112/, 2001.

[31] D. SIMON, “Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General As-
sumptions?,” InEurocrypt ’98, pp. 334–345, LNCS Vol. 1403, 1998.

[32] Y. ZHENG, “Digital Signcryption or How to Achieve Cost(Signature & Encryption)� Cost(Signature) +
Cost(Encryption),” InCrypto ’97, pp. 165–179, LNCS Vol. 1294, 1997.

A Proofs

A.1 Proof of Theorem 2

For one direction, we show that ifC does not satisfy the hiding property, thenAE 0 cannot even beIND-CPA-
secure, let aloneIND-CCA2-secure. Indeed, if some adversaryA can findm0;m1 s.t. h(m0) 6� h(m1),
then obviouslyAE0(m0) � (AE(b(m0)); h(m0)) 6� (AE(b(m1)); h(m1)) � AE0(m1), contradictingIND-
CPA-security.

Similarly, if C does not satisfy the relaxed binding property, thenAE 0 cannot besUF-CMA-secure.
Indeed, assume some adversaryA can producem such that when(h; b)  Coneal(m) is generated and
given toA, A can find (with non-negligible probability") a valueh0 6= h such thatOpen(h0; b) 6= ?. We
build a forgerA0 for AE 0 usingA. A0 getsm fromA, and asks its authencryption oracle the valueAE 0(m).A0 gets back(h; ), where is a valid authencryption ofb, and(h; b) is a random concealment pair form.A0 gives(h; b) to A, and gets back (with probability") the valueh0 6= h such thatOpen(h0; b) 6= ?. But
then(h0; ) is a valid authencryption (w.r.t.AE 0) different from(h; ), contradicting thesUF-CMA-security
of AE .
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PROOF OFIND-CCA2-SECURITY. We start withIND-CCA2-security ofAE 0. LetEnv1 denote the usual
environment where we place any adversaryA0 for AE 0. In particular, (1) it honestly answers all the oracle
queries ofA0 throughout the run ofA0; and (2) when(m0;m1) are selected,Env1 picks a random�,
sets(h�; b�)  Coneal(m�), �  AE(b�) and returnsC� = AE 0(m�) = hh�; �i. We letSu1(A0)
denote the probabilityA0 succeeds in predicting� in Env1. We next define the following slightly modified
environmentEnv2. It is identical toEnv1 modulo one respect. IfA0 submits a ciphertexthh; �i to its
authdecryption oracle, where� is part of the challengeC� = hh�; �i andh 6= h�, thenEnv2 responds
with ? without even trying to verify if this is correct. We letSu2(A0) denote the probabilityA0 succeeds
in predicting� in Env2. Next, we modifyEnv2 into a relatedEnv3 as follows. WhenEnv3 prepares
the challengeC�, it also picks some fixed message, call it0, and outputsC� = hh�;AE(b(0))i instead
previously outputC� = hh�;AE(b�)i. We letSu3(A0) denote the probabilityA0 succeeds in predicting�
in Env3.

We make three claims: (a) using the relaxed binding propertyof C, no PPT adversaryA0 can distinguishEnv1 from Env2, i.e. jSu1(A0) � Su2(A0)j � negl(k);10 (b) usingIND-CCA2-security ofAE , no
PPT adversaryA0 can distinguishEnv2 from Env3, i.e. jSu2(A0) � Su3(A0)j � negl(k); (c) using
the hiding property ofC, Su3(A0) < 12 + negl(k), for any PPTA0. Combined, claims (a)-(c) imply the
IND-CCA2-security ofAE 0.
PROOF OFCLAIM (A). Notice, the only way someA0 can see the difference betweenEnv1 andEnv2,
if in Env1 it was able to produce a valid ciphertext(h; �), whereh 6= h�, as otherwiseEnv1 andEnv2
are identical. But this means thatOpen(h; b�) 6= ?, andh 6= h�, where(h�; b�)  Coneal(m�). It is
straightforward to see that this contradicts the relaxed binding property ofC, since we can constructA1
which preparesK by itself, submitsm� after the�nd phase, and simply runsA0 until the collision withb�
happens.

PROOF OFCLAIM (B). If for someA0, jSu2(A0) � Su3(A0)j > " for non-negligible", we createA2
which will break IND-CCA2-security ofAE. It simulates the run ofA0 by generating a concealment keyCK by itself, and using its own authencryption/authdecryption oracle to answer the oracle queries ofA0. For
example,A2 can simulate the authdecryption queryC 0 = (h0; 0) of A0 by asking its own authdecryption
oracle to decryptb0 = AD(0), and returningOpen(h0; b0). Simulating authencryption queries is done
similarly. WhenA0 outputsm0 andm1, A2 chooses a random� 2 f0; 1g, sets(h�; b�)  Coneal(m�),~b = b(0) and claims to distinguishb� and~b. When given challenge� which is eitherAE(b�) or AE(~b),A2
givesA0 the challengeC� = (h� ; �). Next,A2 uses its own authdecryption oracle to answer all decryption
queriesC 0 = (h0; 0) as before (authencryption queries stay the same too). Notice, there is no need to worry
about the case when0 = �, since bothEnv2 andEnv3 are supposed to respond with?. Finally, whenA0
output its guess�0, A2 guesses the message wasb� (i.e., it ranA0 in Env2) if �0 = �, and~b (i.e., it ranA0
in Env3) otherwise. It is easy to see that the advantage ofA2 is exactly".
PROOF OFCLAIM (C). If for someA0, Su3(A0) > 12 + " for non-negligible", we createA3 that will
break the hiding property ofC. A3 simply picks the keyK  KG(1k) by itself and runsA0 until it outputs(m0;m1). It claims to distinguish the hiders ofm0 andm1 and well, and gets a challengeh� = h(m�) for
unknown�. It givesA the challengeC� = hAE(b(0)); h�i, and keeps runningA till the end outputting the
same guess�0. It is obvious it wins if and only ifA0 wins inEnv3, a contradiction.

PROOF OFsUF-CMA-SECURITY. Finally, we showsUF-CMA-security ofAE 0. Assume some forgerA0
breaks thesUF-CMA-security ofAE 0 with non-negligible probability". AssumeA0 made (wlog exactly)t = t(k) oracle queries toAE0 for some polynomialt(k). For1 � i � t, we letmi be thei-th messageA0
asked to authencrypt, and(hi; i) be its authencryption (where(hi; bi)  Coneal(mi) andi  AE(bi)).
We also letm;h; b;  have similar meaning for the ciphertext thatA0 forged. Finally, letForged denote the

10As mentioned, this part is unnecessary to show in the symmetric-key setting, but is needed in the public-key setting.
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event that 62 f1; : : : ; tg. Notice," < Pr(A0 succeeds) = Pr(A0 succeedŝ Forged) + Pr(A0 succeedŝ Forged)
Thus, at least one of the probabilities above is� "=2. We show that the first case contradicts thesUF-CMA-
security ofAE , while the second case contradicts the relaxed binding property ofC.
CASE 1: Pr(A0 SUCCEEDS^ Forged) � "=2. We construct a forgerA1 for AE . It simulates the run ofA0
by generating a concealment keyCK by itself, and using its own authencryption/authdecryption oracle to
answer the oracle queries ofA0. For example,A1 can simulate the authencryption querymi ofA0 by setting(hi; bi)  Coneal(mi), gettingi  AE(bi) from the oracle, and returning(i; hi). WhenA0 forges a
ciphertext(; h) w.r.t. AE 0, A1 forges ciphertext (of b) w.r.t. AE . Notice, is a “new forgery” inAE iffForged happens. Hence,A1 succeeds with probability at least"=2, a contradiction tosUF-CMA-security ofS.

CASE 2: Pr(A0 SUCCEEDS ^ Forged) � "=2. We construct an adversaryA2 contradicting the relaxed
binding property ofC. A2 will generate its own keyK  KG(1k), and will also pick a random index1 � i � t. It simulates the run ofA0 in a standard manner (same way asA1 above) up to the point whereA0 asks itsi-th querymi. At this stageA2 outputsmi as its output to the�nd stage. When receiving back
random(hi; bi)  Coneal(mi), it uses them to authencryptmi as before (i.e., returnshi = AE(bi); hii
to A0), and keeps simulating the run ofA0 in the usual manner. WhenA outputs the forgery(; h) of a
messagem,A2 checks ifi =  andhi 6= h. If this fails, it fails as well. Otherwise, it outputsh as its final
output to theollide stage. We note that whenForged does not happen, i.e. 2 f1 : : : tg, we have = i
with probability at least1=t. Thus, with overall non-negligible probability"=(2t) we have that: (1)i = 
(Forged did not happen andA2 correctly guessedi such thati = ), so thatbi = b; (2) h 6= hi (sinceA0 has
to output a “new” forgery); (3)Open(h; b) 6= ?. But this exactly means thatA2 broke the relaxed binding
property ofC, a contradiction.

A.2 Proof of Theorem 3

The necessity of hiding is obvious, sinceh is given in the clear. Similarly, ifC does not satisfy the binding
property, then someA can findb, h 6= h0 such thatOpen(h; b) andOpen(b:h0) are both valid. But then it
can call the Card’s authencryption oracleAEK(�) once on inputb, get the value back, and output two valid
ciphertextshh; i, hh0; i, thus successfully producing a “one-more forgery” onRKAE .

PROOF OFIND-CCA2-SECURITY. TheRK-IND-CCA-security ofRKAE is very similar to the proof of
IND-CCA2 security ofAE 0 given in Theorem 2. In fact, the proof is even simpler since the adversaryA0
has oracle access to the actual oraclesAE andAD. Moreover, we do not even have to use the (relaxed)
binding property here, since the adversary is already forbidden to askAD oracle on the challenge value� = AE(m�).

For completeness, brief details follow. LetEnv1 denote the usual environment where we place any
adversaryA0 for RKAE . In particular, (1) it honestly answers all the oracle queries toAE, AD throughout
the run ofA0; and (2) when(m0;m1) are selected,Env1 picks a random�, sets(h�; b�)  Coneal(m�),�  AE(b�) and returnsC� = AE 0(m�) = hh�; �i. We letSu1(A0) denote the probabilityA0 succeeds
in predicting� in Env1. Notice,A0 is not allowed to submit� to AD after it getsC�. We next define the
following slightly modified environmentEnv2. WhenEnv3 prepares the challengeC�, it also picks some
fixed message, call it0, and outputsC� = hh�;AE(b(0))i instead previously outputC� = hh�;AE(b�)i.
We letSu2(A0) denote the probabilityA0 succeeds in predicting� in Env1.

We make three claims: (a) usingIND-CCA2-security ofAE, no PPT adversaryA0 can distinguishEnv1 fromEnv2, i.e. jSu1(A0)�Su2(A0)j � negl(k); (c) using the hiding property ofC, Su2(A0) <12 + negl(k), for any PPTA0. Combined, claims (a)-(b) imply theRK-IND-CCA-security ofRKAE .
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PROOF OFCLAIM (A). If for someA0, jSu1(A0) � Su2(A0)j > " for non-negligible", we createA1
which will break IND-CCA2-security ofAE. It simulates the run ofA0 by generating a concealment keyCK by itself, and using its own authencryption/authdecryption oracle to answer the oracle queries ofA0
throughout the run ofA0. In fact, these oracle areidentical to whatA0 expects from the Card. WhenA0
outputsm0 andm1,A1 chooses a random� 2 f0; 1g, sets(h� ; b�)  Coneal(m�), ~b = b(0) and claims
to distinguishb� and~b. When given challenge� which is eitherAE(b�) orAE(~b),A1 givesA0 the challengeC� = (h�; �). Notice,A0 is not allowed to submit� to AEk, soA1 never has to do it either. Finally, whenA0 output its guess�0, A2 guesses the message wasb� (i.e., it ranA0 in Env1) if �0 = �, and~b (i.e., it ranA0 in Env2) otherwise. It is easy to see that the advantage ofA1 is exactly".
PROOF OFCLAIM (B). If for someA0, Su2(A0) > 12 + " for non-negligible", we createA2 that will
break the hiding property ofC. A2 simply picks the keyK  KG(1k) by itself and runsA0 until it outputs(m0;m1). It claims to distinguish the hiders ofm0 andm1 and well, and gets a challengeh� = h(m�) for
unknown�. It givesA the challengeC� = hAE(b(0)); h�i, and keeps runningA till the end outputting the
same guess�0. It is obvious it wins if and only ifA0 wins inEnv2, a contradiction.

PROOF OFsUF-CMA-SECURITY. The proof ofRK-sUF-CMA-security is quite simple too. Assume some
forgerA0 askst queries toAEK and gets responses1 : : : t. assume also that it outputst+ 1 distinct valid
ciphertextsCi = h0i; h0ii for 1 � i � t + 1. There are two cases. Either all0i are distinct, or at least two
of them are the same. In the former case, by the pigeon-hole principle at least one0i 62 f1 : : : tg, but this
meansA0 output a “new” valid ciphertext forAE , contradicting itssUF-CMA-security. Otherwise, some0i = 0j = . Let b = ADK(). But thenOpen(hi; b) 6= ?, Open(hj ; b) 6= ?, andhi must be different fromhj sinceCi 6= Cj andi = j . And this clearly contradicts the strong binding property of C.
B Supporting Associated Data

In this section, we show how to extend our methods to support associated data [30, 26]. Following the prior
terminology of [30], we will refer to associated data as alabel `. Intuitively, labels do not have to be hidden,
but should be “bound” to the corresponding message.

CONCEALMENT WITH ASSOCIATED DATA . Now, both algorithmsConeal andOpen will take both the
messagem and the label̀ . For future convenience, concealment can now also output somepublic partp, in
addition to the hider and the binder. Formally,ConealC̀K(m) outputs a triple(h; b; p), andOpenC̀K(h; b; p)
recoversm. As for security, the hiding property says that for anym0;m1; `, if (hi; bi; pi)  Coneal`(mi)
(wherei 2 f0; 1g), then it is hard to distinguish(h0; p0) from (h1; p1). On the other hand, binding now
says that it is hard to find(`; b; p; h0; h1) such thath0 6= h1 and both(h0; b; p), (h1; b; p) open successfully
with `. Relaxed binding is similar. Notice, public partp participates in both the hiding and the binding
properties. Of course, our previous definition correspondsto ` = p = ;, while our new goal is to havejbj+ jpj � jmj+ j`j, where minimizingjbj is more important.

CONSTRUCTION WITH ASSOCIATED DATA . We show that the constructions in Section 3 nicely extend to
support labels. Hiding only is done as before viah = E� (m), b = � . To add binding usingCRHFs, we could
seth0 = h, b0 = bkH(hk`). However, we can moveH(hk`) into the public partp0. Thus, we seth0 = h,b0 = b andp0 = H(hk`). In particular, we get a scheme withh0 = E� (m), b0 = � andp0 = H(h0k`).
Similar discussion holds for getting relaxed concealmentsusing UOWHFs. In the final scheme, we geth00 = E� (m), b00 = � andp00 = H(h00k`)kH. Notice, we moved a slightly expensive description ofH from
the binder into the public part.

AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD). Following [26], we briefly describe
the syntax and security of authenticated encryption with associated data. Essentially, the only thing that
changes is that bothAE andAD are augmented to takèin addition tom:   AEK̀(m), m = ADK̀().
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Also, the adversaryA can now submit a pair(m; `) or (; `) to its oracles. ForIND-CCA2 security,A has
to come up withm0;m1; `, gets a challenge�  AEK̀(m�) (for random�) and has to predict�, as before,
provided it did not callAD`(�) (but using other label is allowed).sUF-CMA-security does not change
as well except the entire pair(; `) has to be “new”. Rogaway [26] demonstrated several authenticated
encryption schemes, where the distinction between the message and the label (or “header”) indeed leaves to
significantly improved efficiency.

SUPPORTING ASSOCIATED DATA . We show that the composition paradigm above naturally supports
AEAD. Namely, assumeAE = (KG;AE;AD) supports messages of some “short” lengthjbj and asso-
ciated labels of “short” lengthjpj. Assume also that the concealmentC supports messages of “long”
length jmj and labels of “long” lengthj`j. We define the composed authenticated encryption schemeAE 0 = (KG0;AE0;AD0) as follows.KG0 = KG except we also publish public informationCK Setup(1k).AE0K`(m) first runs(h; b; p)  Coneal`(m) and outputs


AEpK(b); h; p�. It is a simple extension of our
prior discussion that the resulting schemeAE 0 is a secure AEAD if and only ifC is a relaxed concealment
with associated data. Finally, notice that our constructions of such concealments based onCRHFs achievedjpj; jbj = O(k), irrespective of the length ofm and`. Also, in our case outputtingp is redundant sincep = H(hk`) and can be computed from the ciphertext and the label. Thus, our particular AEAD scheme

outputs
DAEH(hk`)K (�); h = E� (m)E.

We remark that similar construction applies toRKAE with associated data, where the Host sendsb; p to
the Card, and gets backAEpK(b). For authencryption, it sends; p and gets backADpK(). As earlier, relaxed
concealments (with associated data) no longer suffice, so wewill need strong concealments.
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