
Concealment and its Applications to

Authenticated Encryption

Yevgeniy Dodis

Department of Computer Science, New York University, USA. dodis@cs.nyu.edu

Summary. In this survey article we will study a recent cryptographic primitive
called concealment, which was introduced by Dodis and An [17] because of its nat-
ural applications to authenticated encryption. A concealment is a publicly known
randomized transformation, which, on input m, outputs a hider h and a binder b.
Together, h and b allow one to recover m, but separately, (1) the hider h reveals “no
information” about m, while (2) the binder b can be “meaningfully opened” by at
most one hider h. While setting b = m, h = ∅ is a trivial concealment, the challenge
is to make |b| ≪ |m|, which we call a “non-trivial” concealment. We will exam-
ine necessary and sufficient assumptions for building various flavors of concealment,
and give simple, general and efficient constructions of concealments giving rise to a
multitude of efficient implementations.

We also discuss two main applications of concealments to the area of authen-
ticated encryption. First, following [17, 1], we show that concealment is the right
cryptographic primitives enabling one to extend the domain of authenticated en-
cryption. Specifically, let AE be an authenticated encryption scheme (either public-
or symmetric-key)1 designed to work on short messages. Using concealments, we can
transform AE into a new authenticated encryption scheme AE ′ on longer messages
as follows. To encrypt a longer message m, one uses a concealment scheme to get h

and b, and then outputs authenticated ciphertext AE ′(m) = 〈AE(b), h〉.
Second, the above paradigm leads to a very simple and general solution to the

problem of remotely keyed (authenticated) encryption (RKAE) [14, 15], so far pri-
marily studied in the symmetric-key setting. In this problem, one wishes to split
the task of high-bandwidth authenticated encryption between a secure, but low-
bandwidth/computationally limited device, and an insecure, but computationally
powerful host. Following [17], we show that the composition paradigm above gives
a provably secure solution for RKAE: for authenticated encryption of m, the host
simply sends a short value b to the device (which stores the actual secret key for
AE), gets back AE(b), and outputs 〈AE(b), h〉 (authenticated decryption is similar).

1 We note that authenticated encryption in the public-key setting is typically called
signcryption [36]. However, since all our applications of concealments will work,
with minor adjustments, in both in the symmetric- and in the public-key settings,
we will use the term authenticated encryption throughout.

2 Yevgeniy Dodis

1 Introduction

Authenticated Encryption. The notions of privacy and authenticity are
well understood in the cryptographic community. Interestingly, until very re-
cently they have been viewed and analyzed as important but distinct building
blocks of various cryptographic systems. When both were needed, the folklore
wisdom was to “compose” the standard solutions for two. Recently, however,
the area of authenticated encryption has received considerable attention. This
was caused by many related reasons. First, a “composition” paradigm might
not always work [8, 24, 3], at least if not used appropriately [3, 30]. Second, a
tailored solution providing both privacy and authenticity might be noticeably
more efficient (or have other advantages) than a straightforward composi-
tion [21, 31, 36, 3, 7]. Third, the proper modeling of authenticated encryption
is not so obvious, especially in the public-key setting [3, 4]. Finally, viewing
authenticated encryption as a separate primitive may conceptually simplify
the design of complex protocols which require both privacy and authenticity.

Domain Extension of Authenticated Encryption. In this article we
study a natural question of securely extending the domain of authenticated
encryption. Specifically, assume we have a secure authenticated encryption
(either symmetric- or public-key; see Footnote 1) AE which works on “short”
messages. How do we build a secure authenticated encryption AE ′ on “long”
messages out of AE? (Throughout, we should interpret “short” as having very
small length, like 256 bits; “long” stands for fixed, but considerably larger
length, possibly on the order of gigabytes.) In the context of authenticated
encryption, this question was formally studied by Dodis and An [17] (whose
work we closely follow here). However, it clearly has rich history in the context
of many other cryptographic primitives. We briefly review some of this work,
since it will suggest the first solutions to our problem as well.

First, in the context of regular chosen plaintext secure (CPA-secure) en-
cryption, we can simply split the message into blocks and encrypt it “block-
by-block”. Of course, this solution multiplicatively increases the size of the
ciphertext, so a lot of work has been developed into designing more efficient
solutions. In the public-key setting, the classical “hybrid” encryption solution
reduces the problem into that in the symmetric-key setting. Namely, one en-
crypts, using the public-key, a short randomly chosen symmetric key τ , and
uses τ to symmetrically encrypt the actual message m. As for the symmetric-
key setting, one typically uses one of many secure modes of operations on block
ciphers (such as CBC; see [27]), which typically (and necessarily) add only one
extra block of redundancy when encrypting a long message m. For authenti-
cation, a different flavor of techniques is usually used. Specifically, a common
method is to utilize a collision-resistant hash function2 [16] H which maps
a long input m into a short output such that it is hard to find a “collision”

2 Or, when possible, a weaker class of hash functions, such as various types of
universal hash functions.

Concealment and its Applications to Authenticated Encryption 3

H(m0) = H(m1) for m0 6= m1. Then one applies the given authentication
mechanism for short strings to H(m) to authenticate much longer m. This
works, for example, for digital signatures (this is called “hash-then-sign”),
message authentication codes (MACs), and pseudorandom functions (for the
latter two, other methods are possible; see [6, 5, 13, 2] and the references
therein).

First Solution Attempt. One way to use this prior work is to exam-
ine generic constructions of authenticated encryption using some of the above
primitives, and apply the above “compression” techniques to each basic primi-
tive used. For example, in the symmetric-key setting we can take the “encrypt-
then-mac” solution [8] for authenticated encryption, the CBC mode for en-
cryption, the CBC-MAC [6] for message authentication, and build a specific
authenticated encryption on long messages using only a fixed-length block
cipher. Even better, in this setting we could utilize some special purpose,
recently designed modes of operation for authenticated encryption, such as
IACBC [21] or OCB [31]. Similar techniques could be applied in the public-
key setting using the “hybrid” technique for encryption, “hash-then-sign” for
signatures, and any of the three generic signature/encryption compositions
presented by [3].

In other words, prior work already gives us some tools to build “long”
authenticated encryption, without first reducing it to “short” authenticated
encryption.

Why Solving Our Problem Then? The first reason is in its theoretical
value. It is a very interesting structural question to design an elegant am-
plification from “short” to “long” authenticated encryption, without building
the “long” primitive from scratch. For example, in the public-key setting espe-
cially, it is curious to see what is the common generalization of such differently
looking methods as “hybrid” encryption and “hash-then-sign” authentication.
Indeed, we shall see that this generalization yields a very elegant new primi-
tive, certainly worth studying on its own. The second reason is that it gives one
more option to designing “long-message” authenticated encryption. Namely,
instead of solving the problem by using other “long-message” primitives, and
implementing these separately, we directly reduce it to the same, but “short-
message” primitive, and implement it separately. And this may bring other
advantages (e.g. efficiency, ease of implementation, etc.), depending on its
application and implementation. Consider, for example, the public-key set-
ting, where authenticated encryption is usually called signcryption [36] (see
Footnote 1). With any of the generic signature-encryption compositions [3],
signcryption of a long messages will eventually reduce to a regular signature
plus a regular encryption on some short messages. With our paradigm, it will
reduce to a single signcryption on a short message, which can potentially be
faster than doing a separate signature and encryption. Indeed, this potential
efficiency gain was the main motivation of Zheng [36] to introduce signcryp-
tion in the first place! Finally, our technique has important applications

4 Yevgeniy Dodis

on its own. In particular, we show that it naturally leads to a very general,
yet simple solution to the problem of remotely keyed authenticated encryp-
tion [14, 25, 15] (RKAE), discussed a bit later. None of the other techniques
we mentioned seem to yield the solution to this problem.

Main Construction and a New Primitive: Concealment. Following
[17], we seek to amplify a given “short” authenticated encryption AE into a
“long” AE ′ as follows. First, we somehow split the long message m into two
parts (h, b) ← T (m), where |b| ≪ |m|, and then define AE ′(m) = 〈AE(b), h〉.
Which transformations T suffice in order to make AE ′ a “secure” authenti-
cated encryption if AE is such? [17, 1] completely characterize such transfor-
mations T , which are called concealments. Specifically, they show that AE ′

is secure if and only if T is an “appropriate” concealment scheme, where
“appropriate” depends on the exact setting we consider, as discussed later.

Intuitively, a concealment T has to be invertible, and also satisfy the fol-
lowing properties: (1) the hider h reveals no information about m; and (2)
the binder b “commits” one to m in a sense that it is hard to find a valid
(h′, b) where h′ 6= h. Property (2) has three formalizations leading to the
notions of regular, relaxed and super-relaxed concealment schemes. Super-
relaxed concealments will turn out to be necessary and sufficient [17, 1] for
the symmetric-key setting and the so called “outside-secure” public-key set-
ting [3]. Relaxed concealments will be necessary and sufficient [17, 1] for the
stronger and more desirable “insider-secure” public-key setting [3]. Finally,
regular concealments will be necessary and sufficient [17] for the problem of
RKAE (in either the symmetric- or the public-key settings), briefly mentioned
earlier and discussed shortly. We also remark that concealments look very
similar to commitment schemes at first glance, but there are few crucial differ-
ences, making these notions quite distinct. This comparison will be discussed
in Section 2.

Finally, we are left with the question of constructing concealment schemes.
First, we show that non-trivial (i.e., |b| < |m|) concealment schemes require
the existence of one-way functions. Additionally, ensuring regular binding
property requires the existence of collision-resistant hash functions (CRHFs).
From a positive perspective, we give a very efficient general construction of
(all kinds of) concealments matching the necessary requirements stated above.
Our construction uses any one-time secure symmetric key encryption (which
can be built efficiently from pseudorandom generators or standard block ci-
phers) to ensure message hiding, and a certain family of hash functions: al-
most universal hash functions (AUHFs) [35] for super-relaxed binding, univer-
sal one-way hash function (UOWHFs) [29] for relaxed binding, and collision-
resistant hash functions (CRHFs) [16] for regular binding. When instantiated
with standard components, our constructions have a binder b whose length is
only proportional to the security parameter and is independent of the message
length, while the length of the hider h is roughly equal to the length of the
message. In fact, one special case of our construction looks very similar to

Concealment and its Applications to Authenticated Encryption 5

the famous Optimal Asymmetric Encryption Padding (OAEP) [9], although
without relying on random oracles!

To summarize, concealments are very natural cryptographic gadgets, and
can be efficiently built from standard assumptions. In particular, they give
an efficient way to implement “long” authenticated encryption from a “short”
one. Finally, we describe a powerful application of concealments and our am-
plification technique to the problem of RKAE, which deserves a separate in-
troduction.

Remotely Keyed Authenticated Encryption: History. The problem
of “remotely keyed encryption” (RKE) was first introduced by Blaze [14] in
the symmetric-key setting. Intuitively, RKE is concerned with the problem
of “high-bandwidth encryption with low bandwidth smartcards”. Essentially,
one would like to store the secret key in a secure, but computationally bounded
and low bandwidth Card, while to have an insecure, but powerful Host per-
form most of the operations for encryption/decryption. Of course, the com-
munication between the Host and the Card should be minimal as well. The
original work of Blaze lacked formal modeling of the problem, but inspired
a lot of subsequent research. The first formal modeling of RKE was done
by Lucks [25], who chose to interpret the question as that of implementing
a remotely key pseudorandom permutation (or block cipher), which we will
call RKPRP. Lucks’ paper was further improved —both in terms of formal
modeling and constructions— by an influential work of Blaze, Feigenbaum
and Naor [15]. For one thing, they observed that the PRP’s length-preserving
property implies that it cannot be semantically secure when viewed as en-
cryption. Thus, in addition to RKPRP, which they called a “length-preserving
RKE”, they introduced the notion of a “length-increasing RKE”, which is es-
sentially meant to be the notion of remotely keyed authenticated encryption,
so we will call it RKAE. In other words, the informal notion of “RKE” was
really formalized into two very distinct notions of RKPRP and RKAE, none
of which is really a plain encryption. Blaze et al. [15] gave formal definitions
and constructions of RKAE and RKPRP, and the latter’s construction was
subsequently improved by [26].

While the RKAE definition of [15] was an important and the first step
towards properly formalizing this new notion (as opposed to the notion of
RKPRPs), their definition is convoluted and quite non-standard (it involves an
“arbiter” who can fool any adversary). For example, it looks nothing like the
formal, universally accepted notion of regular (not remotely keyed) authenti-
cated encryption [23, 11, 8]. Of course, this has a very objective reason in that
the above formal definition appeared after the work of [15]. Additionally, at the
time Blaze et al. perhaps tried to make their definition of “length-increasing
RKE” look as close as possible to their definition of “length-preserving RKE”
(i.e., RKPRP) also studied in that paper, since the latter was the previously
considered notion. Still, we believe that the definition of RKAE should be
based on the definition of regular authenticated encryption, rather than try

6 Yevgeniy Dodis

mimicking the definition of a somewhat related, but different concept. Thus,
we will follow the work of Dodis and An [17] who gave a simpler and more
natural such definition, which looks very close to the definition of regular au-
thenticated encryption. Additionally, [17] naturally extend the whole concept
of RKAE to the public-key setting, since it is equally applicable in this case
too.3 Notice, in the public-key setting the notion of RKPRP makes no sense,
which additionally justifies our choice to base our definition on that of regular
authenticated encryption.

Another closely related work is that of Jakobsson et al. [22], who also
effectively studied the problem of RKAE (even though still calling it RKE

despite considering authentication as part of the requirement). We note that
the definition of [22] looks much closer to the one of [17]. However, there are
still significant differences that make the latter notion stronger.4 For example,
[22] do not support chosen ciphertext attack in its full generality (i.e., no Card
access is given to the adversary after the challenge is received), and also require
the adversary to “know” the messages corresponding to forged ciphertexts. We
also mention that their main scheme uses an “OAEP”-like transform, and their
security analyses critically use random oracles. As we show, using another (in
fact, simpler!) variant of OAEP for RKAE, we can eliminate random oracles
from the analysis. Thus, a special case of our construction gives an equally
simple and efficient scheme, which is provably secure in the standard model.

Finally, we mention the recent work Joux et al. [20]. From our perspective,
it showed that naive “remotely-keyed” implementation of many natural block
cipher modes of operations for (authenticated) encryption, such as CBC or
IACBC, are completely insecure from the perspective of RKE/RKAE. In such
naive implementations, the Card stores the key to the block cipher, while the
Host does everything by itself except when it needs to evaluate the block cipher
(or its inverse), it which case it calls the Card. We notice that this means that
to perform a single (authenticated) encryption/decryption, the Host needs to
adaptively access the Card for a number of times proportional to the length
of the (long) message. Perhaps not surprisingly, this gives too much power to
the “blockwise-adaptive” adversary, allowing him to easily break the security
of such naive RKE/RKAE implementations. In contrast, in our RKAE solutions
the Host accesses the Card once and on a very short input, irrespective of the
length of the message it actually processes. In fact, in one of the solutions of
[17] (see “extensions” paragraph below), all the Card does is a single block
cipher call per invocation!

3 In this abstract, though, we will concentrate on the more popular symmetric-key
setting, only briefly mentioning the simple extension to the public-key setting.

4 Except both [22] and [15] insist on achieving some kind of pseudorandomness
of the output. Even though our constructions achieve it as well, we feel this
requirement is not crucial for any application of RKAE, and was mainly put to
make the definition look similar to RKPRPs.

Concealment and its Applications to Authenticated Encryption 7

As a corollary, the work of [20] strongly supports our prior claim that
direct “long” authenticated encryption schemes, such as IACBC [21], do not
seem to be naturally suited for RKAE.

RKAE Constructions. In addition to giving a simple and natural definition
of RKAE, Dodis and An [17] showed that our construction of “long-message”
authenticated encryption from that of “short-message” authenticated encryp-
tion provides a very natural, general, and provably secure solution to the
problem of RKAE. Recall, we had AE ′(m) = 〈AE(b), h〉, where (h, b) was out-
put by some transformation T , and |b| ≪ |m|. This immediately suggests the
following protocol for RKAE. The Host computes (h, b) and sends short b to
the Card, which stores the secret key. The Card computes short c = AE(b)
and sends it to the Host, which outputs 〈c, h〉. Authenticated decryption is
similar. Again, one can ask the question which transformations T will suffice
to make this simple scheme secure. Not surprisingly, [17] showed that conceal-
ment schemes were necessary and sufficient, even though in this case one needs
regular binding property of concealments, and must utilize CRHFs. Overall,
the above result gives a general and intuitively simple solution to the problem
of RKAE. Also, it generalizes the previous, so “differently looking” solutions
of [15, 22], both of which can be shown to use some particular concealment
and/or “short” authenticated encryption.

Extensions. All the techniques mentioned above naturally support authenti-
cated encryption with associated data [30]. Intuitively, associated data allows
one to “bind” a public label to the message. Viewing the label as part of the
message is a possible solution, but the generalized view can bring non-trivial
efficiency gains, as was shown by [30]. As shown by [17], these gains carry over
to the questions studied in this survey. However, we omit the details here and
instead refer to [17].

Also, we remark again that all our results apply to both the public- and the
symmetric-key authenticated encryption. The only exception is the following
extension from [17] that makes sense only in the symmetric-key setting. They
asked the question if one can replace the given “short” authenticated encryp-
tion AE by a (strong) pseudorandom permutation (i.e., a block cipher, since
AE is applied on short inputs), which would enhance the practical usability of
our composition even more. As shown by [17], although arbitrary concealments
are generally not enough to ensure the security of thus constructed AE ′, some
mild extra restrictions —enjoyed by the natural concealment constructions—
make them sufficient for this purpose as well!5 Again, we refer to [17] for more
details.

5 Unfortunately, the shortest length of the binder b which we can currently achieve
is roughly 300 bits. This means that most popular block ciphers, such as AES,
cannot be used in this setting. However, any block cipher with a 512-bit block
seems to more than sufficient.

8 Yevgeniy Dodis

2 Definition of Concealment

Intuitively, a concealment scheme efficiently transforms a message m into a
pair (h, b) such that: (1) (h, b) together reveal m; (2) the hider h reveals no
information about m; and (3) the binder b “commits” one to m in a sense that
it is hard to find a valid (h′, b) where h′ 6= h. Below is a formal description.

Syntax. A concealment scheme consists of three efficient algorithms: C =
(Setup,Conceal,Open). The setup algorithm Setup(1k), where k is the security
parameter, outputs a public concealment key CK (possibly empty, but often
consisting of public parameters for C). Given a message m from the corre-
sponding message spaceM (e.g.,M = {0, 1}n for some parameter n = n(k)),
the randomized concealment algorithm ConcealCK(m; r) (where r is the ran-
domness) outputs a concealment pair (h, b), where h is the hider of m and
b is the binder to m. For brevity, we will usually omit CK and/or r, writing
(h, b) ← Conceal(m). Sometimes we will write h(m) (resp. b(m)) to denote
the hider (resp. binder) part of a randomly generated (h, b). The determinis-
tic open algorithm OpenCK(h, b) outputs m if (h, b) is a “valid” pair for m (i.e.
could have been generated by Conceal(m)), or ⊥ otherwise. Again, we will
usually write x← Open(h, b), where x ∈ {m,⊥}. The correctness property of
concealment schemes says that OpenCK(ConcealCK(m)) = m, for any m and
CK.

Security of Concealment. Just like commitment schemes, concealment
schemes have two security properties called hiding and binding. However, un-
like commitment schemes, these properties apply to different parts of conceal-
ment, which makes a significant difference.

• Hiding. Having the knowledge of CK, it is computationally hard for the
adversary A to come up with two messages m1,m2 ∈ M such that A
can distinguish h(m1) from h(m2). That is, h(m) reveals no information
about m. Formally, for any PPT (probabilistic polynomial time) adversary
A, which runs in two stages find and guess, we require that the probability
below is at most 1

2
+negl(k) (where negl(k) denotes some negligible function

of the security parameter k):

Pr
[

σ = σ̃
∣

∣

∣

CK← Setup(1k), (m0,m1, α)← A(CK, find), σ ←r {0, 1},
(h, b)← ConcealCK(mσ), σ̃ ← A(h; α, guess)

]

where α is some state information. Sometime, we will write h(m0) ≈ h(m1)
to indicate that h(m0) is computationally indistinguishable from h(m1).

• Binding. Having the knowledge of CK, it is computationally hard for
the adversary A to come up with b, h, h′, where h 6= h′ such that (b, h)
and (b, h′) are both valid concealment pairs (i.e., OpenCK(h, b) 6= ⊥ and

Concealment and its Applications to Authenticated Encryption 9

OpenCK(h′, b) 6= ⊥). That is, A cannot find a binder b which it can open
with two different hiders.6

We immediately remark that setting b = m and h = ∅ satisfies the defi-
nition above. Indeed, the challenge is to construct concealment schemes with
|b| ≪ |m| (we call such schemes non-trivial). Since |b|+ |h| ≥ |m|, achieving a
very good concealment scheme implies that |h| ≈ |m|.

As we shall see, for some applications of concealment two slightly weaker
forms of binding will be enough. For the lack of better names, we call them
relaxed binding and super-relaxed binding.

Relaxed Concealments. We consider relaxed concealment schemes, where
the strict binding property above is replaced by the Relaxed Binding prop-
erty, which states that A cannot find binder collisions for a randomly generated
binder b(m), even if A can choose m before learning (h(m), b(m)). Formally,
for any PPT A, which runs in two stages find and collide, the following prob-
ability is at most negl(k):

Pr
[h 6= h′ ∧

m′ 6= ⊥

∣

∣

∣

CK← Setup(1k), (m,α)← A(CK, find), (h, b)← ConcealCK(m),
h′ ← A(h, b; α, collide), m′ ← OpenCK(h′, b)

]

To justify this distinction, we will see later that non-trivial (strong) con-
cealments will be equivalent to collision-resistant hash functions (CRHFs),
while relaxed concealments can be built from universal one-way hash func-
tions (UOWHFs). By the result of Simon [34], UOWHFs are strictly weaker
primitives than CRHFs (in particular, they can be built from regular one-
way functions [29]), which implies that relaxed concealments form a weaker
cryptographic assumption than regular concealments.

Super-Relaxed Concealments. Finally, we will consider an even weaker
form of Super-Relaxed Binding property, which states that A cannot find
binder collisions for a randomly generated binder b(m), even if A can choose m
before learning only h(m). Namely, A has to find a collision for b(m) without
even knowing b(m)! Formally, for any PPT A, which runs in two stages find

and collide, the following probability is at most negl(k):

Pr
[

h 6= h′ ∧
m′ 6= ⊥

∣

∣

∣

CK← Setup(1k), (m,α)← A(CK, find), (h, b)← ConcealCK(m),
h′ ← A(h; α, collide), m′ ← OpenCK(h′, b)

]

As we shall see, we will be able to achieve super-relaxed binding uncondition-
ally; namely, without even relying on one-way functions (which was essential
for relaxed and regular binding).

Comparison to Commitment. At first glance, concealment schemes look
extremely similar to commitment schemes. Recall, commitments also trans-
form m into a pair (c, d), where c is the “commitment”, and d is the “decom-
mitment”. However, in this setting the commitment c is both the hider and

6 We could have allowed A to find h 6= h′ as long as (h, b), (h′, b) do not open
to distinct messages m 6= m′. However, we will find the stronger notion more
convenient.

10 Yevgeniy Dodis

the binder, while in our setting b is a binder and h is a hider. This seem-
ingly minor distinction turns out to make a very big difference. For example,
irrespective of parameter settings, commitment always implies one-way func-
tions, while there are trivial concealments when |b| = |m|. On the other hand,
when |b| < |m|, we will show that concealments immediately require CRHFs,
while quite non-trivial commitments can be built from one-way functions [28].
Not surprisingly, the two primitives have very different applications and con-
structions. In particular, commitments are not useful for our applications to
authenticated encryption (even though they are useful for others; for example,
see [3] on how to use commitments to build “parallel” authenticated encryp-
tion from regular signature and encryption schemes).

3 Constructing Concealment Schemes

In this section, we give very simple and general constructions of concealment
schemes based on some “appropriate” family of hash functions (see below)
and any symmetric one-time encryption scheme.

Our construction will be split into two phases. First, we show how to
achieve only hiding using symmetric one-time encryption, and then we show
how to use hash functions to add binding to any scheme which already enjoys
hiding. We will conclude the section with the observation that all the assump-
tion we utilize in our constructions are not only sufficient, but also necessary.
Thus, our constructions are tight.

3.1 Achieving Hiding

We first show how to achieve the hiding property so that |b| ≪ |m|. Recall that
a symmetric encryption scheme SE = (K,E,D) consists of the key generation
algorithm K, encryption algorithm E, and decryption algorithm D. Of course,
if τ ← K(1k), we require that Dτ (Eτ (m)) = m. For our purposes we will need
the most trivial and minimalistic notion of one-time security. Namely, for
any m0,m1 we require Eτ (m0) ≈ Eτ (m1), where τ ← K(1k) and ≈ denotes
computational indistinguishability. More formally, for any m0,m1 and any
PPT A, we require

Pr
[

σ = σ̃
∣

∣

∣
τ ← K(1k), σ ←r {0, 1}, c← Eτ (mb), σ̃ ← A(c)

]

≤
1

2
+negl(k)

Of course, regular one-time pad satisfies this notion. However, for our purposes
we will want the secret key to be much shorter than the message: |τ | ≪ |m|.
For the most trivial such scheme, we can utilize any pseudorandom generator
(PRG) G : {0, 1}k → {0, 1}n where k ≪ n. The secret key is a random
τ ∈ {0, 1}k, and to encrypt m ∈ {0, 1}n we compute Eτ (m) = G(τ) ⊕ m
(to decrypt, compute Dτ (c) = G(τ) ⊕ c). Of course, any stronger encryption

Concealment and its Applications to Authenticated Encryption 11

(possibly probabilistic, such as any chosen plaintext secure encryption) will
suffice for our purposes too.

Now, let b = τ and h ← Eτ (m), so that Open(b, h) = Db(h). It is easy to
see that this scheme satisfies the hiding (but not yet the binding) property of
concealment, and also that |b| ≪ |m| if a good one-time secure encryption is
used, such as the PRG-based scheme above.

Lemma 1. If SE is a one-time secure encryption scheme, then the above
concealment scheme satisfies hiding. Moreover, the scheme is non-trivial if
and only if the key τ is shorter than the message m (which, by the result of
[19], requires the existence of one-way functions).

3.2 Achieving Binding

Next, we show how to add regular/relaxed/super-relaxed binding property
using any family of collision-resistant/universal one-way/almost universal
hash functions (CRHFs/UOWHFs/AUHFs). Recall, CRHFs/UOWHFs/AUHFs
are defined by some family H = {H} of compressing functions for which no
computationally bounded attacker can find, with non-negligible probability, a
colliding pair x 6= x′ such that H(x) = H(x′), where H is a function randomly
chosen from H. However,

• with CRHFs, we first select the function H and let the attacker find (x, x′)
based on H.

• with UOWHFs, the attacker selects x before seeing H, and only then finds
x′ based on H.

• with AUHFs, the attacker has to select both (x, x′) before seeing H.

We will comment on the known constructions of such hash families later,
here only mentioning that AUHFs can be built unconditionally, the existence
of UOWHFs is equivalent to the existence of one-way functions [32], while the
existence of CRHFs seems to require strictly stronger computational assump-
tions than one-way functions [34]. Instead, now we see how to utilize such hash
functions for our purposes of achieving the corresponding form of binding. In
all the constructions we assume C = (Setup,Conceal,Open) already achieves
hiding, and let H = {H} be some hash family whose input size equals to the
input size of the hider h of C. Recall that in our schemes we will always have
|h| ≈ |m| (in fact, exactly equal in the PRG-based scheme), so we expect the
input length of H to be roughly equal to the input length of our message m.

Regular Binding. Here we assume that H = {H} is a family of CRHFs.
We turn the given “hiding” concealment C into C′ = (Setup′,Conceal′,Open′)
which is a full fledged concealment scheme as follows:

• Setup′(1k): run CK← Setup(1k), H ← H and output CK′ = 〈CK,H〉.
• Conceal′(m): let (h, b) ← Conceal(m), h′ = h, b′ = b‖H(h), and output
〈h′, b′〉.

12 Yevgeniy Dodis

• Open′(h′, b′): parse b′ = b‖t, h′ = h and output ⊥ if H(h) 6= t; otherwise,
output m = Open(h, b).

Lemma 2. If C satisfies the hiding property and H is a CRHF, then C′ is a
(regular) concealment scheme.

Proof: Since h′ = h, we get hiding for free. As for binding, if some A outputs
b′ = b‖t and h0 6= h1 such that H(h0) = H(h1) = t, then, in particular, A
outputs a collision (h0, h1) for H, contradicting the collision resistance of H.

As we can see, the output size of H directly contributes to the size of our
binder b′. In practical constructions, this output size is proportional to the
security parameter k and is independent of the input length n. Since the same
is true for the key length of practical symmetric encryption schemes, we get
that the size of the binder is optimally proportional to the security parameter
k. For example, using AES-based encryption and SHA1-based hash function,
|b′| = 128 + 160 = 288 bits.

Relaxed Binding. Here we assume that H = {H} is a family of UOWHFs.
We turn the given “hiding” concealment C into C′′ = (Setup′′,Conceal′′,Open′′)
which is a full fledged relaxed concealment scheme as follows:

• Setup′′ = Setup.
• Conceal′′(m): pick H ← H, compute (h, b) ← Conceal(m), set h′′ = h,

b′′ = b‖H(h)‖H, and output 〈h′′, b′′〉.
• Open′′(h′′, b′′): parse b′′ = b‖t‖H, h′′ = h and output ⊥ if H(h) 6= t;

otherwise, output m = Open(h, b).

Lemma 3. If C satisfies the hiding property and H is a UOWHF, then C′′ is
a relaxed concealment scheme.

Proof: Since h′′ = h, we get hiding for free. As for binding, assume some
A chooses m0, gets back b′′ = b‖t‖H and h0, and then successfully outputs
h1 6= h0 such that H(h0) = H(h1) = t. Since h0 = h(m0) is computed
independently of H, we can immediately turn this A into an attacker A′

breaking the UOWHF security of H. A′ will use A to get m0, will compute
(h0, b) ← Conceal(m0), and will output the message h0 as the first colliding
message. Upon learning random H, A′ will run A on inputs b′′ = b‖H(h0)‖H
and h0 to produce the second colliding message h1 6= h0.

We see that the construction is similar to the CRHF-based construction, except
we pick a new hash function per each call, and append it to the binder b′′. This
ensures that H is always selected independently of the input h it is applied to,
as required by the definition of UOWHFs. In theory, this shows that efficient
relaxed concealments, unlike regular concealments (see Lemma 6), can be built
from one-way functions. In practice, the message is less clear. On the one hand,
best theoretical constructions of UOWHFs from one-way functions (or even

Concealment and its Applications to Authenticated Encryption 13

fixed-length UOWHFs) have key length roughly proportional to O(k log |m|)
[32, 10, 33], which is slightly superlinear in the security parameter k when
hashing long messages. For example, hashing 1Gb message would require a
binder of at least several kilobytes, which is less desirable. On the other hand,
it might be much more reasonable to assume that a given “practical” hash
family H is universal one-way as opposed to collision-resistant. For example,
Halevi and Krawczyk [18] gave several efficient methods to construct UOWHFs
with short keys (say, 160 bits) using building blocks which are not required
(and unlikely!) to be collision-resistant. Thus, it seems reasonable that one
might be able to construct a UOWHF family whose output plus key size might
be comparable to (or perhaps only slightly larger than) the best reasonable
output of a CRHF, and yet rely on a provably weaker assumption!

Super-Relaxed Binding. To construct super-relaxed concealments, we use
exactly the same construction C′′ as above, except we only need to assume
that the hash family H = {H} is a family of AUHFs.

Lemma 4. If C satisfies the hiding property and H is a AUHF, then C′′ is a
super-relaxed concealment scheme.

Proof: The proofs is the same as of Lemma 3, except we observe that the
attacker A never learns the value H when breaking the super-relaxed binding.
This is because A is only given the value h′′ = h which does not include
H. Thus, A effectively produces a collision pair (h0, h1) without having any
information about H, contradicting the AUHF security of H.

It is known that one can construct AUHFs unconditionally. For example,
the classical polynomial interpolation construction (see [12] for some history)
splits the n-bit message into blocks of size v, and evaluates the resulting degree
n/v polynomial at a random point in GF [2v] (where this point is the key for
H). This construction achieves binding security n/(v2v),7 and has the key and
output size equal to v. For example, if the length of the message and the hider
h is 1Gb, to achieve security 2−80 it is sufficient to set v = 106. Thus, using
this construction with AES-based encryption, the final length of the binder
b′′ = τ‖H(h)‖H is 128 + 106 + 106 = 340 bits, which is quite reasonable for
a 1Gb message, and is only 52 bits longer than the SHA1-based construction
(which required to assume the collision-resistance of SHA1, and certainly did
not achieve even “conditional” binding security 2−80).

Collecting Pieces Together. To summarize, we achieved the follow-
ing constructions of concealment schemes. For the hider, all schemes set
h = Eτ (m), where E is a one-time secure encryption scheme (such as
Eτ (m) = m⊕G(τ), where G is a PRG, or any block-cipher based semantically
secure encryption, such as CBC or CFB). For the binder, for regular binding
we set b = τ‖H(h), where H is chosen from a family of CRHFs, while for the

7 Meaning that the maximal probability two unequal messages collide under a
random H is at most n

v2v .

14 Yevgeniy Dodis

relaxed/super-relaxed binding we could make weaker assumptions by setting
b = τ‖H(h)‖H and assuming H is chosen from a family of UOWHFs/AUHFs.
In particular, using the fact the existence of CRHFs or UOWHFs implies the
existence of one-way functions, and, hence, of one-time secure symmetric en-
cryption, we get:

Theorem 1. The hiding property of of regular/relaxed/super-relaxed conceal-
ment can be based on the existence of one-way functions (which is implied by
the existence of CRHF). The binding property of regular/relaxed/super-relaxed
concealments can be based on the existence of CRHF/one-way functions/no
assumptions.

As we will see in the next subsection, the above theorem is tight in terms of
the minimal assumptions required.

Comparing to OAEP. Recall, the Optimal Asymmetric Encryption Padding
(OAEP) [9] is a popular padding scheme used in designing various encryption
and signature schemes based on trapdoor permutations. It picks a random
value τ and sets h = G(τ)⊕m, b = τ⊕H(h), where G and H are hash function
typically modeled as random oracles in the analysis. This construction is very
similar to the particular concealment construction we had above, except we
set b = τ‖H(h). Namely, our construction is slightly more “redundant” in
terms of the binder b. However, this “redundancy” is precisely makes it a
secure concealment scheme. Indeed, OAEP decoding never outputs ⊥, since
it is a permutation over m and τ ; thus, OAEP does not achieve any binding.
What is interesting, though, is that our construction — which is so similar
to the OAEP — does not need to assume G and H as random oracles in the
analysis!

3.3 Necessity of Assumptions

We show that the assumptions of Lemma 1, Lemma 2 and Lemma 3 (and
hence those of Theorem 1) are not only sufficient, but also necessary. We
start by showing that achieving non-trivial hiding requires one-way functions,
as stated in Lemma 1.

Lemma 5. If C is non-trivial (i.e., |b| < |m|) and satisfies the correctness
and hiding properties of concealment, then one-way functions exist.

Proof: We use the result of Impagliazzo and Luby [19] who showed that “non-
trivial, one-time secure interactive encryption” (NOTE) implies the existence
of one-way functions. Here NOTE refers to any interactive protocol between
Alice and Bob, who are connected by a public channel P and a secure channel
S such that: (a) at the end of the protocol Alice transmits the message m to
Bob; (b) Eve, who is passive and only observes all the communication over
the public channel P , gets no information (in the usual sense of semantic
security) about m; and (c) the total length of messages exchanged over the

Concealment and its Applications to Authenticated Encryption 15

secure channel S (not observed by Eve) is strictly less than the length of the
message m.

Thus, it suffices to show that non-trivial concealment satisfying correctness
and hiding imply a NOTE scheme. But this is simple. Alice, on input m, runs
the concealment scheme to obtain (h, b) ← Conceal(m), and send b over the
secure channel S, and h over the public channel P . Bob can recover m from
b and h (by correctness), the length of b is shorter than the length of m (by
non-triviality of C), and h observed by Eve reveals no information about m
(by hiding).

Next, we show the necessity of using CRHFs/UOWHFs for ensuring regu-
lar/relaxed binding of our constructions.

Lemma 6. Let C = (Setup,Conceal,Open) be a regular (resp. relaxed) con-
cealment scheme where the binder b is shorter than the message m. De-
fine a shrinking function family H by the following generation procedure:
pick a random r, run CK ← Setup(1k), and output 〈CK, r〉 as a descrip-
tion of a random function H ∈ H. To evaluate such H on input m, run
(h, b) = ConcealCK(m; r), and set H(m) = b (so that |H(m)| < |m|). Then H
is a family of CRHFs (resp. UOWHFs).

Proof: If C is a regular concealment, finding m0 6= m1 such that H(m0) =
H(m1) = b implies finding h0 = h(m0; r), h1 = h(m1; r) such that
OpenCK(h0, b) = m0 6= ⊥, OpenCK(h1, b) = m1 6= ⊥ and h0 6= h1 (since
m0 6= m1). This clearly contradicts the binding property of concealment.
Similarly, if one has to choose m0 beforehand, choosing a random H ∈ H
involves choosing a random r. Thus, when evaluating H(m0), we effectively
computed a random concealment (h0, b)← ConcealCK(m0) and gave it to the
adversary, as required by the definition of relaxed concealment. The rest of
the proof is the same as for strong concealments.

4 Applications to Authenticated Encryption

We now study applications of concealment to authenticated encryption. Recall,
the latter provides means for private, authenticated communication between
the sender and the receiver. Namely, an eavesdropper cannot understand any-
thing from the transmission, while the receiver is sure that any successful
transmission indeed originated from the sender, and has not been “tampered
with”. The intuitive idea of using concealments for authenticated encryp-
tion is simple. If AE is an authenticated encryption working on short |b|-bit
messages, and (h, b)← Conceal(m), we can define AE ′(m) = 〈AE(b), h〉. Intu-
itively, sending the hider h “in the clear” preserves privacy due to the hiding
property of concealments, while authenticated encryption of the binder b pro-
vides authenticity due to the binding property. (The exact type of the required
binding will depend on the particular setting, as explained later.)

16 Yevgeniy Dodis

We formalize this intuition by presenting two applications of the above
paradigm. First, we argue that it indeed yields a secure authenticated encryp-
tion on long messages from that on short messages. And this holds even if
(super-)relaxed concealments are used (see below for the details). Second, we
show that this paradigm also gives a very simple and general solution to re-
motely keyed authenticated encryption. Here, the full power of regular binding
is needed.

We remark that our applications hold for both the symmetric- and the
public-key notions of authenticated encryption (the latter is historically called
signcryption [36]). In terms of usability, the long message authenticated en-
cryption is probably much more useful in the public-key setting, since sign-
cryption is typically expensive. However, even in the symmetric-key setting
our approach is very fast, and should favorably compare with alternative di-
rect solutions such as “encrypt-then-mac” [8]. For remotely keyed setting, both
public- and symmetric-key models seem equally useful and important. In fact,
symmetric-key is perhaps more relevant, since smartcards are currently much
better suited for symmetric-key operations. Indeed, before [17] prior work on
“remotely keyed encryption” focused on the symmetric setting only.

4.1 Definition of Authenticated Encryption

We remark that formal modeling of authenticated encryption in the public-key
setting is somewhat more involved than that in the symmetric-key setting due
to issues such as multi-user security, “insider attacks” and “identity fraud”
(see [3]). Therefore, we first give the details of the symmetric-key setting, and
then briefly sketch the changes required in the public-key setting.

Symmetric-Key Syntax. A symmetric-key authenticated encryption scheme
consists of three algorithms: AE = (KG,AE,AD). The randomized key gener-
ation algorithm KG(1k), where k is the security parameter, outputs a shared
secret key K, and possibly a public parameter pub. Of course, pub can always
be part of the secret key, but this might unnecessarily increase the secret stor-
age. In the description below, all the algorithms (including the adversary’s)
can have access to pub, but we omit this dependence for brevity. The ran-
domized authencryption (authenticate/encrypt) algorithm AE takes as input
the key K and a message m from the associated message space M, inter-
nally flips some coins and outputs a ciphertext c; we write c ← AEK(m) or
c ← AE(m), omitting the key K for brevity. The deterministic authdecryp-
tion (verify/decrypt) algorithm AD takes as input the key K, and outputs
m ∈M∪{⊥}, where ⊥ indicates that the input ciphertext c is “invalid”. We
write m← ADK(c) or m← AD(c) (again, omitting the key). We require that
AD(AE(m)) = m, for any m ∈M.

Symmetric-Key Security. Fix the sender S and the receiver R. Following
the standard security notions [8], we define the attack models and goals of the

Concealment and its Applications to Authenticated Encryption 17

adversary for both authenticity (i.e. sUF-CMA)8 and privacy (IND-CCA2)9 as
follows. We first model our adversary A. A has oracle access to the function-
alities of both S and R. Specifically, it can mount a chosen message attack
on S by asking S to produce a ciphertext C of an arbitrary message m, i.e.
A has access to the authencryption oracle AEK(·). Similarly, it can mount a
chosen ciphertext attack on R by giving R any candidate ciphertext C and
receiving back the message m (where m could be ⊥), i.e. A has access to the
authdecryption oracle ADK(·).

To break the sUF-CMA security of the authenticated encryption scheme,
A has to be able to produce a “valid” ciphertext C (i.e., ADK(C) 6= ⊥),
which was not returned earlier by the authencryption oracle.10 Notice, A is
not required to “know” m = ADK(C) when producing C. The scheme is
sUF-CMA-secure if for any PPT A, Pr[A succeeds] ≤ negl(k).

To break the IND-CCA2 security of the authenticated encryption scheme,
A first has to to come up with two messages m0 and m1. One of these will
be authencrypted at random, the corresponding ciphertext C∗ ← AEK(mσ)
(where σ is a random bit) will be given to A, and A has to guess the value
σ. To succeed in the CCA2 attack, A is only disallowed to ask R to authde-
crypt the challenge C∗. The scheme is IND-CCA2-secure if for any PPT A,
Pr[A succeeds] ≤ 1

2
+ negl(k).

Remark 1. We also remark that IND-CPA-security11 is the same, except A is
not given access to the authdecryption oracle. Moreover, in the symmetric-
key setting it is known that IND-CPA+sUF-CMA security implies IND-CCA2-
security [8]. However, since this implication does not hold in the public-key
setting, discussed next, we do not follow this route in the symmetric-key
setting.

Public-Key Syntax. For convenience, we will use almost the same syntax
as before, with the following modifications. The key generation algorithm
KG(1k) run by user U now outputs the public verification/encryption key
VEKU and the secret signing/decryption key SDKU for U . The randomized
authencryption (authenticate/encrypt) algorithm AE, run by the sender S to
compose a ciphertext to the receiver R, takes as input the secret key SDKS of
S, the public key VEKR of R and a message m from the associated message
spaceM, internally flips some coins and outputs a ciphertext c; we write c←
AESDKS

(m,VEKR) or simply c← AE(m), when the identities of S and R are
clear. The deterministic authdecryption (verify/decrypt) algorithm AD takes
as input the secret key SDKR or R, and the public key VEKS of S and outputs
m ∈M∪{⊥}, where ⊥ indicates that the input ciphertext c is “invalid”. We

8 Meaning “strong unforgeability against chosen message attack.”
9 Meaning “indistinguishability against chosen ciphertext attack.”

10 A slightly weaker notion of UF-CMA requires C to correspond to “new” message
m not submitted to AEK(·).

11 Meaning “indistinguishability against chosen plaintext attack.”

18 Yevgeniy Dodis

write m← ADK(c) or simply m← AD(c) (again, omitting the keys of S and
R, when clear). We require that ADSDKR

(AESDKS
(m,VEKR),VEKS) = m, for

any m ∈M.

Public-Key Security. The security is defined similarly to the symmetric-
key setting, except there are several flavors now because the sender S and
the receiver R now have difference secret keys. We refer the reader to [3] for
the discussing of some of those flavors, here only discussing the distinction
between outsider-security and insider security. Informally, in the outsider-
security setting the attacker tries to break privacy or authenticity of two
honest users S and R communicating between each other, by posing as a
legitimate outsider party to either S or R. In contrast, in the insider-security
setting the attacker tries to break privacy or authenticity or an honest user
U by “posing” as a valid sender or recipient to U . Thus, insider security is a
stronger notion, but may not be required in some applications.

• Outsider Security. This setting is very similar to the definition in the
symmetric-key setting. We fix sender S and receiver R, and give their pub-
lic keys VEKS and VEKR to the attacker A. As before, A has oracle access
to the functionalities of both S and R. Specifically, it can mount a chosen
message attack on S (or, similarly, R) by asking S to produce a ciphertext
C of an arbitrary message m to an arbitrary public key VEKR′ (possibly,
R′ = R, but this is not necessary!); i.e. A has access to the authencryption
oracle AESDKS

(·, ·). Similarly, it can mount a chosen ciphertext attack on
R (or, similarly, on S) by giving R any candidate ciphertext C for an ar-
bitrary public key VEKS′ (possibly S′ = S, but this is not necessary!) and
receiving back the message m or ⊥; i.e. A has access to the authdecryption
oracle ADSDKR

(·, ·).
To break the sUF-CMA security in the outsider setting, A has to be able

to produce a “valid” ciphertext C (i.e., ADSDKR
(C,VEKS) 6= ⊥), which was

not returned earlier by the authencryption oracle of S. Notice, A is not
required to “know” the corresponding message m when producing C. The
scheme is sUF-CMA-secure if for any PPT A, Pr[A succeeds] ≤ negl(k).

To break the IND-CCA2 security in the outsider setting, A first has
to to come up with two messages m0 and m1. One of these will be
authencrypted at random from S to R, the corresponding ciphertext
C∗ ← AESDKS

(mσ,VEKR) (where σ is a random bit) will be given to A,
and A has to guess the value σ. To succeed in the CCA2 attack, A is only
disallowed to ask R to authdecrypt the challenge (C∗,VEKS). The scheme
is IND-CCA2-secure if for any PPT A, Pr[A succeeds] ≤ 1

2
+ negl(k).

• Insider Security. In this setting the attacker attacks a single user U . As
usual, A is given VEKU and can mount chosen message attack (with ar-
bitrary public keys VEKR) and chosen ciphertext attack (with arbitrary
public keys VEKR) on U . To break the sUF-CMA security in the insider
setting, A has to be able to produce a presumed recipient R, by pro-
viding a valid key pair (SDKR,VEKR), and a “valid” ciphertext C (i.e.,

Concealment and its Applications to Authenticated Encryption 19

ADSDKR
(C,VEKU) 6= ⊥), which was not returned earlier by the authen-

cryption oracle of U . Notice, A is not required to “know” the correspond-
ing message m when producing C. Also, A only needs to “know” the
secret key SDKR for the forged ciphertext C, but not during his cho-
sen message attack. The scheme is sUF-CMA-secure if for any PPT A,
Pr[A succeeds] ≤ negl(k). Similarly, to break the IND-CCA2 security in
the outsider setting, A first has to to come up with a presumed recipient
S, by providing a valid key pair (SDKS ,VEKS), and two messages m0 and
m1. One of these will be authencrypted at random from S to U (using the
provided SDKS), the corresponding ciphertext C∗ ← AESDKS

(mσ,VEKU)
(where σ is a random bit) will be given to A, and A has to guess the
value σ. To succeed in the CCA2 attack, A is only disallowed to ask U to
authdecrypt the challenge (C∗,VEKS). Also, during his chosen ciphertext
attack, A only needs to know the secret key for the challenge sender S,
but not for the other senders. The scheme is IND-CCA2-secure if for any
PPT A, Pr[A succeeds] ≤ 1

2
+ negl(k).

4.2 Authenticated Encryption of Long Messages

Assume AE = (KG,AE,AD) is a secure authenticated encryption on |b|-
bit messages. We would like to build an authenticated encryption AE ′ =
(KG′,AE′,AD′) on |m|-bit messages, where |m| ≫ |b|. We start with the
symmetric-key setting, and later generalize to the public-key setting.

Symmetric-Key Setting. We will employ the following composition paradigm.
The key K for AE ′ is the same as that for AE . To authencrypt m, first split
it into two pieces (h, b) (so that the transformation is invertible), and output
AE′

K(m) = 〈AEK(b), h〉. The question we are asking is what are the neces-
sary and sufficient conditions on the transformation m → (h, b) so that the
resulting authenticated encryption is secure? As shown by Alt [1] (correcting
the prior claim of [17]), the necessary and sufficient condition is to have the
transformation above be a super-relaxed concealment.

More formally, assume C = (Setup,Conceal,Open) satisfies the syntax, but
not yet the security properties of a concealment scheme. We assume that
CK ← Setup(1k) forms a public parameter pub of AE ′. We define AE ′ as
stated above. Namely, AE′(m) outputs 〈AE(b), h〉, where (h, b)← Conceal(m),
and AD′(c, h) outputs Open(h,AD(c)). Then

Theorem 2. If AE is secure, then AE ′ is secure if and only if C is a super-
relaxed concealment scheme.

Proof Sketch: For one easy direction, we show that if C does not satisfy
the hiding property, then AE ′ cannot even be IND-CPA-secure, let alone IND-

CCA2-secure. Indeed, if some adversaryA can find m0,m1 s.t. h(m0) 6≈ h(m1),
then obviously AE′(m0) ≡ (AE(b(m0)), h(m0)) 6≈ (AE(b(m1)), h(m1)) ≡
AE′(m1), contradicting IND-CPA-security.

20 Yevgeniy Dodis

Similarly, if C does not satisfy the super-relaxed binding property, thenAE ′

cannot be sUF-CMA-secure. Indeed, assume some adversary A can produce m
such that when (h, b) ← Conceal(m) is generated and h is given to A, A can
find (with non-negligible probability ε) a value h′ 6= h such that Open(h′, b) 6=
⊥. We build a forger A′ for AE ′ using A. A′ gets m from A, and asks its
authencryption oracle the value AE ′(m). A′ gets back (h, c), where c is a
valid authencryption of b, and (h, b) is a random concealment pair for m.
A′ gives h to A, and gets back (with probability ε) the value h′ 6= h such
that Open(h′, b) 6= ⊥. But then (h′, c) is a valid authencryption (w.r.t. AE ′)
different from (h, c), contradicting the sUF-CMA-security of AE .

The other (interesting) direction was formally proven in [1, 17]. Here, we
only give an informal intuition. For sUF-CMA-security, by the assumed sUF-

CMA-security of AE , the only way A can break sUF-CMA-security of AE ′

is by “reusing” some prior ciphertext c = AE(b) returned (together with h)
by the authencryption oracle. Since AE is semantically secure, the value c
does not give A any more information about b than what A can deduce from
h alone.12 Thus, if A outputs a forgery (c, h′), for some h′ 6= h, then A
effectively broke the relaxed binding property of C. The IND-CCA2-security is
proven similarly. First, sUF-CMA-security above implies that only IND-CPA-
security of AE ′ needs to be proven [8]. The the latter trivially follows from
the IND-CPA-security of AE and the hiding property of C.

Public-Key Setting. We generalize the above composition paradigm as fol-
lows.AE ′ for user U will utilize the same public/secret-key pair (VEKU ,SDKU)
as AE . To authencrypt m from S to R, first split it into two pieces (h, b)
(so that the transformation is invertible), and output AE′

SDKS
(m,VEKR) =

〈AESDKS
(b,VEKR), h〉. As earlier, we are asking is what are the necessary and

sufficient conditions on the transformation m → (h, b) so that the resulting
public-key authenticated encryption is secure? We get a slightly different an-
swer depending on whether we are interested in the outsider or the insider
security. As shown by Alt [1] (slightly correcting the prior claim of [17]), the
necessary and sufficient condition for outsider/insider security is to have the
transformation above be a super-relaxed/relaxed concealment.

Theorem 3. If AE is secure, then AE ′ is outsider/insider secure if and only
if C is a super-relaxed/relaxed concealment scheme.

Proof Sketch: The outsider security proof is essentially identical to the
symmetric-key setting considered in Theorem 2, because the outsider public-
key security is very similar to the symmetric-key security.

As for the insider security, we only sketch why relaxed binding is required,
referring to [1, 17] for the full proof. This is because, when trying to forge
a ciphertext from the target user user U to some receiver R, A can know
the secret key SDKR of R. More precisely, if C does not satisfy the relaxed

12 The formalization of this claim is somewhat subtle; see [1].

Concealment and its Applications to Authenticated Encryption 21

binding property, then AE ′ cannot be sUF-CMA-secure. Indeed, assume some
adversary A can produce m such that when (h, b)← Conceal(m) is generated
and (h, b) is given to A, A can find (with non-negligible probability ε) a value
h′ 6= h such that Open(h′, b) 6= ⊥. We build a forger A′ (attacking user U) for
AE ′ usingA. First,A honestly generates keys (SDKR,VEKR) for some receiver
R. Then, A′ gets m from A, and asks its authencryption oracle the value
AE′(m,VEKR). A′ gets back (h, c), where c is a valid authencryption of b, and
(h, b) is a random concealment pair for m. Using SDKR, A retrieves the value
b from c (this is the key difference from the outsider setting!), gives (h, b) to A,
and gets back (with probability ε) the value h′ 6= h such that Open(h′, b) 6= ⊥.
But then (h′, c) is a “fresh” (different from (h, c)) authencryption of some valid
message from U to R, contradicting the sUF-CMA-security of AE .

4.3 Remotely Keyed Authenticated Encryption

Similarly to the previous section, we first consider the symmetric-key setting,
and then briefly sketch the extension to the public-key setting.

Symmetric-Key Syntax. A one-round remotely-keyed authenticated en-
cryption (RKAE) scheme consists of seven efficient algorithms: RKAE =
(RKG,Start-AE,Card-AE,Finish-AE,Start-AD,Card-AD,Finish-AD) and involves
two parties called the Host and the Card. The Host is assumed to be powerful,
but insecure (subject to break-in by an adversary), while the Card is secure
but has limited computational power and low bandwidth. The randomized
key generation algorithm KG(1k), where k is the security parameter, outputs
a secret key K, and possibly a public parameter pub. In the description below,
all the algorithms (including the adversary’s) can have access to pub, but we
omit this dependence for brevity. This key K is stored at the Card. The pro-
cess of authenticated encryption is split into the following 3 steps. First, on
input m, the Host runs probabilistic algorithm Start-AE(m), and gets (b, α).
The value b should be short, as it will be sent to the Card, while α denotes the
state information that the Host needs to remember. We stress that Start-AE

involves no secret keys and can be run by anybody. Next, the Card receives
b, and runs probabilistic algorithm Card-AEK(b), using its secret key K. The
resulting (short) value c will be sent to the host. Finally, the host runs another
randomized algorithm Finish-AE(c, α) and outputs the resulting ciphertext C
as the final authencryption of m. Again, Finish-AE involves no secret keys. The
sequential composition of the above 3 algorithms induces an authencryption
algorithm, which we will denote by AE′

K .
Similarly, the process of authenticated decryption is split into 3 steps as

well. First, on input C, the Host runs deterministic algorithm Start-AD(C),
and gets (u, β). The value u should be short, as it will be sent to the Card,
while β denotes the state information that the Host needs to remember. We
stress that Start-AD involves no secret keys and can be run by anybody. Next,
the Card receives u, and runs deterministic algorithm Card-ADK(u), using its
secret key K. The resulting (short) value v will be sent to the host. We note

22 Yevgeniy Dodis

that on possible value for v will be ⊥, meaning that the Card found some
inconsistency in the value of u. Finally, the host runs another randomized
algorithm Finish-AD(v, β) and outputs the resulting plaintext m if v 6= ⊥, or
⊥, otherwise. Again, Finish-AD involves no secret keys. The sequential compo-
sition of the above 3 algorithms induces an authdecryption algorithm, which
we will denote by AD′

K . We also call the value C valid if AD′

K(C) 6= ⊥.
The correctness property states for any m, AD′(AE′(m)) = m.

Security of RKAE. As we pointed out, RKAE in particular induces a regu-
lar authenticated encryption scheme, if we combine the functionalities of the
Host and the Card. Thus, at the very least we would like to require that the
induced scheme AE ′ = (RKG,AE′,AD′) satisfies the IND-CCA2 and sUF-CMA

security properties of regular authenticated encryption. Of course, this is not
a sufficient guarantee in the setting of RKAE. Indeed, such security only al-
lows the adversary oracle access to the combined functionality of the Host
and the Card. In the setting of RKAE, the Host is anyway insecure, so the
adversary should have oracle access to the functionality of the Card. Specifi-
cally, we allow our adversary A′ to have oracle access to the Card algorithms
Card-AEK(·) and Card-ADK(·).

Just like regular authenticated encryption, RKAE has security notions for
privacy and authenticity, which we denote by RK-IND-CCA and RK-sUF-CMA,
respectively.

To break the RK-sUF-CMA security of RKAE, A′ has to be able to produce
a “one-more forgery” when interacting with the Card. Namely, A′ tries to
output t + 1 valid ciphertexts C1 . . . Ct+1 after making at most t calls to
Card-AEK(·) (where t is any polynomial in k). Again, we remark that A′ is
not required to “know” the plaintext values mi = AD′

K(Ci). The scheme
is RK-sUF-CMA-secure if for any PPT A′, Pr[A′ succeeds] ≤ negl(k). We
note that this is the only meaningful authenticity notion in the setting of
RKAE. This is because the values c ← Card-AEK(b) returned by the Card
have no “semantic” meaning of their own. So it makes no sense to require A′

to produce a new “valid” string c. On the other hand, it is trivial for A′ to
compute t valid ciphertexts C1 . . . Ct with t oracle calls to Card-AE, by simply
following to honest authencryption protocol on arbitrary messages m1 . . . mt.
Thus, security against “one-more forgery” is the most ambitious goal we can
try to meet in the setting of RKAE.

To break the RK-IND-CCA security of RKAE, A′ first has to come up with
two messages m0 and m1. One of these will be authencrypted at random, the
corresponding ciphertext C∗ ← AEK(mσ) (where σ is a random bit) will be
given to A′, and A′ has to guess the value σ. To succeed in the CCA2 attack,
A′ is only disallowed to call the Card authdecryption oracle Card-ADK(·) on
the well-defined value u∗, where we define Start-AD(C∗) = (u∗, β∗) (recall,
Start-AD is a deterministic algorithm). The latter restriction is to prevent
A′ from trivially authdecrypting the challenge. The scheme is RK-IND-CCA-
secure if for any PPT A′, Pr[A′ succeeds] ≤ 1

2
+ negl(k). We briefly remark

Concealment and its Applications to Authenticated Encryption 23

that RK-IND-CPA-security is the same, except we do not give A′ access to the
Card authdecryption oracle.

Canonical RKAE. A natural implementation of RKAE would have the
Card perform regular authenticated encryption/decryption on short messages,
while the Host should do the special (to be discussed) preprocessing to pro-
duce the short message for the Card from the given long message. Specif-
ically, in this case we start from some auxiliary authenticated encryption
AE = (KG,AE,AD) which works on “short” |b|-bit messages, and require
that Card-AE = AE, Card-AD = AD. Moreover, we would like the Card to
authdecrypt the same value c that it produced during authencryption. In our
prior notation, u = c and v = b, where c ← AEK(b). Finally, it is natural to
assume that the Host outputs c as part of the final (long) ciphertext. Putting
these together, we come up with the following notion of canonical RKAE.

First, the Host runs Start-AE(m), which we conveniently rename Conceal(m),
and produces (h, b), where h will be part of the final ciphertext and b is
“short”. Then it sends b to the Card, and gets back c ← AEK(b). Finally,
it outputs C = 〈c, h〉 as the resulting authencryption of m. Similarly, to au-
thdecrypt C = 〈c, h〉, it sends c to the Card, gets b = ADK(c), and outputs
Finish-AD(h, b), which we conveniently rename Open(h, b). Thus, the canoni-
cal RKAE is fully specified by an auxiliary authenticated encryption AE and
a triple C = (Setup,Conceal,Open) (where Setup is run at key generation and
outputs the key which is part of pub).

The natural question we address is what security properties of Conceal and
Open are needed in order to achieve a secure canonical RKAE (provided the
auxiliary AE is secure)? As shown by Dodis and An [17], the necessary and
sufficient condition is to employ a secure (regular) concealment scheme. We
remark that the final induced scheme AE ′ we construct is exactly the composi-
tion scheme we discussed in Section 4.2. However, in that application the entire
authenticated encryption was performed honestly — in particular, b was cho-
sen by properly running Conceal(m), — so that (super-)relaxed concealments
were sufficient. Here, an untrusted Host can ask the Card to authencrypt any
value b it wishes, so we need the full binding power of concealments.

Theorem 4. If AE is secure, and a canonical RKAE is constructed from
AE and C, then RKAE is secure if and only if C is a (regular) concealment
scheme.

Proof Sketch: The proof of this result is very similar to that of Theorem 2,
and is omitted. We only mention why regular binding is necessary. If A can
come up with a triple (b, h, h′) such that Open(h, b) 6= ⊥, Open(h′, b) 6= ⊥ and
h 6= h′, then we can construct A′ breaking RK-sUF-CMA-security of AE ′ as
follows. A′ asks the card to authencrypt the value b, gets back the ciphertext
c, and outputs two valid ciphertexts 〈c, h〉 6= 〈c, h′〉.

Comparison to Previous RKAEs. We briefly compare our scheme with
those of [15, 22]. First, both schemes could be put into our framework by ex-

24 Yevgeniy Dodis

tracting appropriate concealment schemes. In fact, the concealment we extract
from [15] is essentially the same as our construction b = τ‖H(h), h = Eτ (m)
(they model one-time encryption slightly differently, but this is minor)! On
the other hand, instead of applying arbitrary authenticated encryption to the
value of b, they build a very specific one based on block ciphers and pseudo-
random functions. To summarize, the construction of [15] is quite good and
efficient, but focuses on a specific ad-hoc implementations for both conceal-
ment and authenticated encryption. We believe that our generality provides
many more options, as well as gives better understanding towards designing
RKAE, since our general description is much simpler than the specific scheme
of [15]. As for the scheme of [22], one can also extract an “OAEP”-like con-
cealment out of it, making it a special case of our framework too. However,
the specific choices made by the authors make it very hard to replace the
random oracles by some provable implementation. On the other hand, our
“OAEP”-like construction (based on a PRG and a CRHF) is equally simple,
but achieves provable security without the random oracles.

Using A Block Cipher in Place of AE. So far we considered schemes
of the form 〈AE(b), h〉, where AE is an authenticated encryption of short mes-
sages. While authenticated encryption is gaining popularity, in the symmetric-
key setting block ciphers are much more popular. Moreover, a secure block
cipher, — formally known as a (strong) pseudorandom permutation, — is “al-
most” a secure authenticated encryption, except it does not provide semantic
security (but gives at least one-wayness). Therefore, in the symmetric set-
ting it is natural to consider constructions of the form AE′(m) = 〈PK(b), h〉,
where we replace the “inner” authenticated encryption AE by a block cipher
P . This is especially relevant in the setting of RKAE, where the above scheme
would mean that the Card is simply an implementation of a block cipher! As
shown by [17], while general concealments might not be enough for such a
replacement, the main scheme from Section 3 works in the cases of interest!

Specifically, consider the scheme h = Eτ (m), b = τ‖H(h), where H is
collision-resistant and E is one-time secure. Assume also that H is preimage-
resistant — meaning that it is hard to find a preimage v ∈ H−1(r) of a random
value r. We note that any CRHF {H} with |H(h)| < |h| − ω(log k) must be
preimage-resistant. However, preimage-resistance is usually required anyway
when constructing practical hash functions. Finally, assume E is key-one-way,
meaning that for any message m, it is hard to recover the key τ from the
ciphertext Eτ (m). Once again, this property holds for the PRG-based scheme
Eτ (m) = G(τ) ⊕ m as long as |m| = |G(τ)| > |τ | + ω(log k), and also for
standard block-cipher-based schemes, such as CBC. Then

Theorem 5. If (P, P−1) is a strong pseudorandom permutation, E is one-time
secure and key-one-way, and H comes from a family of preimage-resistant

Concealment and its Applications to Authenticated Encryption 25

CRHFs, then AE′

K(m) = 〈PK(τ‖H(h)), h = Eτ (m)〉 gives rise to a secure
RKAE.13

Extension to the Public-Key Setting. This extension (with the excep-
tion of replacing authenticated encryption by a block cipher, which makes
no sense in the public-key setting) is pretty straightforward. In fact, unlike
the question of domain extension studied in Section 4.2, no new subtleties
arise in the public-key setting. Namely, when building “long” authenticated
encryption from a “short” authenticated encryption, regular concealments are
necessary and sufficient to maintain either the insider, or the outsider security.

References

1. S. Alt, “Authenticated Hybrid Encryption for Multiple Recipient,” Available
at Eprint Archive, http://eprint.iacr.org/2006/029, 2006.

2. J. An and M. Bellare, “Constructing VIL-MACs from FIL-MACs: Message
authentication under weakend assumptions,” In Crypto ’99, pp. 252–269, LNCS
Vol. 1666, 1999.

3. J. An, Y. Dodis, and T. Rabin, “On the Security of Joint Signature and
Encryption,” In Eurocrypt ’02, pp. 83–107, LNCS Vol. 2332, 2002.

4. J. Baek, R. Steinfeld, and Y. Zheng, “Formal proofs for the security of
signcryption,” In J. of Cryptology, 20(2):203–235, 2007. Conference version in
PKC ’02, pp. 80–98, LNCS Vol. 2274, 2002.

5. M. Bellare, R. Canetti and H. Krawczyk, “Keying hash functions for
message authentication,” In Crypto ’96, pp. 1–15, LNCS Vol. 1109, 1996.

6. M. Bellare, J. Kilian and P. Rogaway, “The security of the cipher block
chaining message authentication code,” In Journal of Computer and System
Sciences, pp. 362–399, Vol. 61, No. 3, Dec 2000.

7. M. Bellare, T. Kohno, C. Namprempre, “Provably Fixing the SSH Binary
Packet Protocol,” In Proc. 9th CCS, pp. 1–11, ACM, 2002.

8. M. Bellare and C. Namprempre, “Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm,” In Asi-
acrypt ’00 , pp. 531–545, LNCS Vol. 1976, 2000.

9. M. Bellare and P. Rogaway, “Optimal asymmetric encryption – How to
encrypt with RSA,” In Eurocrypt ’94, pp. 92–111, LNCS Vol. 950, 1994.

10. M. Bellare and P. Rogaway, “Collision-Resistant Hashing: Towards Mak-
ing UOWHFs Practical,” In Crypto ’97, pp. 470–484, LNCS Vol. 1294, 1997.

11. M. Bellare, P. Rogaway, “Encode-Then-Encipher Encryption: How to Ex-
ploit Nonces or Redundancy in Plaintexts for Efficient Cryptography,” In Asi-
acrypt ’00, pp. 317–330, LNCS Vol 1976, 2000.

12. D. Bernstein, “The Poly1305-AES Message-Authentication Code,” In FSE,
pp. 32–49, 2005.

13 Clearly, this also means that this is a secure way to build a “long” authenticated
encryption from a single call to a block cipher. In fact, preimage-resistance of H

and key-one-wayness of E are not needed in this case.

26 Yevgeniy Dodis

13. J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P. Rogaway,
“UMAC: Fast and secure message authentication,” In Crypto ’99, pp. 216–
233, LNCS Vol. 1666, 1999.

14. M. Blaze, “High-Bandwidth Encryption with Low-Bandwidth Smartcards,”
In Fast Software Encryption (FSE) ’96, pp. 33–40, LNCS Vol. 1039, 1996.

15. M. Blaze, J. Feigenbaum, M. Naor, “A Formal Treatment of Remotely
Keyed Encryption,” In Eurocrypt ’98, pp. 251–265, LNCS Vol. 1403, 1998.

16. I. Damg̊ard, “Collision free hash functions and public key signature schemes,”
In Eurocrypt ’87, pp. 203–216, LNCS Vol. 304, 1987.

17. Y. Dodis and J. An, “Concealment and its applications to authenticated en-
cryption,” Full version of this paper. Preliminary version appeared in Eurocrypt
03, pp. 306–323, 2003.

18. S. Halevi and H. Krawczyk, “Strengthening Digital Signatures Via Ran-
domized Hashing,” In Crypto ’06, pp. 41–59, 2006, LNCS Vol. 4117.

19. R. Impagliazzo, M. Luby, “One-way Functions are Essential for Complexity
Based Cryptography,” In FOCS ’89, pp. 230–235, 1989.

20. A. Joux, G. Martinet, F. Valette, “Blockwise-Adaptive Attackers: Re-
visiting the (In)Security of Some Provably Secure Encryption Models: CBC,
GEM, IACBC,” In Crypto ’02, pp. 17–30, LNCS Vol. 2442, 2002.

21. C. Jutla, “Encryption modes with almost free message integrity,” In Euro-
crypt ’01, pp. 529–544, LNCS Vol. 2045, 2001.

22. M. Jakobsson, J. Stern, and M. Yung, “Scramble All, Encrypt Small,” In
Fast Software Encryption (FSE) ’99, pp. 95–111, LNCS Vol. 1636, 1999.

23. J. Katz and M. Yung, “Unforgeable Encryption and Chosen Ciphertext Se-
cure Modes of Operation,” In FSE ’00, pp. 284–299, LNCS Vol. 1978, 2000.

24. H. Krawczyk, “The Order of Encryption and Authentication for Protecting
Communications (or: How Secure Is SSL?),” In Crypto ’01 , pp. 310–331, LNCS
Vol. 2139, 2001.

25. S. Lucks, “On the Security of Remotely Keyed Encryption,” In Fast Software
Encryption (FSE) ’97, pp. 219–229, LNCS Vol. 1267, 1997.

26. S. Lucks, “Accelerated Remotely Keyed Encryption,” In Fast Software En-
cryption (FSE) ’99, pp. 112–123, LNCS Vol. 1636, 1999.

27. A. Menezes, P. van Oorshot and S. Vanstone, “Handbook of applied
cryptography,” CRC Press LLC, 1997.

28. M. Naor, “Bit Commitment Using Pseudorandomness,” In Journal of Cryp-
tology, 4(2):151–158, 1991.

29. M. Naor and M. Yung, “Universal One-Way Hash Functions and their Cryp-
tographic Applications,” In Proc. 21st STOC, pp. 33–43, ACM, 1989.

30. P. Rogaway, “Authenticated-Encryption with Associated-Data,” In Proc. 9th
CCS, pp. 98–107, ACM, 2002.

31. P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A Block-
Cipher Mode of Operation for Efficient Authenticated Encryption,” In Proc.
8th CCS, pp. 196–205, ACM, 2001.

32. J. Rompel, “One-way functions are necessary and sufficient for secure signa-
tures,” In Proc. 22nd STOC, pp. 387–394, ACM, 1990.

33. V. Shoup, “A composition theorem for universal one-way hash functions,” In
Eurocrypt ’00, pp. 445–452, LNCS Vol. 1807, 2000.

34. D. Simon, “Finding Collisions on a One-Way Street: Can Secure Hash Func-
tions Be Based on General Assumptions?,” In Eurocrypt ’98 , pp. 334–345,
LNCS Vol. 1403, 1998.

Concealment and its Applications to Authenticated Encryption 27

35. D. Stinson, “Universal Hashing and Authentication Codes,” Designs, Codes
and Cryptography, 4:369–380, 1994.

36. Y. Zheng, “Digital Signcryption or How to Achieve Cost(Signature & Encryp-
tion) ≪ Cost(Signature) + Cost(Encryption),” In Crypto ’97, pp. 165–179,
LNCS Vol. 1294, 1997.

