
Public-Key Encryption Schemes

with Auxiliary Inputs

Yevgeniy Dodis

New York University

dodis@cs.nyu.edu

Shafi Goldwasser

MIT and Weizmann

shafi@csail.mit.edu

Yael Kalai

Microsoft Research

yael@microsoft.com

Chris Peikert

Georgia Tech

cpeikert@cc.gatech.edu

Vinod Vaikuntanathan

IBM Research

vinodv@alum.mit.edu

Abstract

We construct public-key cryptosystems that remain secure even when the adversary is given
any computationally uninvertible function of the secret key as auxiliary input (even one that
may reveal the secret key information-theoretically). Our schemes are based on the decisional
Diffie-Hellman and Learning with Errors problems.

As two independent technical contributions, we extend the Goldreich-Levin theorem to pro-
vide a hard-core (pseudorandom) value over large fields, and show the security of the learning
with errors assumption in the presence of specific (linear) auxiliary information about the se-
crets.

1 Introduction

Modern cryptographic algorithms are designed under the assumption that keys are perfectly secret
and independently chosen for the algorithm at hand. Still, in practice, information about secret
keys does get compromised for a variety of reasons, including side-channel attacks on the physical
implementation of the cryptographic algorithm, or the use of the same secret key, or the same
source of randomness for keys across several applications.

In recent years, starting with the works of [5, 17, 20], a new goal has been set within the theory
of cryptography community to build general theories of physical security against large classes of
side channel attacks. A large body of work has accumulated by now in which different classes of
side channel attacks have been defined and different cryptographic primitives have been designed to
provably withstand these attacks (See [5, 17, 20, 11, 1, 2, 22, 9, 26, 25, 16, 11, 12] and the references
therein).

Placing the current paper within this body of work, we focus on side channel attacks which
result from “memory leakages” [1, 9, 2, 22, 18]. In this class of attacks, the attacker chooses an
arbitrary, efficiently computable function h (possibly as a function of the public parameters of the
system), and receives the result of h applied on the secret key SK. Clearly, to have some secrecy
left, we must restrict the attacker to choose a function h that “does not fully reveal the secret”. The
challenge is to model this necessary constraint in a clean and general manner, which both captures
real attacks and makes the definition achievable. As of now, several models have appeared trying
to answer this question.

Let k denote the length (or more generally, the min-entropy) of SK. Akavia, Goldwasser and
Vaikuntanathan [1] considered a model in which the (adversarially chosen) function h has bounded
output-length ℓ(k) < k. In particular, this restriction ensures that the leakage does not fully reveal
the secret-key. Akavia et al. [1] show that the public-key encryption scheme of Regev [27] is secure
against ℓ(k)-length bounded leakage functions as long as ℓ(k) < (1 − ǫ)k for some constant ǫ > 0,
under the intractability of the learning with error problem (LWE). Subsequent work of Naor and
Segev [22] relaxed the restriction on h so that the length of the leakage observed by the adversary
may be longer than the length of the secret key, but the min-entropy of the secret drops by at most
ℓ(k) < k bits upon observing h(SK) (which they call the noisy leakage requirement). The work
of [22] also showed how to construct a public-key encryption scheme which resists noisy leakage
as long as ℓ(k) < k − kǫ for some constant ǫ > 0, under the decisional Diffie Hellman (DDH)
assumption. They also showed a variety of other public-key encryption schemes tolerating different
amounts of leakage, each under a different intractability assumption: Paillier’s assumption, the
quadratic residuosity assumption, and more generally, the existence of any hash-proof system [7].
We refer the reader to [22] for a detailed discussion of these results. (Finally, we note that the proof
of [1] based on the LWE assumption also generalizes to the case of noisy leakage.).

The bottomline is that both [1] and [22] (and the results that use the models therein) interpret
the restriction on the leakage function h thus:

Given h(SK), it is (information-theoretically) impossible to recover SK.

1.1 The Auxiliary Input Model

The natural question that comes out of the modeling in [1, 22] is whether this restriction is essential.
For example, is it possible to achieve security against a leakage function h that is a one-way
permutation? Such a function information-theoretically reveals the entire secret-key SK, but still
it is computationally infeasible to recover the secret key from h(SK).

1

The focus of this work is the model of auxiliary input leakage functions, introduced by Dodis,
Kalai, and Lovett [9], generalizing [1, 22]. They consider the case of symmetric encryption and
an adversary who can learn an arbitrary polynomial time computable function h of the secret key,
provided that the secret key SK is computationally hard to compute given h(SK) (but not neces-
sarily information theoretic hard to determine, as implied by the definitions of [1, 22]). Formally,
[9] require that any polynomial time algorithm attempting to invert h(SK) will succeed with prob-
ability at most 2−λ(k) for some function λ(·) (i.e., a smaller λ(k) yields a larger class of functions
allowed, and thus a stronger security result). The ultimate goal is to capture all polynomially
uninvertible functions: namely, all functions for which the probability of inversion by a polynomial
time algorithm is bounded by some negligible function in k.1 2

The work of [9] constructed, based on a non-standard variant of the learning parity with noise
(LPN) assumption, a symmetric-key encryption scheme that remains CCA-secure w.r.t. any aux-
iliary input h(SK), as long as no polynomial time algorithm can invert h with probability more
than 2−ǫk for some ǫ > 0.

In the same work [9], it was observed that in addition to generalizing the previous leakage
models, the auxiliary input model offers additional advantages, the main one being composition.
Consider a setting where a user prefers to use the same secret key for multiple tasks, as is the case
when using biometric keys [4, 10]. Suppose we construct an encryption scheme that is secure w.r.t.
any auxiliary input which is an uninvertible function of the secret key. Then, one can safely use his
secret and public key pair, to run arbitrary protocols, as long as these protocols together do not
reveal (computationally) the entire secret key.

1.2 Our Results

In this paper, we focus on designing public key encryption algorithms which are secure in the
presence of auxiliary input functions. We adapt the definition of security w.r.t. auxiliary input
from [9] to the case of public-key encryption algorithms.

1. To address the issue of whether the function h is chosen by the adversary after seeing the
corresponding public-key PK (so called adaptive security in [1]) we allow the adversary to
receive h(SK, PK). This, in effect, amounts to choosing the function of SK to depend on
PK.

2. Note that in the public key setting, the public key itself leaks some information about the
secret key. Therefore, in the public key setting, it would be impossible to prove that the
scheme remains secure w.r.t. any leakage function h that is an uninvertible function of the
secret key. However, what we can hope for is to get security w.r.t. any leakage function h,
such that the function that outputs both h(SK, PK) and PK, is an uninvertible function.
Indeed, we construct an encryption scheme that achieves such security guarantees; see item 3
below.

We prove auxiliary input security results for three public-key encryption schemes based on different
assumptions.

1Here, negl(k) is defined as usual to be smaller than 1

kc
for every c > 0 for every sufficiently large k.

2It is instructive to contrast uninvertible functions with the standard notion of one-way functions. In the former,
we require the adversary who is given h(SK) to come up with the actual pre-image SK itself, whereas in the latter,
the adversary need only output an SK′ such that h(SK′) = h(SK). Thus, a function h that outputs nothing is an
uninvertible function, but not one-way! The right notion to consider in the context of leakage and auxiliary input is
that of uninvertible functions.

2

1. We show that the “dual” of Regev’s encryption scheme [27], first proposed by Gentry, Peikert
and Vaikuntanathan [14], when suitably modified is CPA-secure in the presence of auxiliary
input functions h that can be inverted with probability at most 2−kǫ

for any ǫ > 0. The
underlying hard problem for our auxiliary-input CPA-secure scheme is the same as that
for (standard) CPA-security, i.e, the “learning with error” (LWE) problem. This result, in
particular, implies that the dual scheme is secure w.r.t. bounded length leakage of size at
most k − kǫ (and more generally, to noisy leakages). This improves on the previous bound
proved in [1] for the [27] system.

2. We show that the encryption scheme of Boneh, Halevi, Hamburg and Ostrovsky [3] (hence-
forth called the BHHO encryption scheme), suitably modified, is CPA-secure in the presence
of auxiliary input functions h that can be inverted with probability at most 2−kǫ

for any ǫ > 0.
The underlying hard problem for our auxiliary-input CPA-secure scheme is again the same as
that of the original BHHO scheme, i.e, the decisional Diffie-Hellman assumption. Previously,
[22] showed that the BHHO scheme is secure w.r.t. bounded length leakage of size at most
k − kǫ (or, more generally, noisy leakages).

We note that we can prove security of both the dual Regev encryption scheme and the BHHO
encryption scheme w.r.t. a richer class of auxiliary inputs, i.e., those that are hard to invert
with probability 2−polylog(k). However, then the assumptions we rely on are that LWE (or
DDH) are secure against an adversary that runs in subexponential time.

3. We introduce a new public-key encryption system, denoted sparse-GPV, which is essentially
a sparse version of the dual Regev (a.k.a, GPV) scheme. We prove that assuming the in-
tractability of the LWE problem, sparse-GPV is CPA-secure in the presence of all auxiliary
input functions h for which the function H(SK, PK) = (h(SK, PK), PK) is an uninvertible
function. Sparse-GPV is a modification of the dual Regev encryption scheme, so that the
secret key is chosen not uniformly from {0, 1}m nor from a discrete Gaussian distribution, but
rather is a ‘sparse’ random Boolean vector e ∈ {0, 1}m which has fewer 1s than the dimension
of the underlying LWE instance (usually denoted by n).

This in particular implies that sparse-GPV is CPA-secure w.r.t. bounded-length leakage (or
more generally, noisy leakage) of length (1− ǫ)n.

The security guarantees of the sparse-GPV scheme deserves some interpretation. At first glance,
it seems that the fact that we can tolerate any auxiliary input h(SK, PK), such that together with
PK it is hard to find SK, is a very strong result in the context of leakage. However, taking a
closer look, one can see that this intuition is misleading. The reason is that the public key PK
may reveal substantial information about SK, and therefore it may be the case that even bounded-
length leakage functions (as in [1]), together with the public key, are not one-way anymore. Indeed,
as noted above, the sparse-GPV scheme is only secure w.r.t. bounded length leakage of size (1−ǫ)k,
whereas the other two schemes are secure w.r.t. bounded length leakage of size k − kǫ.

However, the sparse-GPV scheme is advantageous in the context of composition. One can
envision that to reduce the complexity of the public-key infrastructure, it may be desirable to
design cryptographic systems such that the same public key (and corresponding secret key) may
be used for several applications, including for example encryption, digital signatures, and identi-
fication. Interestingly, going back in time to the original Diffie-Hellman and RSA papers [8, 28],
the term public-key cryptography implicitly referred to a system which offers at the same time
both encryption and digital signatures using the same public/secret key pair. Efficiency aside, the
question is whether such proposed practice offers security against polynomial time adversaries in

3

the sense that we have become accustomed to. Indeed, proving security against a large enough
class of auxiliary input functions has direct implications on this question. In particular, a public-
key encryption algorithm Π that is CPA-secure with any auxiliary input h(SK, PK) (such that
H(SK, PK) = (h(SK, PK), PK) is a one-way function) implies that Π can be securely composed
with any other cryptographic algorithm using the same public and secret keys that was previously
proved secure in the standard (no leakage) sense.

We end this section by remarking that the complexity of all of the the encryption schemes above
depends on the bound on the inversion probability of h which we desire to achieve. For example,
in the case of the BHHO scheme, the size of the secret key (and the complexity of encrypting and
decrypting) is k1/ǫ, where k is the length of the secret-key (or more generally, the min-entropy)
and security is w.r.t. auxiliary inputs that are hard to invert with probability 2−kǫ

. (This is also
the case for the results of [22].)

1.3 Overview of Techniques

We sketch the main ideas behind the auxiliary input security of the GPV encryption scheme (slightly
modified). The scheme is based on the hardness of the learning with error (decisional LWE)
problem, which states that for a security parameter n and any polynomially large m, given a
uniformly random matrix A ∈ Z

n×m
q , the vector AT s + x is pseudorandom where s ← Z

n
q is

uniformly random, and each component of x is chosen from a “narrow error distribution”.
Let us first recall how the GPV scheme works. The secret-key in the scheme is a vector e ∈

{0, 1}m, and the public-key is a matrix A ∈ Z
n×m
q together with u = Ae ∈ Z

n
q . Here n is the

security parameter of the system, q is a prime (typically polynomial in n, but in our case slightly
superpolynomial), and m is a sufficiently large polynomial in n and log q. (The min-entropy of the
secret-key k, in this case, is m.) The basic encryption scheme proceeds bit by bit. To encrypt a bit
b using PK, we first sample AT s + x from the LWE distribution: i.e, choose s← Z

n
q uniformly at

random and x from the error distribution, and output AT s+x. The encryption algorithm samples
the number x′ ∈ Zq from the error distribution and outputs the ciphertext

(AT s + x,uT s + x′ + b⌊q/2⌋) ∈ Z
m
q × Zq

Given the secret-key e, the decryption algorithm computes eT (AT s + x) ≈ (Ae)T s = uTe (since
eTx and x′ are all small compared to q) and uses this to recover b from the second component.

The first idea we use to show auxiliary input security for this scheme is that the intractability
assumption (i.e, the hardness of LWE mentioned above) “almost entirely” refers to the pre-amble
of the ciphertext AT s+x, and not to the secret-key at all. This suggests constructing the simulator
in the security proof, such that it knows the secret-key while running the simulation: the added
advantage in the context of leakage is that knowing the secret-key enables the simulator to simulate
arbitrary (polynomial-time computable) leakage functions h. This technique for proving security of
public-key encryption was already used in the context of leakage in [22, 18], and to our knowledge,
traces as far back as the Cramer-Shoup CCA encryption [6]. In particular, we consider an alternate
encryption scheme that, informally, encrypts the bit b using the secret-key e as follows:

Output (y = AT s + x, eTy + x′ + b⌊q/2⌋)

The distribution thus produced is “almost as good as” the original encryption algorithm: in par-
ticular, eTy + x′ = uT s + (eTx + x′), where eTx + x′ is distributed almost like a sample from the
noise distribution if eTx is negligible compared to x′ (this is true since both e and x can be chosen

4

to be negligible compared to the magnitude of x′). Now, by the LWE assumption, we might as well
y replace y with a uniformly random vector over Z

m
q .

We would like to show that the second component of the ciphertext, which now consists of eTy =
〈e,y〉 is pseudorandom, given the view of the adversary, namely (A,Ae, h(A, e),y) (where y ∈ Z

m
q

is uniformly random). Assuming that the function h′(A, e) = (A,Ae, h(A, e)) is uninvertible, this
suggests using a Goldreich-Levin type theorem over the large field GF (q). Coming up with such a
theorem is the first technical contribution of this work.

The original Goldreich-Levin theorem proves that for every uninvertible function h, 〈e,y〉
(mod 2) is pseudorandom, given h(e) and y for a uniformly random y ∈ GF (2)n. In this set-
ting, the later work of [15] extends this result to deal with inner-products over a general prime
modulus q, rather than q = 2. In particular, they show that any PPT algorithm that distinguishes
between 〈y, e〉 (mod q) and uniform, given h(e) and y, gives rise to an poly(q)-time algorithm that
inverts h(e) with probability 1/poly(q) (for a more detailed comparison of our result with [15], see
Remark A.3). For superpolynomially large q, the running-time of the inverter is superpolynomial,
which we wish to avoid. We consider a special class of functions (which is exactly what is needed
in our applications) where e comes from a smaller domain Hm ⊆ Z

m
q , i.e, each co-ordinate of e is

chosen from a domain H that is much smaller than the entire Zq. For this class of functions, we
show how to make the running-time of the inverter polynomial in n (and independent of q). We
state the result informally below.

Informal Theorem 1. Let q be prime, and let H be an polynomial size subset of GF (q). Let
f : Hn → {0, 1}∗ be any (possibly randomized) function. If there is a PPT algorithm D that
distinguishes between 〈e,y〉 and uniform distribution on the range given h(e) and y, there is a
PPT algorithm A that inverts h(e) with probability roughly 1/(q2 · poly(n, 1/ǫ)).

Applying this variant of the Goldreich-Levin theorem over GF (q), we get security against aux-
iliary input functions h that are hard to invert given (A,Ae, h(A, e)) (called weak auxiliary-input
security in the rest of the paper). Obtaining strong auxiliary input security, i.e, security against
functions h that are hard to invert given only (A, h(A, e)), is very easy in our case: since the public
key Ae has length n log q = mǫ ≪ |SK|, one could simply guess PK = Ae and lose only 2−mǫ

in
the inversion probability.

The proof of security for the BHHO encryption scheme follows precisely the same line of argu-
ment, but with two main differences: (1) the proof is somewhat simpler because one does not have
to deal with pesky error terms as in the LWE case, and (2) we use the Goldreich-Levin theorem
over an exponentially large field GF (q), rather than a superpolynomial one.

Finally, we consider a variant of the GPV encryption scheme where the secret-key is a (random)
sparse vector over {0, 1}m (with exactly n/2 ones) rather than uniformly random in {0, 1}m. For
this variant, we show security against any h that is polynomially uninvertible given PK = (A,Ae)
and h(A, e). The main difference in the proof is in the first step where we “encrypt with the secret-
key”. In the GPV encryption scheme, we had to choose a superpolynomial modulus to make sure
that this alternative encryption algorithm produces a distribution that is statistically close to the
original encryption algorithm. We observe that in fact, we can perfectly simulate the distribution
of the original encryption algorithm (while simultaneously encrypting with the secret-key) if the
alternate encryption algorithm also had access to a pair (e, eTx), i.e, a (sparse) linear function of
the error-vector x in the first component of the ciphertext. To make the proof go through with this
observation, we prove the following lemma, which states that the LWE assumption is true even if
the adversary gets (as auxiliary information) an arbitrary, sparse, linear function of the error-vector
x. This is the second independent technical contribution of this paper.

5

Informal Theorem 2. Assuming that the LWE assumption for security parameter n/2 holds.
Then,

{A,AT s + x, e, eTx} ≈ {A,u, e, eTx}
where A ← Z

n×m
q , s ← Z

n
q , x comes from the error distribution, u ← Z

m
q is uniformly random,

and e← {0, 1}m such that the number of ones is exactly n/2.

Details are deferred to Section C.2 (See Corollary C.8).

2 Preliminaries

Throughout this paper, we denote the security parameter by n. We write negl(n) to denote an
arbitrary negligible function, i.e., one that vanishes faster than the inverse of any polynomial.

The Decisional Diffie Hellman Assumption. Let G be a probabilistic polynomial-time “group
generator” that, given the security parameter n in unary, outputs the description of a group G that
has prime order q = q(n). The decisional Diffie Hellman (DDH) assumption for G says that the
following two ensembles are computationally indistinguishable:

{
(g1, g2, g

r
1, g

r
2) : gi ← G, r ← Zq

}
≈c

{
(g1, g2, g

r1

1 , gr2

2) : gi ← G, ri ← Zq

}

We will use a lemma of Naor and Reingold [21] which states that a natural generalization of
the DDH assumption which considers m > 2 generators is actually equivalent to DDH. The proof
follows from the self-reducibility of DDH.

Lemma 2.1 ([21]). Under the DDH assumption on G,
{

(g1, . . . , gm, gr
1, . . . , g

r
m) : gi ← G, r ← Zq

}
≈c

{
(g1, . . . , gm, gr1

1 , . . . , grm
m : gi ← G, ri ← Zq

}

Learning with Errors. We defer the definition of the learning with errors (LWE) assumption
to Appendix B.

3 Security against Auxiliary Inputs

We start by defining a general notion of security of (public-key) encryption schemes w.r.t. auxiliary
input.

Definition 1. A public-key encryption scheme Π = (Gen, Enc, Dec) with message space M =
{Mn}n∈N is CPA secure w.r.t. auxiliary inputs from H if for any PPT adversaryA = (A1,A2),
any function h ∈ H, any polynomial p, and any sufficiently large n ∈ N,

AdvA,Π,h
def
=

∣∣ Pr[CPA0(Π,A, n, h) = 1]− Pr[CPA1(Π,A, n, h) = 1]
∣∣ <

1

p(n)
,

where CPAb(Π,A, n, h) is the output of the following experiment:

(SK, PK)← Gen(1n)

(M0, M1, state)← A1(1
n, PK, h(SK, PK)) s.t. |M0| = |M1|

cb ← Enc(PK, Mb)

Output A2(cb, state)

6

3.1 Classes of Auxiliary Input Functions

Of course, we need to decide which function families H we are going to consider. We define three
such families. For future convenience, we will parametrize these families by the min-entropy k of
the secret key, as opposed to the security parameter n. (Note, in our schemes the secret key will be
random, so k is simply the length of the secret key.) The first family Hbdd is the length-bounded
family studied by the prior work [1, 22],3 while the last two families How,Hpk-ow are the auxiliary-
input families we study and introduce in this work, where we only assume that the secret key is
“hard to compute” given the leakage.

• LetHbdd(ℓ(k)) be the class of all polynomial-time computable functions h : {0, 1}|SK|+|PK| →
{0, 1}ℓ(k), where ℓ(k) ≤ k is the number of bits the attacker is allowed to learn.

• Let How(f(k)) be the class of all polynomial-time computable functions h : {0, 1}|SK|+|PK| →
{0, 1}∗, such that given h(SK, PK) (for a randomly generated (SK, PK)), no PPT algorithm
can find SK with probability greater than f(k), where f(k) ≥ 2−k is the hardness parameter.
Our goal is to make f(k) as large (i.e., as close to negl(k)) as possible.

• LetHpk-ow(f(k)) be the class of all polynomial-time computable functions h : {0, 1}|SK|+|PK| →
{0, 1}∗, such that given (PK, h(SK, PK)) (for a randomly generated (SK, PK)), no PPT
algorithm can find SK with probability greater than f(k), where f(k) ≥ 2−k is the hardness
parameter. Our goal is to make f(k) as large (i.e., as close to negl(k)) as possible.

This leads to the following definition.

Definition 2. A public-key encryption scheme Π = (Gen, Enc, Dec) is said to be

• ℓ(k)-LB-CPA (length-bounded CPA) secure if it is CPA secure w.r.t. family Hbdd(ℓ(k)).

• f(k)-AI-CPA (auxiliary input CPA) secure if it is CPA secure w.r.t. family How(f(k)).

• f(k)-wAI-CPA (weak auxiliary input CPA) secure if it is CPA secure w.r.t. familyHpk-ow(f(k)).

We show the following four relations between these definitions, whose proof is given in Ap-
pendix D.

Lemma 3.1. Assume Π is a public-key encryption scheme whose public key is of length t(k).

1. If Π is f(k)-AI-CPA secure, then Π is f(k)-wAI-CPA secure.

2. If Π is f(k)-wAI-CPA secure, then Π is (2−t(k)f(k))-AI-CPA secure.

3. If Π is f(k)-AI-CPA secure, then Π is (k − log(1/f(k)))-LB-CPA secure.

4. If Π is f(k)-wAI-CPA secure, then Π is (k − t(k)− log(1/f(k)))-LB-CPA secure.

We now examine our new notions or strong and weak auxiliary input security (f(k)-AI-CPA and
f(k)-wAI-CPA, respectively).

3For simplicity, we do not define a more general family corresponding to noisy leakage model of [22]. However, all
the discussion, including Lemma 3.1, easily holds for noisy-leakage instead of length-bounded leakage.

7

Strong Notion. We start with f(k)-AI-CPA security, which is the main notion we advocate. It
states that as long as the leakage y = h(SK, PK) did not reveal SK (with probability more than
f(k)), the encryption remains secure. First, it cleanly generalizes the notion of auxiliary input
security of [9] in the symmetric-key setting, since there k is simultaneously the security parameter,
length of the secret key and its min-entropy. Second, as shown in Part 3. of Lemma 3.1, it
immediately implies than it is safe to leak (k − log(1/f(k))) arbitrary bits about the secret key.
Thus, if log(1/f(k)) ≪ k, it means that we can leak almost the entire (min-)entropy of the secret
key! This motivates our convention of using k as the min-entropy of the secret key, making our
notion intuitive to understand in the leakage setting of [1, 22]. Third, it implies very strong
composition properties. As long as other usages of SK make it f(k)-hard to compute, these usages
will not break the security of our encryption scheme.

Weak Notion. We next move to the more subtle notion of f(k)-wAI-CPA security. The difference
from the strong security comes from the fact that we futher restrict the class of allowed leakage
functions to that SK remains hard given both the leakage y and the public key PK. While this
might sound natural, it has the following unexpected “anti-monotonicity” property. By making
PK contain more information about the secret key, we could sometimes make the scheme more
secure w.r.t. to this notion (i.e., the function f(k) becomes larger), which seems unnatural. At the
extreme, setting PK = SK would make the scheme wAI-CPA “secure”, since we now ruled out all
“legal” auxiliary functions, making the notion vacuously true. While this might appear a syntactic
problem, one can have more convincing examples, such as the following example below.

Example. Consider an encryption scheme Π which is f(k)-wAI-CPA secure, but insecure for slighly
larger f(k) < f ′(k)≪

√
f(k). Consider the scheme Π′ taking two independent copies Π1 and Π2 of

Π, and encrypting the message M by randomly splitting it as M = M1 ⊕M2 and encrypting each
Mi with Πi. This scheme might not be f(k)-wAI-CPAsecure, since the “direct product” leakage
function h(SK1, SK2) = (h1(SK1), h2(SK2)) might be f(k)-hard to invert, despite both h1(SK1)
and h2(SK2) being “f ′(k)-easy”. Thus, using such a “legal” h the attacker could recover both
M1 and M2, and, hence, M . Now, consider a modified scheme Π′′, where the public key explicitly
contains the value SK2. Here, conditioned on this public key, which includes SK2, any f(k)-hard
function of (SK1, SK2) must also be f(k)-hard function of SK1. Thus, f(k)-wAI-CPA security of
Π1 implies that no information about M1, and, hence, M is leaked. This means that Π′′ is still
f(k)-wAI-CPA secure, despite the fact that an intuitively “more secure” scheme Π′ is not!

Although the above property shows that the wAI-CPA security should be taken with care, we
show it is still very useful. First, Lemma 3.1 shows that it is useful when the scheme has a short
public-key. Specificially, when t ≪ log(1/f(k)), wAI-CPA security implies pretty good AI-CPA

and LB-CPA security. In particular, this will be the case for all the schemes that we construct,
where we will first show good wAI-CPA security, and then deduce almost the same AI-CPA security.
Second, even if the scheme does not have a very short public-key, wAI-CPA security might be useful
in composing different schemes sharing the same public-key infrastructure. For example, assume
we have a signature and an encryption scheme having the same pair (PK, SK). And assume
that the signature scheme is shown to be f(k)-secure against key recovery attacks. Since the
auxiliary information obtained by using the signature scheme certainly includes the public key, we
can conclude that our f(k)-wAI-CPA secure encryption scheme is still secure, despite being used
together with the signatures scheme. In other words, while strong auxiliary input security would
allow us to safely compose with any f(k)-secure signature scheme, even using a different PK, weak
auxiliary input security is still enough when the PKI is shared, which is one of the motivating

8

settings for auxiliary input security.
Still, one might ask why to go for wAI-CPA security and not for the stronger AI-CPA security.

The answer is that we migth be able to achieve a much smaller value of f(k) in the latter case.
Indeed, the best AI-CPA security we will manage to achieve in this work is f(k) = 2−kǫ

,4 while we
will construct a wAI-CPA secure scheme with optimal value f(k) = negl(k)!

Public Parameters. For simplicity, in Definition 2 we did not consider the case when the en-
cryption schemes might depend on system-wide parameters params. However, the notions of strong
and weak auxiliary input security naturally generalize to this setting, as follows. First, to allow
realistic attacks, the leakage function h can als depend on the parameters. Second, for both AI-CPA
and wAI-CPA notions, SK should be hard to recover given params and h(SK, PK, params) (resp.
(PK, h(SK, PK, params))).5 Correspondingly, when applying Lemma 3.1, the length of the pa-
rameters is not counted towards the length t(k) of the public-key.

4 Goldreich-Levin Theorem for Large Fields

In this section, we prove a Goldreich-Levin theorem over any field GF (q) for a prime q. In particular,
we show:

Theorem 4.1. Let q be prime, and let H be an arbitrary subset of GF (q). Let f : Hn → {0, 1}∗
be any (possibly randomized) function. If there is a distinguisher D that runs in time t such that

∣∣∣∣ Pr[s← Hn, y ← f(s), r← GF (q)n : D(y, r, 〈r, s〉) = 1]

− Pr[s← Hn, y ← f(s), r← GF (q)n, u← GF (q) : D(y, r, u) = 1]

∣∣∣∣ = ǫ

then there is an inverter A that runs in time t′ = t · poly(n, |H|, 1/ǫ) such that

Pr[s← Hn, y ← f(s) : A(y) = s] ≥ ǫ3

512 · n · q2
(1)

Remark 4.2. Assume that the distinguisher D is a PPT algorithm and the distinguishing advantage
ǫ is non-negligible in n. When q is polynomial in n, the running time of A is polynomial, and the
success probability is inverse-polynomial in n, irrespective of H. When q is super-polynomial in
n, but |H| is polynomial in n, the running time of A remains polynomial in n, but the success-
probability is dominated by the 1/q2 factor.

Overview of the Proof. We describe the main ideas behind the proof and defer the full proof
to Appendix A. As in the standard proof, we can concentrate on the vectors s on which the
distinguisher has Ω(ǫ)-advantage for random r. As a manner of simple algebraic manipulation,
it is also easy to see (see Appendix A) that it suffices to build an inverter A for such vectors

4Moreover, it appears hard to break this barrier using standard polynomial-type assumptions. Informally, under
such assumptions the public key must leak at least kǫ bits of information about the secret key. This suggests that
some leakage function h could leak precisely the remaining k− kǫ bits of information, allowing one to break the CPA
security (using also PK), while keeping this leakage 2−kǫ

-hard in the AI-CPA setting.
5Notice, unlike the case of wAI-CPA security, the inclusion of params as part of the leakage does not result in the

“anti-monotonicity” problem discussed earlier, since params are independent of the secret key.

9

s which succeeds with probability at least 1/2qc, where c ≥ 2 is the smallest integer such that
qc > 128|H|n/ǫ2. Also as in the standard proof, our inverter A will guess c inner products 〈s, zi〉,
for random vectors z1 . . . zc, losing 1/qc factor in the process. Thus, we only need to show how
to compute s with probability 1/2, provided: (a) the inverter A knows c inner products of s with
random vectors; and (b) the distinguisher D has advantage Ω(ǫ) in distinguishing correct inner
product values from random vectors u.

This is where we differ from the standard proof, and use the fact that |H| might be smaller than
q. For each i = 1 . . . n and a ∈ H, we design an iterative procedure to test, with high probability if
si = a. This is why our running time only depends on |H| and not q. The details of this test Ti,a,
which is the crux of the argument (in particular, why the existence of the distinguisher is enough
to design Ti,a), is given in Appendix A.

5 Auxiliary Input Secure Encryption Schemes

We show that the BHHO encryption scheme is secure against subexponentially hard-to-invert aux-
iliary input in section 5. The proof of auxiliary input security for the GPV and the sparse GPV
cryptosystems are given in Appendix C, for lack of space.

This section is organized as follows: first, we present the cryptosystem of Boneh, Halevi, Ham-
burg and Ostrovsky [3]. We then show that the scheme is secure against subexponentially hard
auxiliary inputs, under the decisional Diffie-Hellman (DDH) assumption.

5.1 The BHHO Cryptosystem

Let n be the security parameter. Let G be a probabilistic polynomial-time “group generator” that,
given the security parameter n in unary, outputs the description of a group G that has prime order
q = q(n).

KeyGen(1n, ǫ): Let m := (4 log q)1/ǫ, and let G← G(1n). Sample m random generators g1, . . . , gm ←
G. Let g = (g1, . . . , gm). Choose a uniformly random m-bit string s = (s1, . . . , sm) ∈ {0, 1}m,
and define

y :=
m∏

i=1

gsi

i ∈ G

Let the secret key SK = s, and let the public key PK = (g, y) (plus the description of
G). Note, g can be viewed as public parameters, meaning only y can be viewed as the
“user-specific” public key.

Enc(PK, M): Let the message M ∈ G. Choose a uniformly random r ∈ Zq. Compute fi := gr
i for

each i, and output the ciphertext

C := (f1, . . . , fm, yr ·m) ∈ Gm+1.

Dec(SK, C): Parse the ciphertext C as (f1, . . . , fm, c), and the secret key SK = (s1, . . . , sm).
Output

M ′ := c ·
(m∏

i=1

fsi

i

)−1

∈ G

10

To see the correctness of the encryption scheme, observe that if fi = gr
i for all i, then the

decryption algorithm outputs

M ′ = c ·
(m∏

i=1

fsi

i

)−1

= c ·
(m∏

i=1

gsi

i

)−r

= c · y−r = M

5.2 Security for Subexponentially Hard-to-Invert Auxiliary Inputs

Theorem 5.1. Assuming that the Decisional Diffie-Hellman problem is hard for G, the encryption
scheme described above is (2−mǫ

)-AI-CPA secure (when g is viewed as a public parameter).

Remark. We can actually handle a richer class of auxiliary inputs. We can prove security even
for auxiliary functions h(g, s) that (given g) are hard to invert with probability 1/2k, where k can
be as small as polylog(m). However, then the assumption we rely on is that DDH is hard for
adversaries that runs in subexponential time. For the sake of simplicity, we only state the theorem
for k = mǫ in which case we can rely on the standard DDH hardness assumption.

Proof of Theorem 5.1. By Lemma 3.1 (Part 2.) and because the length of “user-specific”
public-key y is log q bits, to show Theorem 5.1 it suffices to show that our encryption scheme is
(q2−mǫ

)-wAI-CPA secure. Fix any auxiliary-input function h, so that s is still (q · 2−mǫ

)-hard given
(g, y, h(g, s)), and a PPT adversary A with advantage δ = δ(n) = AdvA,h(n).

We consider a sequence of experiments, and let Adv
(i)
A,h(n) denote the advantage of the adversary

in experiment i.

Experiment 0: This is the experiment in Definition 1. The adversary A gets as input PK =
(g, y) and the auxiliary input h(g, s). A chooses two messages M0 and M1, and receives Enc(PK, Mb)
where b ∈ {0, 1} is uniformly random. A succeeds in the experiment if he succeeds in guessing b.

By assumption, Adv
(0)
A,h(n) = AdvA,h(n) = δ.

Experiment 1: In this experiment, the challenge ciphertext Mb is generated by “encrypting
with the secret key,” rather than with the usual Enc(PK, Mb) algorithm. In particular, define the
algorithm Enc′(g, s, Mb) as follows.

1. Choose r ← Zq uniformly at random, and compute the first m components of the ciphertext
(f1, . . . , fm) = (gr

1, . . . , g
r
m).

2. Compute the last component of the ciphertext as c =
∏m

i=1 fsi

i ·Mb.

Claim 5.2. The distribution produced by Enc′ is identical to the distribution of a real ciphertext;

in particular, Adv
(0)
A,h(n) = Adv

(1)
A,h(n).

Proof. Fix g and s (and hence y). Then for uniformly random r ∈ Zq, both Enc and Enc′ compute
the same f1, . . . , fm, and their final ciphertext components also coincide:

c =
m∏

i=1

fsi

i ·M =
m∏

i=1

grsi

i ·M =
(m∏

i=1

gsi

i

)r ·M = yr ·M.

11

Experiment 2: In this experiment, the vector (f1, . . . , fm) in the ciphertext is taken from the
uniform distribution over Gm, i.e., each fi = gri for uniformly random and independent ri ∈ Zq

(where g is some fixed generator of G), and c =
∏

i f
si

i ·Mb as before. Under DDH assumption and
by Lemma 2.1, it immediately follows that the advantage of the adversary changes by at most a
negligible amount.

Claim 5.3. If the DDH problem is hard for G, then for every PPT algorithm A and for every

function h ∈ H,
∣∣Adv

(1)
A,h(n)− Adv

(2)
A,h(n)

∣∣ ≤ negl(n).

Experiment 3: In this experiment, the final component of the ciphertext is replaced by a uni-
formly random element u ← G. Namely, the ciphertext is generated as (gr1 , . . . , grm , gu), where
ri ∈ Zq and u ∈ Zq are all uniformly random and independent.

Claim 5.4. For every PPT algorithm A and for every h ∈ H,
∣∣Adv

(2)
A,h(n)−Adv

(3)
A,h(n)

∣∣ ≤ negl(n).

Proof. We reduce the task of inverting h (with suitable probability) to the task of gaining some
non-negligible δ = δ(n) distinguishing advantage between experiments 2 and 3.

We wish to construct an efficient algorithm that, given PK = (g, y) and h(g, s), outputs
s ∈ Hm = {0, 1}m with probability at least

q · δ3

512n · q3
> q · 1

512n · 23mǫ/4 · poly(n)
> q · 2−mǫ

,

for large enough n. By Theorem 4.1, it suffices to reduce δ-distinguishing

(PK, h(g, s), r ∈ Z
m
q , 〈r, s〉) from (PK, h(g, s), r, u ∈ Zq)

to δ-distinguishing between experiments 2 and 3.
The reduction B that accomplishes this, given (PK = (g, y), h(g, s), r, z ∈ Zq), simulates the

view of the adversary A as follows. Give PK to A and get back two messages M0, M1; choose a
bit b ∈ {0, 1} at random and give A the ciphertext (gr1 , . . . , grm , gz ·Mb). Let b′ be the output of
A; if b = b′ then B outputs 1, and otherwise B outputs 0.

By construction, it may be checked that when B’s input component z = 〈r, s〉 ∈ Zq, B simulates
experiment 2 to A perfectly. Likewise, when z is uniformly random and independent of the other
components, B simulates experiment 3 perfectly. It follows that B’s advantage equals A’s.

Now the ciphertext in experiment 3 is independent of the bit b that selects which message is

encrypted. Thus, the adversary has no advantage in this experiment, i.e, Adv
(3)
A,h(n) = 0. Putting

together the claims, we get that AdvA,h(n) ≤ negl(n). This concludes the proof of Theorem 5.1.

Scheme with better weak security. While the natural version of our encryption scheme above
would require us to work with an ǫ-distinguisher for the inner product 〈r, s〉, we can make less
efficient variant of our scheme6 which would allow us to work with an ǫ-predictor for the value
g〈r,s〉, as opposed to the inner product 〈r, s〉 itself. Luckily, the GL inversion algorithm of [15]
(which needs a predictor) can be easily modified to work in this case, but with the the caveat that
it will output the tuple (gs1 , . . . , gsn). However, when each si ∈ H, we can compute discrete logs
in time O(|H|) (which is constant for our case |H| = 2). This means we can have the following
variant of [15]. Given an ǫ-predictor for the value g〈r,s〉, we can compute s in time poly(n, |H|, 1/ǫ)
and success probability poly(ǫ, 1/n), both of which do not depend on q.

Applying this to our scheme, where |H| = 2, we get a DDH-based encryption scheme which is
negl(n)-wAI-CPA secure. The details will appear in the full version.

6Which will apply so called reconstructive extractor to the value g〈r,s〉 and then XOR this with the message. This
variant is less efficient because the output of the extractor will only be at most logarithmic in the security parameter.

12

References

[1] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In TCC, pages 474–495, 2009. 1, 2, 3, 7, 8

[2] Joel Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In CRYPTO, pages ??–??, 2009. 1

[3] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision diffie-hellman. In CRYPTO, pages 108–125, 2008. 3, 10

[4] Xavier Boyen. Reusable cryptographic fuzzy extractors. In ACM Conference on Computer
and Communications Security, pages 82–91, 2004. 2

[5] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In EUROCRYPT, pages 453–469, 2000. 1

[6] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998. 4

[7] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002. 1

[8] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic techniques. In AFIPS Na-
tional Computer Conference, pages 109–112, 1976. 3

[9] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In STOC, pages 621–630, 2009. 1, 2, 8

[10] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In EUROCRYPT, pages 523–540, 2004. 2

[11] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293–302, 2008. 1

[12] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy Rothblum. Leakage-resilient signa-
tures, 2009. Available at http://eprint.iacr.org/2009/282. 1

[13] William Feller. An Introduction to Probability Theory and Its Applications, Volume 1. Wiley,
1968. 17

[14] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008. 3, 18, 21

[15] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with queries:
The highly noisy case. SIAM J. Discrete Math., 13(4):535–570, 2000. 5, 12, 17

[16] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In
CRYPTO, pages 39–56, 2008. 1

[17] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463–481, 2003. 1

13

[18] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage. In
ASIACRYPT, pages ??–??, 2009. 1, 4

[19] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryptosystems based on lattice
problems. In Public Key Cryptography, pages 315–329, 2007. 19

[20] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
TCC, pages 278–296, 2004. 1

[21] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231–262, 2004. 6

[22] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,
pages ??–??, 2009. 1, 2, 3, 4, 7, 8

[23] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In STOC, pages 333–342, 2009. 18

[24] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO, pages 554–571, 2008. 19

[25] Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal Malkin, and Moti Yung. A
block cipher based pseudo random number generator secure against side-channel key recovery.
In ASIACCS, pages 56–65, 2008. 1

[26] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages 462–482,
2009. 1

[27] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84–93, 2005. 1, 3, 17, 18

[28] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978. 3

A Goldreich-Levin Theorem for Large Fields

We will actually prove a tighter version of the bound stated in Equation 1, where the success
probability of A is ǫ/4qc, where c ≥ 2 is the smallest integer such that qc > 128|H|n/ǫ2. The general
bound in Equation 1 follows since 4qc = 4 max(q2, q · (128|H|n/ǫ2)) = 4q · max(q, 128|H|n/ǫ2) ≤
512q2n/ǫ2. Thus,

• If q > 128|H|n/ǫ2, then c = 2 and the above probability is at least ǫ/4q2.

• If q ≤ 128|H|n/ǫ2, then c = ⌈logq(128n|H|/ǫ2)⌉ and the above probability is at least
ǫ3/512nq|H| = poly(ǫ, 1/n, 1/|H|).

Proof. As mentioned above, we will design an inverter A with a stronger success probability ǫ/4qc,
where c ≥ 2 is the smallest integer such that qc > 128|H|n/ǫ2. Without loss of generality, we will
drop the absolute value from the condition on D, by flipping the decision of D, if needed. Also, for
a fixed value s ∈ Hℓ and fixed randomness of f (in case f is randomized), let y = f(s) and let

αs,y = Pr[r← GF (q)n : D(y, r, 〈r, s〉) = 1]

βs,y = Pr[r← GF (q)n, u← GF (q) : D(y, r, u) = 1]

14

Thus, we know that Es[αs,y−βs,y] ≥ ǫ (note, this expectation also includes possible randomness of f ,
but we ignore it to keep the notation uncluttered). Let us call the pair (s, y) good if αs,y−βs,y ≥ ǫ/2.
Since αs,y − βs,y ≤ 1, a simple averaging argument implies that

Pr[s← Hn, y ← f(s) : (s, y) is good] ≥ ǫ/2 (2)

Below, we will design an algorithm A(y) which will succeed to recover s from y with probability
1/2qc, whenever the pair (s, y) is good. Coupled with Equation 2, this will establish that A’s overall
probability of success (for random s and y) is at least ǫ/4qc, as required. Thus, in the discussion
below, we will assume that (s, y) is fixed and good.

Before describing A(y), we will also assume that A(y) can compute, with overwheliming prob-
ability, a number γs,y such that (αs,y − ǫ/8 ≥ γs,y ≥ βs,y + ǫ/8). Indeed, by sampling O(n/ǫ2)
random and independent vectors r and u, A(y) can compute an estimate e for βs,y, such that
Pr(|e − βs,y| > ǫ/8) ≤ 2−n (by the Chernoff’s bound), after which one can set γs,y = e + ǫ/4. So
we will assume that A(y) can compute such an estimate γs,y.

Let m
def
= 128|H|n/ǫ2. By assumption, c ≥ 2 is such that qc > m. Let us fix an arbitrary subset

S ⊆ GF (q)c\{0c} of cardinality m. The algorithm A(y) works as follows.

1. Compute the value γs,y such that (αs,y − ǫ/8 ≥ γs,y ≥ βs,y + ǫ/8), as described above.

2. Choose c random vectors z1, . . . , zc ← GF (q)n, and c random elements g0, . . . , gc ← GF (q).

[Remark: Informally, the gi are the “guesses” of the algorithm A for the values of 〈zi, s〉.]

3. For every tuple ρ̄ = (ρ1, . . . , ρc) ∈ S, compute

rρ̄ :=

c∑

j=1

ρjzj and hρ̄ :=

c∑

j=1

ρjgj (3)

[Remark: If the guesses gi are all correct, then for every ρ̄, we have hρ̄ = 〈rρ̄, s〉.
Also notice that the vectors rρ̄ are pairwise independent since c ≥ 2 and ρ̄ 6= 0c.]

4. For each i ∈ [n], do the following:

• For each a ∈ H, guess that si = a, and run the following procedure to check if the guess
is correct:

– For each ρ̄ ∈ S, choose a random τ
(i,a)
ρ̄ ∈ GF (q) and run

D(y, rρ̄ + τ
(i,a)
ρ̄ · ei, hρ̄ + τ

(i,a)
ρ̄ · a)

where ei is the ith unit vector. Let p(i,a) be the fraction of D’s answers which are 1.

– If the p(i,a) ≥ γs,y, set si := a and move to the next i + 1.
Otherwise, move to the next guess a ∈ H.

5. Output s = s1s2 . . . sn (or fail if some si was not found).

The procedure invokes the distinguisherD at most O(nm|H|) times (not counting the estimation
step for γs,y which is smaller), and thus the running time is O(t · nm|H|) = t · poly(n, |H|, 1/ǫ),
where t is the running time of D. Let us now analyze the probability that the procedure succeeds.

15

First, define the event E to be the event that for all ρ̄ ∈ S, we have hρ̄ = 〈rρ̄, s〉.

Pr[E] = Pr[∀ρ̄ ∈ S, hρ̄ = 〈rρ̄, s〉] ≥ Pr[∀i ∈ [1, . . . , c], gi = 〈zi, s〉] =
1

qc

where the last equality follows from the fact that A’s random guess of gi are all correct with
probability 1/qc. For the rest of the proof, we condition on the event E (and, of course, on he
goodness of (s, y)), and show that A’s success is at least 1/2 in this case, completing the proof.

We next prove two claims. First, in Claim A.1 we show that if A’s guess a for si is correct, then
each individual input to D is distributed like (y, r, 〈r, s〉), for a random r. Thus, the probability that
D answers 1 on these inputs is exactly αs,y. Moreover, the inputs to D are pairwise independent
(which is obvious from their definition in Equation 3, since we also excluded ρ̄ = 0c). Thus, by
Chebyshev’s inequality, the probability that the average pi,a of m pairwise independent estimations
of αs,y is smaller than γs,y, which is more than ǫ/8 smaller than the true average αs,y, is at most
1/(m(ǫ/8)2) = 1/2|H|n, where we recall that m = 128|H|n/ǫ2.

Secondly, in Claim A.2 we show that for every incorrect guess a for si, each individual input
to D is distributed like (y, r, u) for a random r and u. Thus, the probability that D answers 1 on
these inputs is exactly βs,y. And, as before, different values r and u are pairwise independent.7 By
an argument similar to the above, in this case the probability that the average pi,a of m pairwise
independent estimations of βs,y is larger than γs,y, which is more than ǫ/8 larger than the true
average βs,y, is at most 1/(m(ǫ/8)2) = 1/2|H|n, where we recall that m = 128|H|n/ǫ2.

This suffices to prove the our result, since, by the union bound over all i ∈ [1, . . . , n] and a ∈ |H|,
the chance that A will incorrectly test any pair (i, a) (either as false positive or false negative) is
at most |H|n · 1/(2|H|n) = 1/2. Thus, it suffices to prove the two claims.

Claim A.1. If A’s guess is correct, i.e, si = a, the inputs to D are distributed like (y, r, 〈r, s〉).

Proof: Each input to D is of the form (y, rρ̄ +τ
(i,a)
ρ̄ ·ei, hρ̄ +τ

(i,a)
ρ̄ ·a). Since we already conditioned

on E, we know that hρ̄ = 〈rρ̄, s〉. Also, we assumed that si = a. Thus,

hρ̄ + τ
(i,a)
ρ̄ · a = 〈rρ̄, s〉+ τ

(i,a)
ρ̄ · si = 〈rρ̄, s〉+ 〈τ (i,a)

ρ̄ ei, s〉 = 〈rρ̄ + τ
(i,a)
ρ̄ · ei, s〉

Since rρ̄ + τ
(i,a)
ρ̄ · ei is uniformly random by itself (see Equation 3 and remember ρ̄ 6= 0c), the input

of D is indeed of the form (y, r, 〈r, s〉), where r := rρ̄ + τ
(i,a)
ρ̄ · ei is uniformly random.

Claim A.2. If A’s guess is incorrect, i.e, si 6= a, the inputs to D are distributed like (y, r, u) for a
uniformly random u ∈ GF (q).

Proof: The proof proceeds similar to Claim A.1. As before, each input to D is of the form

(y, rρ̄ + τ
(i,a)
ρ̄ · ei, hρ̄ + τ

(i,a)
ρ̄ · a). Now, however, si 6= a, so suppose a− si = ti 6= 0. Then

hρ̄ + ρ
(i,a)
ρ̄ · a = 〈rρ̄, s〉+ ρ

(i,a)
ρ̄ · (si + ti) = 〈rρ̄ + ρ

(i,a)
ρ̄ · ei, s〉+ ρ

(i,a)
ρ̄ · ti

Let r := rρ̄ + τ
(i,a)
ρ̄ · ei and u := hρ̄ + ρ

(i,a)
ρ̄ · a, so that the input to D is (y, r, u). By the equation

above, we have u = 〈r, s〉 + ρ
(i,a)
ρ̄ · ti. Also, since rρ̄ is uniformly random, it perfectly hides τ

(i,a)
ρ̄

in the definition of r. Thus, r is independent from τ
(i,a)
ρ̄ . Finally, since we assumed that ti 6= 0

7The argument is the same for r, and for the values u, Claim A.2 shows that they are in fact completely indepen-
dent.

16

and the value τ
(i,a)
ρ̄ was random in GF (q), this means that u = 〈r, s〉 + ρ

(i,a)
ρ̄ · ti is random and

independent of r, as claimed.
This concludes the proof of Theorem 4.1.

Remark A.3. We briefly compare our new variant of the GL Lemma for general q with the similar-
looking extension of Goldreich, Rubinefeld and Sudan [15]. The etensions are incomparable, in the
following sense. In [15], the authors assume an ǫ-predictor for the inner product 〈r, s〉, which is a
stronger assumption than the existence of an ǫ-distinguisher, especially as q grows. On the other,
in [15] both the running time and the inversion probability of the inverter they construct depends
only on n/ǫ and is independent of q (and, hence, |H|, if one considers restricting the domain as
we do). Unfortunately, if one generically converts a distinguisher into a predictor, this conversion
makes the prediction advantage equal to ǫ/q, which means that applying [15] would make both the
inversion probability and the running time of the inverter depend on q. In contrast, we directly
work with the distinguisher, and manage to only make the inversion probability dependent on q,
while the running time dependent only on |H|.

B The Learning with Errors Assumption

Learning with errors (LWE). The LWE problem was introduced by Regev [27] as a general-
ization of the “learning noisy parities” problem. For positive integers n and q ≥ 2, a vector s ∈ Z

n
q ,

and a probability distribution χ on Zq, let As,χ be the distribution obtained by choosing a vector
a ∈ Z

n
q uniformly at random and a noise term x← χ, and outputting (a, 〈a, s〉+ x) ∈ Z

n
q × Zq.

Definition 3. For an integer q = q(n) and an error distribution χ = χ(n) over Zq, the (worst-case)
learning with errors problem LWEn,m,q,χ in n dimensions is defined as follows. Given m independent
samples from As,χ (where s ∈ Z

n
q is arbitrary), output s with noticeable probability.

The (average-case) decisional variant of the LWE problem, denoted DLWEn,m,q,χ, is to distin-
guish (with non-negligible advantage) m samples chosen according to As,χ for uniformly random
s ∈ Z

n
q , from m samples chosen according to the uniform distribution over Z

n
q × Zq.

For cryptographic applications we are primarily interested in the average-case decision problem
DLWE. Fortunately, Regev [27] showed that for a prime modulus q, the (worst-case) LWE and
(average-case) DLWE problems are equivalent, up to a q·poly(n) factor in m. We say that LWEn,m,q,χ

(respectively, DLWEn,m,q,χ) is hard if no PPT algorithm can solve it for infinitely many n.
At times, we find it convenient to describe the LWE problem LWEn,m,q,χ using a compact matrix

notation: given (A,AT s + x) where A ← Z
n×m
q is uniformly random, s ← Z

n
q is the LWE secret,

and x← χm, find s. We also use similar matrix notation for the decision version DLWE.

Gaussian error distributions. We are primarily interested in the LWE and DLWE problems
where the error distribution χ over Zq is derived from a Gaussian. For any r > 0, the density
function of a one-dimensional Gaussian probability distribution over R is given by Dr(x) = 1/r ·
exp(−π(x/r)2). For β > 0, define Ψβ to be the distribution on Zq obtained by drawing y ← Dβ

and outputting ⌊q · y⌉ (mod q). We write LWEn,m,q,β as an abbreviation for LWEn,m,q,Ψβ
.

Here we state some basic facts about Gaussians (tailored to the error distribution Ψβ); see,
e.g. [13]. (In what follows, ‖x‖ denotes the ℓ2 norm of a vector x.)

Lemma B.1. Let β > 0 and q ∈ Z.

1. Let y ← Ψβ. With overwhelming probability, |y| ≤ βq · √n.

17

2. Let the vector x ∈ Z
n be arbitrary, and the vector y ← Ψ

n
β. With overwhelming probability

over the choice of y,
|〈x,y〉| ≤ ||x|| · βq · ω(

√
log n)

3. Let y ∈ R be arbitrary. The statistical distance between the distributions Ψβ and Ψβ + y is at
most |y|/(βq).

Evidence for the hardness of LWEn,m,q,β follows from results of Regev [27], who gave a quantum
reduction from approximating certain problems on n-dimensional lattices in the worst case to within
Õ(n/β) factors to solving LWEn,m,q,β for any desired m = poly(n), when β · q ≥ 2

√
n. Recently,

Peikert [23] also gave a related classical reduction for similar parameters.

C Constructions Based on LWE

C.1 Strong Auxiliary Input Security for the GPV Cryptosystem

First, we present (a modification of) the GPV encryption scheme [14]. We then show that the
system is secure against sub-exponentially hard auxiliary input functions, assuming the hardness
of the learning with error (LWE) problem.

C.1.1 The GPV Cryptosystem

Let n denote the security parameter, and let 0 < ǫ ≤ 1. Let f(n) = 2ω(log n) be some superpoly-
nomial function. Let the prime q ∈ (f(n), 2 · f(n)], the integer m = ((n + 3) log q)1/ǫ and the
error-distributions Ψβ and Ψγ where β = 2

√
n/q and γ = 1/(8 · ω(

√
log n)) be parameters of the

system.

Gen(1n): Choose a uniformly random matrix A ← Z
n×m
q and a random vector e ← {0, 1}m.

Compute u = Ae. The public-key PK := (A,u) and the secret-key SK := e. We notice
that the matrix A could be viewed as a public parameter, making u the only “user-specific”
part of PK for the purposes of Lemma 3.1.

Enc(PK, b), where b is a bit, works as follows. Choose a random vector s← Z
n
q , a vector x← Ψ

m
β

and x′ ← Ψγ . Output the ciphertext
(
AT s + x,uT s + x′ + b

⌊
q

2

⌋)

Dec(SK, c): Parse the ciphertext as (y, c) ∈ Z
m
q × Zq and compute b′ = (c− eTy)/q. Output 1 if∣∣b′ − 1

2

∣∣ ≤ 1
4 , and 0 otherwise.

Remark C.1. Two remarks about the above cryptosystem are in order.

1. The main difference between the cryptosystem in [14] and the variant described here is two-
fold. (1) we choose the error-parameter β to be superpolynomially small in n (and the
modulus q to be superpolynomially large), whereas in [14], both are polynomially related to
n. (2) the secret-key distribution in our case is the uniform distribution over {0, 1}m, whereas
in [14], it is the discrete Gaussian distribution DZm,r for some r > 0. The first modification is
essential to our proof of auxiliary-input security. The second modification can be done away
with, and doing so results in an identity-based encryption scheme (as in [14]) secure against
auxiliary inputs. We defer the details to the full version of this paper.

18

2. Although the encryption scheme described here is a bit-encryption scheme, it can be modified
to encrypt O(log q) bits with one invocation of the encryption algorithm, using the ideas of
[19, 24]. However, we note that another optimization proposed in [24] that achieves constant
ciphertext expansion does not seem to lend itself to security against auxiliary inputs. Roughly
speaking, the reason is that the optimization enlarges the secret-key by repeating the secret-
key of the basic encryption scheme polynomially many times; this seems to adversely affect
auxiliary input security.

We first show the correctness of the encryption scheme. The decryption algorithm computes

b′ = (c− eTy)/q =

(
uT s + x′ + b

⌊
q

2

⌋
− eT (AT s + x)

)
/q = b · 1

2
+ (x′ − eTx− (1/2)/q)

Now, by Lemma B.1, |eTx| ≤ √m · βq · ω(
√

log n) and |x′| ≤ γq · ω(
√

log n) with all but negligible
probability. The difference between b′ and b · 1/2 is at most |x′ − eTx + 1/2q| which, by plugging
in the values of β and γ and using the triangle inequality, is at most q/4.

C.1.2 Security for Subexponentially Hard-to-Invert Auxiliary Inputs

Theorem C.2. Let the superpolynomial function f(n) and the parameters m, q, β and γ be as
in the encryption scheme described above. Assuming that the DLWEn,m,q,β problem is hard, the
encryption scheme above is (2−mǫ

)-AI-CPA secure (when A is viewed as a public parameter).

Remark. We can actually handle a richer class of auxiliary inputs. We can prove security even
for auxiliary functions h(A, e) that (given A) are hard to invert with probability 2−k, where k
can be as small as polylog(m). However, then the assumption we rely on is that LWE is hard for
adversaries that run in subexponential time. For the sake of simplicity, we only state the theorem
for k = mǫ in which case we can rely on the standard LWE hardness assumption.

Proof of Theorem C.2. By Lemma 3.1 (Part 2.) and because the length of “user-specific”
public-key u is n log q bits, to show Theorem C.2 it suffices to show that our encryption scheme is
(qn2−mǫ

)-wAI-CPA secure. Fix any auxiliary-input function h, so that e is still (qn · 2−mǫ

)-hard
given (A,u, h(A, e)), and a PPT adversary A with advantage δ = δ(n) = AdvA,h(n).

We consider a sequence of experiments, and let Adv
(i)
A,h(n) denote the advantage of the adversary

in experiment i.

Experiment 0: This is the experiment in Definition 1. The adversary A gets as input PK =
(A,u) and the auxiliary input h(A, e). A receives Enc(PK, b) where b ∈ {0, 1} is uniformly random.

A succeeds in the experiment if he succeeds in guessing b. By assumption, Adv
(0)
A,h(n) = AdvA,h(n) =

δ.

Experiment 1: In this experiment, the challenge ciphertext is generated by “encrypting with the
secret key,” rather than with the usual Enc(PK, b) algorithm. In particular, define the algorithm
Enc′(A, e, b) as follows.

1. Choose s← Z
n
q at random and x← Ψ

m
β , and compute the first component of the ciphertext

y = AT s + x.

19

2. Choose x′ ← Ψγ and compute the second component of the ciphertext as

c = eTy + x′ + b
⌊
q/2

⌋

Claim C.3. The distribution produced by Enc′ is statistically close to the distribution of a real
ciphertext; in particular, there is a negligible function negl such that

∣∣Adv
(0)
A,h(n)− Adv

(1)
A,h(n)

∣∣ ≤ negl(n).

Proof. Fix A and e (and hence u). Then for uniformly random s ∈ Z
n
q and x← Ψ

m
β , both Enc and

Enc′ compute the same y. Given y, the second component of the ciphertext produced by Enc′ is

c = eTy + x′ + b⌊q/2⌋ = eT As + (eTx + x′) + b⌊q/2⌋ = uT s + (eTx + x′) + b⌊q/2⌋

It suffices to show that the distribution of eTx + x′ is statistically indistinguishable from Ψγ .
This follows from Lemma B.1 and the fact that

eTx/(γq) ≤ ||e|| · ||x||/(γq) ≤
√

m · βq · ω(
√

log n)/(γq) = 2 ·
√

mn · ω(log n)/q

is a negligible function of n.

Experiment 2: In this experiment, the vector y in the ciphertext is taken from the uniform
distribution over Z

m
q . Assuming the DLWEn,m,q,β problem is hard, it immediately follows that the

advantage of the adversary changes by at most a negligible amount.

Claim C.4. If the DLWEn,m,q,β problem is hard, then for every PPT algorithm A and for every

function h ∈ H, there is a negligible function negl such that
∣∣Adv

(1)
A,h(n)− Adv

(2)
A,h(n)

∣∣ ≤ negl(n).

Experiment 3: In this experiment, the second component of the ciphertext is replaced by a
uniformly random element r ← Zq. Namely, the ciphertext is generated as (y, r), where y ← Z

m
q

is uniformly random, and r ← Zq is uniformly random.

Claim C.5. For every PPT algorithm A and for every function h ∈ H, there is a negligible function

negl such that
∣∣Adv

(2)
A,h(n)− Adv

(3)
A,h(n)

∣∣ ≤ negl(n).

Proof. We reduce the task of inverting h to the task of gaining a non-negligible distinguishing
advantage between experiments 2 and 3. Suppose for the sake of contradiction that there exists
a PPT algorithm A, a function h ∈ H, and a polynomial p such that for infinitely many n’s,∣∣Adv

(2)
A,h(n)−Adv

(3)
A,h(n)

∣∣ ≥ 1/p(n). We show that this implies that there exists a PPT algorithm B
so that for infinitely many n’s,

∣∣ Pr[B(A,u, h(A, e),y, eTy) = 1]− Pr[B(A,u, h(A, e),y, r) = 1]
∣∣ ≥ 1/p(n) (4)

The adversary B will simulate A, as follows. On input (A,u, h(A, e),y, c), algorithm B will
choose a random bit b ∈ {0, 1} and will start emulating A(PK, h(A, e)), where PK = (A,u). The
algorithm B will then sample x′ ← Ψγ and a uniformly random bit b ← {0, 1} and feed A the
ciphertext (y, r + x′ + b⌊q/2⌋ (mod q)). Let b′ be the output of A. If b = b′ then B outputs 1, and
otherwise B outputs 0.

By definition

Pr[B(A,u, h(A, e),y, eTy) = 1] = Adv
(2)
A,h(n),

20

and
Pr[B(A,u, h(A, e),y, r) = 1] = Adv

(3)
A,h(n).

This, together with the assumption that
∣∣Adv

(2)
A,h(n) − Adv

(3)
A,h(n)

∣∣ ≥ 1/p(n), implies that Equa-
tion (4) holds. Now, we use Goldreich-Levin theorem over the (large) field Zq and H = {0, 1} ⊆ Zq

(Theorem 4.1). By Theorem 4.1, there is an algorithm that, given PK = (A,u), inverts h(A, e)
with probability greater than

δ3

512 · n · q2
= qn · δ3 · q

512 · n · qn+3
> q · 2−mǫ

since qn+3 = 2mǫ

and 512 ·n/δ3 · q < 1 for large enough n. This provides the desired contradiction.

The ciphertext in experiment 3 contains no information about the message. Thus, the adversary

has no advantage in this experiment, i.e, Adv
(3)
A,h(n) = 0. Putting together the claims, we get that

AdvA,h(n) ≤ negl(n). This concludes the proof of Theorem C.2.

C.2 Weak Security for Polynomially Hard-to-Invert Auxiliary Inputs

In this section, we present a variant of the GPV cryptosystem that we call sparse GPV, and show
that the system is weakly secure against any polynomially uninvertible auxiliary input function
(i.e, (negl(n))-wAI-CPA secure).

C.2.1 The Sparse GPV Cryptosystem

We present yet another variant of the dual Regev (aka, GPV) encryption scheme from [14]. As
in Section C, we let n denote the security parameter. Let the prime q = poly(n), the integer
m = poly(q) and the error-distribution Ψβ where β = 1/mathsfpoly(n) for some polynomials
poly(·) be parameters of the system.

Gen(1n): Choose a uniformly random matrix A ← Z
n×m
q and a random vector e ← {0, 1}m,

such that e has exactly n/2 ones and m − n/2 zeros. Compute u = Ae. The public-key
is PK := (A,u) and the secret-key is SK := e. As before, A can be considered a public
parameter.

Enc(PK, b), where b is a bit, works as follows. Choose a random vector s ← Z
n
q and a vector

x← Ψ
m
β . Output the ciphertext

(
AT s + x,uT s + b

⌊
q

2

⌋)

Dec(SK, c): The decryption algorithm is exactly as in Section C.

The scheme here differs from the scheme in [14] (as well as the scheme in Section C) in two
respects: first and most significantly, the secret-key is a sparse vector from {0, 1}m (rather than
drawn from a discrete Gaussian distribution DZm,r for some r > 0 in GPV and a uniformly random
vector in {0, 1}m in Section C), and secondly, the final component of the ciphertext does not use
an extra noise component.

Correctness of the encryption scheme follows by an argument analogous to the one in Section C.

21

C.2.2 New Lemmas on the LWE Problem

Before we prove the auxiliary-input security of the encryption scheme described above, we show a
lemma on the hardness of the DLWEq,β problem if the adversary is given (specific types of) auxiliary
information about the secret s (as well as the error x). The lemma states that DLWEn,m,q,β remains
hard even if the distinguisher is given any (sufficiently short) linear function of the secret s.

Lemma C.6. If the DLWEn−k,m,q,β problem is hard, then for every rank-k matrix B ∈ Z
n×k
q ,

(A,BT s,AT s + x) ≈ (A,u1,u2).

The proof of the lemma relies on the following claim, which can be thought of as a special case
of the lemma where the distinguisher is given k coordinates of the secret s (instead of an arbitrary
linear function of s).

Claim C.7. If the DLWEn−k,m,q,β problem is hard, then for every set of indices I ⊆ [n] of size
|I| = k,

(A, (si)i∈I ,A
T s + x) ≈ (A, (si)i∈I ,u),

where A← Z
n×m
q , s← Z

n
q , x← Ψ

m
β , and u← Z

m
q .

Proof. Assume for the sake of simplicity of notation that I = {1, . . . , k}. Denote by A1 the first k
rows of A, and denote by A2 the last n−k rows of A. Similarly, denote by s1 the first k coordinates
of s, and denote by s2 the last n− k coordinates of s. Then,

AT s + x = AT
1 s1 + AT

2 s2 + x.

Using this notation, we need to prove that

(A1,A2, s1,A
T
1 s1 + AT

2 s2 + x) ≈ (A1,A2, s1,u). (5)

The hardness of DLWEn−k,m,q,β implies that

(A2,A
T
2 s2 + x) ≈ (A2,u).

This, together with the fact that A1 and s1 can be sampled efficiently given (A2,A2s2 +x), proves
Equation (5).

Proof of Lemma C.6. We first note that if each column of B was a vector in the standard basis
(i.e., each column of B was of the form (0, . . . , 0, 1, 0, . . . , 0)), then the proof of Lemma C.6 would
follow immediately from Claim C.7. For the case of a general matrix B, the idea is to do a change
of basis, and reduce Lemma C.6 to Claim C.7.

Let C be an (arbitrary) invertible matrix in Z
n×n
q such that the first k columns of C are equal

to B. Denote by s′ , CT s. Namely s′ is the vector s presented in a different basis. Then,

AT s = AT (C−1)TCT s = (C−1A)T (CT s) = (C−1A)T s′

Denote by s′1 the first k coordinates of s′, and denote by s′2 the last n− k coordinates of s′. Then,

(A,BT s,AT s + x) = (A, s′1, (C
−1A)T s′ + x). (6)

22

The fact that s is uniformly distributed in Z
n
q , together with the fact that C is invertible, implies

that s′ is also uniformly distributed in Z
n
q . This, together with Claim C.7, and together with the

fact that C is fixed and known in advance, implies that

(A, s′1, (C
−1A)T s′ + x) ≈ (A,u1,u2).

This, together with Equation (6), implies that

(A,BT s,AT s + x) ≈ (A,u1,u2),

as desired. This concludes the proof of Lemma C.6.

In the proof of auxiliary input security, we use the following corollary of Lemma C.6, which states
that the DLWEn,m,q,β problem remains hard even given a linear function of the error-term x.

Corollary C.8. If the DLWEn−k,m,q,β problem is hard, then

{A,AT s + x, e, eTx} ≈ {A,u, e, eTx}

where A ← Z
n×m
q , s ← Z

n
q , x ← Ψ

m
β , u ← Z

m
q , and e ← {0, 1}m such that the number of ones is

exactly k.

Proof. Let I , {i : ei = 1}. By definition |I| = k. In what follows we prove that Lemma C.6
implies even the stronger statement that

(A,AT s + x, e, {xi}i∈I) ≈ (A,u, e, {xi}i∈I) (7)

Assume for the sake of simplicity of notation that I = {1, . . . , k}. Denote by A1 the first k columns
in A and denote by A2 the remaining m− k columns of A. Similarly, we denote by x1 the first k
coordinates of the vector x, and by x2 the remaining m− k coordinates of x. Thus, Equation (7)
can be rewritten as

(A,AT
1 s + x1,A

T
2 s + x2, e,x1) ≈ (A,u1,u2, e,x1), (8)

where u1 ← Z
k
q and u2 ← Z

m−k
q .

The fact that e and x1 are efficiently sampleable implies that it suffices to prove that

(A,AT
1 s,AT

2 s + x2) ≈ (A,u1,u2),

which follows immediately from Lemma C.6.

C.2.3 Proof of Auxiliary Input Security

Theorem C.9. Let the parameters m, q, β and γ be as in the encryption scheme in Section C.2.1.
Assuming that the DLWEn/2,m,q,β problem is hard, the encryption scheme above is (negl(n))-wAI-CPA
secure. (since the min-entropy k of the secret key is polynomial in n, the scheme is (negl(k))-
wAI-CPA secure as well).

Proof of Theorem C.9. Fix any auxiliary-input function h, so that e is still polynomially-hard
to invert (A,u, h(A, e)), and a PPT adversary A with δ = δ(n) = AdvA,h(n). We consider a

sequence of experiments, and let Adv
(i)
A,h(n) denote the advantage of the adversary in experiment i.

23

Experiment 0: This is the experiment in Definition 1. The adversary A gets as input PK =
(A,u) and the auxiliary input h(A, e). A receives Enc(PK, b) where b ∈ {0, 1} is uniformly random.

A succeeds in the experiment if he succeeds in guessing b. By assumption, Adv
(0)
A,h(n) = AdvA,h(n) =

δ.

Experiment 1: In this experiment, the challenge ciphertext is generated by encrypting with the
secret key, rather than with the usual Enc(PK, b) algorithm. In particular, define the algorithm
Enc′(PK, e, b) as follows.

Enc′(PK, e, b) , (y, eTy − eTx + b⌊q/2⌋)

where y = AT s + x. Clearly, the distribution produced by Enc′ is identical to the distribution of a

real ciphertext, and thus Adv
(1)
A,h(n) = Adv

(0)
A,h(n).

Experiment 2: In this experiment, the vector y in the ciphertext is taken from the uniform
distribution over Z

m
q . Using Corollary C.8, we show that the advantage of the adversary changes

by at most a negligible amount. More precisely,

Claim C.10. Assume that the DLWEn/2,m,q,β problem is hard. Then for every PPT algorithm A
and for every function h ∈ H, there is a negligible function negl such that

∣∣Adv
(2)
A,Π,h(n)− Adv

(1)
A,Π,h(n)

∣∣ ≤ negl(n)

Proof. The proof works in two stages. First, we consider two distributions D1 and D2 (defined
below), and show that any adversary A that distinguishes between experiments 1 and 2 with non-
negligible probability can be used to construct an adversary B that distinguishes between D1 and
D2.

D1 : Output (A,AT s + x, e, eTx) : s← Z
n
q ;x← Ψβ ; e← {0, 1}m s.t. e has exactly n/2 ones

D2 : Output (A,u, e, eTx) : u← Z
m
q ;x← Ψβ; e← {0, 1}m s.t. e has exactly n/2 ones

We then invoke Corollary C.8 which says that distinguishing between D0 and D1 is at least as hard
as solving DLWEn/2,m,q,β .

The rest of the proof is similar to the proof of Theorem C.2.

Experiment 3: In this experiment, we again change the way the ciphertext is generated. In
particular, the component eT (y − x) in the ciphertext is replaced by a uniformly random element
u ← Zq. i.e, the ciphertext is generated as

(
y, u + b⌊q/2⌋

)
, where y ← Z

m
q is uniformly random,

and u← Zq is uniformly random.

Claim C.11. For every PPT algorithm A and for every function h ∈ H, there is a negligible

function negl such that
∣∣Adv

(2)
A,h(n)− Adv

(3)
A,h(n)

∣∣ ≤ negl(n).

Proof: Analogous to Claim C.5, we can show that any PPT adversary A that distinguishes
between experiments 2 and 3 with advantage δ ≥ 1/p(n) (for some polynomial p(n)) can be used
to construct an inverter B that, given PK = (A,u), inverts h(A, s) with probability

δ3

512 · n · q2

def
=

1

p′(n)

24

where p′(n)
def
= 512 ·n ·p(n)3 ·q2 is polynomial in n since q is polynomial in n. Since the min-entropy

k of the secret key is polynomial in n, the inversion probability is polynomial in k as well.

The ciphertext in experiment 3 contains no information about the message. Thus, the adversary

has no advantage in this experiment, i.e, Adv
(3)
A,h(n) = 0. Putting together the claims, we get that

AdvA,h(n) ≤ negl(n).

D Proof of Lemma 3.1

Proof. The first part is obvious, since auxiliary input CPA security protects against a strictly larger
class of functions than weak auxiliary input CPA security. Indeed, if SK is f(k)-hard to compute
given (PK, h(SK, PK)), then it is certainly f(k)-hard given h(SK, PK) alone. In other words,
Hpk-ow(f(k)) ⊆ How(f(k)).

The second part follows from the fact that PK is only t = t(k) bits long, so it is always possible
to guess it with probability 2−t. Namely, if SK is “f(k)-easy” given (PK, h(SK, PK)), then it
is certainly “(2−tf(k))-easy” given h(SK, PK) alone, by simply guessing the value PK. In other
words, How(2−tf(k)) ⊆ Hpk-ow(f(k)).

To show the third part, let ℓ(k) = k − log(1/f(k)). The claim will follow if we show that
Hbdd(ℓ(k)) ⊆ How(2ℓ(k)−k); namely, learning at most ℓ(k) bits of information h(SK, PK) about a
secret key SK of min-entropy k, makes it hard to predict with probability at least 2ℓ(k)/2k. Indeed,
this is so since learning ℓ(k) bits can only increase the best prediction probability 1/2k by at most
a factor 2ℓ(k).

The fourth part follows immediately by combining the second and third parts.

25

	Introduction
	The Auxiliary Input Model
	Our Results
	Overview of Techniques

	Preliminaries
	Security against Auxiliary Inputs
	Classes of Auxiliary Input Functions

	Goldreich-Levin Theorem for Large Fields
	Auxiliary Input Secure Encryption Schemes
	The BHHO Cryptosystem
	Security for Subexponentially Hard-to-Invert Auxiliary Inputs

	Goldreich-Levin Theorem for Large Fields
	The Learning with Errors Assumption
	Constructions Based on LWE
	Strong Auxiliary Input Security for the GPV Cryptosystem
	The GPV Cryptosystem
	Security for Subexponentially Hard-to-Invert Auxiliary Inputs

	Weak Security for Polynomially Hard-to-Invert Auxiliary Inputs
	The Sparse GPV Cryptosystem
	New Lemmas on the LWE Problem
	Proof of Auxiliary Input Security

	Proof of Lemma 3.1

